Colours Schema

Customer	
cust\#	PK
cname	
fav_colour	
phone\#	

Item	
item\#	PK
prod\#	FK to Product
cust\#	FK to Customer
colour	
date_sold	

Product	
prod\#	PK
pname	
cost	
maker	FK to Company

Avail_Colours	
prod\# colour	PK, FK to Product

Query 1.

Show, for each customer (reporting the customer's name), the products by name that come in the customer's favourite colour.

```
select C.cname, P.pname
    from Customer C, Avail_Colours A,
            Product P
    where C.fav_colour = A.colour
        and A.prod# = P.prod#;
```


Query 2.

Show, for each customer (reporting the customer's name), the products by name that do not come in the customer's favourite colour.

```
select C.cname, P.pname
    from Customer C, Product P
    where C.fav_colour not in (
            select A.colour
                        from Avail_Colours A
                                    where A.prod# = P.prod#
                );
```


Query 2. (B)

```
select C.cname, P.pname
    from Customer C, Product P,
        ( select distinct Q.prod#, A.colour
                        from Product Q,
                        Avail_Colours A
            except
            select prod#, colour
                        from Avail_Colours
        ) as N
    where C.fav_colour = N.colour
        and P.prod# = N.prod#;
```


Query 2. (C)

with
NotAvail (prod\#, colour) as (select distinct Q.prod\#, A.colour from Product Q, Avail_Colours A

except

select prod\#, colour from Avail_Colours
)
select C.cname, P.pname
from Customer C, Product P, NotAvail N
where C.fav_colour $=\mathrm{N} . \mathrm{colour}$ and P.prod\# $=$ N.prod\#;

Query 3.

List pairs of customers (columns: first_cust\#, first_cname, second_cust\#, second_cname) such that the two customers own at least two products in common.

```
select distinct C.cust#, C.cname, D.cust#, D.cname
    from Customer C, Customer D, Item IC, Item JC, Item ID, Item JD
    where C.cust# = IC.cust# and C.cust# = JC.cust# and
        D.cust# = ID.cust# and D.cust# = JD.cust# and
        IC.prod# = ID.prod# and JC.prod# = JD.prod# and
        IC.prod# <> JC.prod# and
        C.cust# < D.cust#;
```


Query 4.

List customers who own items in all the available colours. That is, for every available colour, the customer owns some item in that colour.

```
select cust#, cname
    from Customer
except
select C.cust#, C.cname
    from ( select D.cust#, A.colour
        from Customer D,
                            Avail_Colours A
            except
            select I.cust#, I.colour
                from Item I
            ) as M,
            Customer C
    where C.cust# = M.cust#;
```


Query 5.

List each customer by name, paired with the product(s) by name that he or she has bought that was the most expensive (cost) of all the products he or she has bought.

```
select C.cname, P.pname
    from ( select distinct cust#, prod#
                from Item
            except
            select I.cust#, I.prod#
                        from Item I, Item J, Product Q, Product R
                        where I.cust# = J.cust# and
                        I.prod# = Q.prod# and J.prod# = R.prod# and
                        Q.cost < R.cost
        ) as M,
        customer C, Product P
    where C.cust# = M.cust# and P.prod# = M.prod#;
```


Query 6.

Show, for each customer, the total cost he or she has paid for products in his or her favourite colour.

```
select C.cust#, C.name,
            sum(P.cost) as total
    from Customer C, Item I,
        Product P
    where C.cust# = I.cust#
        and I.prod# = P.prod#
        and C.fav_colour = I.colour
    group by C.cust#, C.cname;
```


Query 7.

Report with columns cust\# and colour for each customer which colour he or she has spent more on products of that colour than on products of any other colour.

```
with
Colours (cust#, colour, total) as (
    select I.cust#, I.colour, sum(P.cost)
            from Item I, Product P
            where I.prod# = P.prod#
            group by I.cust#, I.colour
),
\vdots
```


Query 7. (p.2)

with
:
Most (cust\#, highest) as (
select C.cust\#, max(C.total)
from Colours C group by cust\#
)
!

Query 7. (p.3)

```
    \vdots
select C.cust#, C.cname, R.colour, M.highest
    from Customer C, Colour R, Most M
    where C.cust# = R.cust#
        and C.cust# = M.cust# and
            R.total = M.highest;
```


Query 8.

What is the total each customer has spent on items since his or her most expensive purchase?
In case of ties for the most expensive purchase, count since the first most expensive purchase.

```
with
    Expensive (cust#, cost) as (
                select I.cust#, max(P.cost)
                        from Item I, Product P
                        where I.prod# = P.prod#
                                group by I.cust#
),
\vdots
```


Query 8. (p.2)

with
:

```
First (cust#, when) as (
            select I.cust#, min(date_sold)
            from Item I,
                        Expensive E,
                    Product P
                        where I.cust# = E.cust#
                        and I.prod# = P.prod#
                        and P.cost = E.cost
        group by I.cust#
    )
    !
```


Query 8. (p.3)

```
    \vdots
select C.cust#, C.cname, sum(P.cost) as total
    from Customer C, Item I,
            Product P, First F
    where C.cust# = I.cust#
        and C.cust# = F.cust#
        and I.prod# = P.prod#
        and I.date_sold > F.when
    group by C.cust#, C.cname;
```


Query 9.

Which pairs of customers own at least twelve products in common?
with
Owned (cust\#, prod\#) as (select distinct cust\#, prod\# from Item
)
:

Query 9. (p.2)

```
    \vdots
select C.cust#, C.cname,
            D.cust#, D.cname
    from Customer C, Customer D,
            Owned P, Owned Q
    where C.cust# = P.cust#
        and D.cust# = Q.cust#
        and P.prod# = Q.prod#
        and C.cust# < D.cust#
        group by C.cust#, C.cname,
                        D.cust#, D.cname
    having count(*) >= 12;
```


Query 10.

Query 5 again: List each customer by name, paired with the product(s) by name that he or she has bought that was the most expensive (cost) of all the products he or she has bought.
Hey, but you have aggregation now!

```
with
    Expensive (cust#, highest) as (
        select I.cust#, max(P.cost)
            from Item I, Product P
            where I.prod# = P.prod#
            group by I.cust#
    )
    \vdots
```


Query 10. (p.2)

```
    \vdots
select C.cname, P.pname
    from Customer C, Item I,
                Product P, Expensive E
    where C.cust# = I.cust#
        and C.cust# = E.cust#
        and I.prod# = P.prod#
        and P.cost = E.highest;
```


Recursion: E.g., Bosses

with
Boss (emp\#, boss\#) as (select emp\#, boss\# from Employee union all select E.emp\#, B.boss\#
from Boss B, Employee E where E.boss\# = B.emp\#
),
select E.emp\#, E.name as ename, B.boss\#, F.name as bname
from Boss B, Employee E, Employee F where B.emp\# = E.emp\#
and B.boss\# = F.emp\#;

Counting (w/o Aggregation!)

with
First (a, b, r\#) as (select $a, b, 0$ from Data except select Y.a, Y.b, 0 from Data Y, Data Z where (Y.a $>Z . a$) or ((Y.a >= Z.a) and (Y.b > Z.b))
) , !

Counting (p.2)

with
!
Counter ($\mathrm{a}, \mathrm{b}, \mathrm{r} \#$) as (
select $a, b, r \#$
from First
union all
select D.a, D.b, C.r\# + 1
from Counter C, Data D
where (D.a > C.a) or
((D.a $>=$ C.a) and (D.b > C.b))
)

Counting (p.3)

```
select a, b, r#
    from Counter
except
select M.a, M.b, M.r#
    from Counter M, Counter X
    where M.a = X.a
        and M.b = X.b
        and M.r# < X.r#
order by a, b;
```

