
Winter 2007 COSC-6421: Prolog p. 1

Prologue to Prolog 101
A Lecture for COSC-6421

Parke Godfrey
Fall 2004

Winter 2007 COSC-6421: Prolog p. 2

Prologue

Goal: Convert you to the way of Prolog,
especially you Lisp heathens

(or to introduce you to Prolog

and its many merits).

I. The Genesis of Prolog

II. Prolog, the language

III. The Merits of Prolog

IV. Why Prolog?

A. Prolog vs. Lisp

B. Why Prolog for AI?

V. The Cannibals-and-Missionaries Problem

VI. Homework

Winter 2007 COSC-6421: Prolog p. 3

Theorem Proving

¬a ∨ b ¬b ∨ ¬f ∨ h

¬a ∨ c ¬c ∨ ¬d ∨ h

¬b ∨ d ∨ e ¬e ∨ ¬g ∨ h

¬c ∨ f ∨ g a

Prove h.

Search can be hard. Theorem proving can be hard.

A Horn clause has one or no positive atoms in it.

a ∨ ¬b ∨ ¬c

can be rewritten as

a ← b, c.

Procedural = Declarative

Logic can be used as a programming language!

Winter 2007 COSC-6421: Prolog p. 4

Prolog, the language

1. Clauses, Facts, and Queries

Clause: a ← b 1, . . . , b n.

Fact: a.

Query: ← a 1, . . . , a n.

2. Matching (unification)

3. Built-in control

• Proof by refutation

• One inference rule: resolution

• Choosing clauses: first in list to match to last in list to match

• Choosing goals: from left-to-right in goal list

4. Meta-predicates

setof clause var

assert retract not “\+”

univ “= ..” equivalent “==” meta-variables!

5. Search Prunning/Commit

cut “!”

Winter 2007 COSC-6421: Prolog p. 5

Grandmothers and Grandfathers

grandmother (GM, X) ← mother (GM, P),

parent (P, X).

grandfather (GF, X) ← father (GF, P),

parent (P, X).

parent (M, X) ← mother (M, X).

parent (F, X) ← father (F, X).

mother (judith, parke). father (blan, parke).

mother (ruby, judith). father (alvin, judith).

mother (lallage, blan). father (albert, blan).

← grandmother (G, parke). ← grandmother (lallage, X).

G = ruby; X = parke;

G = lallage; no

no

Winter 2007 COSC-6421: Prolog p. 6

Why Prolog?

Prolog vs. Lisp (a sibling rivalry)

• the not-invented-here syndrom

• relational vs. functional

Why Prolog for AI?

◦ easy to write meta-programs

– Prolog is its own meta-language!

– code = data

◦ is an “interpreted” language

– good debugging facilities

– needed for meta-programming

◦ based on the recursion paradigm

◦ no typing!

• Prolog is based on first-order logic

Logic is good for AI.

• is declarative

(not prescriptive)

Winter 2007 COSC-6421: Prolog p. 7

The Merits of Prolog
Neat Features of Prolog

• Non-determinism (backtracking)

– Can find alternate answers/solutions for free!

• Invertability

– Call any predicate with any instantiation pattern!

(Well, sometimes . . .)

• Unification

– Pattern matching for free!

• Built-in Search

– A free refutation proof system.

– Specs are executable. (Well, kind of . . .)

Do not have to write one’s own search mechanism for every

problem.

• Built-in database features

– assert and retract

Winter 2007 COSC-6421: Prolog p. 8

Meta-Predicates
a.k.a. Extra-Logical Predicates

setof/findall

← setof (GM, grandmother (GM, parke), GMs).

GMs = [lallage, ruby];

no

assert

← student (X).

no

← assert (student (parke)).

yes

← student (X).

X = parke;

no

meta-variables

exec list ([X |Xs]) ← X, exec list (Xs).

exec list ([]).

Winter 2007 COSC-6421: Prolog p. 9

Executable Specifications

Program = Logic + Control

A goal of logic programming is to be able to execute specifications

as code.

In Prolog, the control mechanism is built in.

Winter 2007 COSC-6421: Prolog p. 10

Problem with Specs

Some specs are more equal than others.

sort (As, Zs) ← same length (As, Zs),

perm (As, Zs),

ordered (Zs).

perm (As, [A |Zs])← choose (A, As, Rest),

perm (Rest, Zs).

perm ([], []).

same length ([|As], [|Zs]) ← same length (As, Zs).

same length ([], []).

choose (A, [A |As], As).

choose (A, [B |As], [B |Zs]) ← choose (A, As, Zs).

ordered ([A, B |As]) ← A < B, ordered ([B |As]).

ordered ([A]).

ordered ([]).

Winter 2007 COSC-6421: Prolog p. 11

Problem with Specs [cont.]

A better sort of sort.

sort ([A |As], Zs) ← divide list (A, As, Fs, Ls),

sort (Fs, OrdFs),

sort (Ls, OrdLs),

append (OrdFs, [A |OrdLs], Zs).

sort ([], []).

divide list (A, [F |As], [F |Fs], Ls) ←

A > F ,

divide list (A, As, Fs, Ls).

divide list (A, [L |As], Fs, [L |Ls]) ←

A =< L,

divide list (A, As, Fs, Ls).

divide list (A, [], [], []).

Winter 2007 COSC-6421: Prolog p. 12

Pragmatics

\+ is not

, is and

; is or (also used to enumerate answers)

! is cut

:- is if (←)

[Head |Tail] is a list.

Head is the first term in list. (car for you Lispites)

Tail is the first term in list. (cdr for you Lispites)

[First, Second |Tail] is valid notation too. [] is the empty list.

[First, Second, Third] is a completely enumerated list.

Variables names always start CAPITALIZED.

Constants begin with lowercase (or are single-quoted).

How do you load clauses from a file?

In the Prolog session, type: consult (〈filename〉).

Every clause (rule, query, or fact) must end in a period!

Winter 2007 COSC-6421: Prolog p. 13

Books on Prolog

Prolog Books (On reserve in AVW Library)

[1] W. F. Clocksin and C. S. Mellish. Programming in Prolog.

Springer-Verlag, Berlin, third, revised and extened edition, 1987.

[2] L.S. Sterling and E.Y. Shapiro. The Art of Prolog. MIT Press,

1986.

Manuals

The SICSTUS Manual.

Logic for Problem Solving

[1] R.A. Kowalski. Logic for Problem Solving. Artificial

Intelligence Series. North-Holland, New York, 1979.

[2] Nils J. Nilsson. Principles of Artificial Intelligence. Morgan

Kaufmann Publishers Incorporated, 1980.

Winter 2007 COSC-6421: Prolog p. 14

Books on Logic Programming

[1] John W. Lloyd. Foundations of Logic Programming. Symbolic

Computation—Artificial Intelligence. Springer-Verlag, Berlin,

second edition, 1987.

[2] Jorge Lobo, Jack Minker, and Arcot Rajasekar. Foundations of

Disjunctive Logic Programming. M.I.T. Press, Cambridge,

Massachusetts, 1992.

