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Propositional Logic
Programs / Databases

Recall our example conjunctive normal form (CNF) formula:

¬a ∨ b ¬b ∨ ¬f ∨ h

¬a ∨ c ¬c ∨ ¬d ∨ h

¬b ∨ d ∨ e ¬e ∨ ¬g ∨ h

¬c ∨ f ∨ g a

This is written in the common shorthand for CNF: There are implicit ∧’s

between the clauses.

A clause is of the form l1 ∨ . . .∨ lk, in which each li is a positive occurrence

of a proposition (e.g., a) or a negative occurrence of a proposition (e.g., ¬a).

Oddly, let us call such a CNF formula as above a program, or even a

database. It will become clearer as we progress why these names really are

not so odd. Denote the program above as P .
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Propositional Logic
Queries

Prove h from P .

In other words, we are asking the query, is h true, given that P is true?

What does this query mean? It means for us to show that h logically

follows from P .

There are several approaches to do this.

•Model Theory Approach: Show that in any situation in

which P is true, h is also true.

• Proof Theory Approach: Show that there is a sequence of

inference steps that lead from the premise P to the conclusion

h.
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The Example Simplified

Let us simplify our example P some so we do not have to work as hard.

¬a ∨ b ¬b ∨ ¬f ∨ h

¬a ∨ c ¬c ∨ ¬d ∨ h

¬b ∨ d ∨ e ¬e ∨ ¬g ∨ h

¬c ∨ f ∨ g a

Does a have to be true for P to be true? Clearly yes. If a were false, P is

necessarily false. So a is true in all situations (in which P is true). We also

easily see then that b is true and that c is true.

So for any clause that contains a positive occurrence of a (or b or c), we can

drop that clause from P since we now know that clause is true.

For any clause that contains ¬a (or ¬b or ¬c), we can drop the ¬a (or ¬b

or ¬c) from it since we know ¬a (and ¬b and ¬c) is false. (We have to keep

the rest of the clause though, because it still could be either true or false.

Thus our modified program, P ′, is

d ∨ e ¬d ∨ h

f ∨ g ¬e ∨ ¬g ∨ h

¬f ∨ h

P and P ′—with a, b, and c as facts in P ′—are logically equivalent.
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Truth Tables (Models)

We can guess for each proposition whether it is true or it is false, and see

whether that makes P overall true or false, with respect to these guesses.

Each possible truth assignment—having assigned each proposition (e.g.,

a, . . . , h) to true or to false—is called an interpretation.

Any interpretation that renders P true is called a model of P .

This is really (so far) just the same as truth tables, which show up many

places in C.S., E.E., and math.

• h logically follows from P iff h is true in every model of P .

• Likewise, ¬h logically follows from P iff h is false in every

model of P .

P |= h is the fancy way to write that h logically follows from P .

In our example P , there are eight propositions: a, . . . , h. Therefore, there

are 28, or 256, interpretations for P .

In our P ′, there are just five propositions, d, . . . , h, to interpret, so just 25,

or 32, interpretations.
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Truth Table for P ′

# d e f g h P ′

1 T T T T T T

2 T T T T F F

3 T T T F T T

4 T T T F F F

5 T T F T T T

6 T T F T F F

7 T T F F T F

8 T T F F F F

9 T F T T T T

10 T F T T F F

11 T F T F T T

12 T F T F F F

13 T F F T T T

14 T F F T F F

15 T F F F T F

16 T F F F F F

# d e f g h P ′

17 F T T T T T

18 F T T T F F

19 F T T F T T

20 F T T F F F

21 F T F T T T

22 F T F T F F

23 F T F F T F

24 F T F F F F

25 F F T T T F

26 F F T T F F

27 F F T F T F

28 F F T F F F

29 F F F T T F

30 F F F T F F

31 F F F F T F

32 F F F F F F

So nine interpretations—1, 3, 5, 9, 11, 13, 17, 19, and 21—render P ′ as

true, and thus are models of P ′.

Note that h is true in all nine of the models. Therefore, h logically follows

from P ′.

Since P and P ′ are logically equivalent, h logically follows from P .
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Models as Sets

Traditionally, an interpretation is a subset of the propositions to be

considered true, and a model is an interpretation that renders P as true.

So the models in our example P ′ are

1. {d, e, f , g, h}

2. {d, e, f , h}

3. {d, e, g, h}

4. {d, f , g, h}

5. {d, f , h}

6. {d, g, h}

7. {e, f , g, h}

8. {e, f , h}

9. {e, g, h}

Any proposition that does not appear in a model then is considered to be

false with respect to that model. For instance, d is false with respect to

model #9.

Rewording then what it means to logically follow:

• h logically follows from P iff h is in every model of P ;

• likewise, ¬h logically follows from P iff h is not in any model of

P .

Thus to find the set of all the propositions that logically follow from P , find

the interection of all P ’s models.

For P ′, that is {h}.

For our example P , that would be {a, b, c, h}.
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Consistency

Is it ever possible that P |= a and that P |= ¬a?

This seems bizarre, but it is possible!

It works by our definitions if P has no models.

Consider our example P , but with the clause ¬h added. This new P has

no models.

A program P with no models is called inconsistent. P is called consistent

otherwise.

Ideally, we would like to consider only consistent P ’s.
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Unknown

Is it ever possible that P 6|= a and that P 6|= ¬a?

This says that a does not logically follow from P and that ¬a does not

logically follow from P .

Certainly this is possible.

This might seem bizarre initially, but really it is not so odd. It is just that a

given P may not provide enough information to determine whether a is

true or it is false.

In this case we would say that a is unknown with respect to P .

For example, in our example P ′, d is unknown.
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Refutation
by Truth Tables

The notion of inconsistency gives us another method to show that

something logically follows.

Add the negation of what we are trying to prove to P , and show that the

resulting P is inconsistent (that is, has no models).

For example, if we can show that there are no models of P ′ ∪ {¬h}, then

P ′ |= h.

# d e f g P ′ ∪ {¬h}

1 T T T T F

2 T T T T F

3 T T T F F

4 T T T F F

5 T T F T F

6 T T F T F

7 T T F F F

8 T T F F F

9 T F T T F

10 T F T T F

11 T F T F F

12 T F T F F

13 T F F T F

14 T F F T F

15 T F F F F

16 T F F F F

(You should check this truth table as an exercise.)
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Refutation (p.2)
by Truth Tables

So once again we have proven that h logically follows from P ′.

In our example for P ′ |= h?, by refutation we only needed to look at 16

interpretations. We had to look at all 32 interpretations for P ′ before.

We shall extend this idea of refutation into a proof system.

Proof-by-refutation is a type of proof by contradiction.

Note that we did not learn whether P is consistent or not this way.

We happened to know already that our example P ′ is consistent, because

we know from before that it has a model (actually, nine models).

What about the case when we do not know whether P is consistent?
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Proof Theory

Another approach to find whether a logically follows from P is to apply a

sequence of logically sound inference steps starting from P and ending

with a.

The sequence of steps from P to a is called a proof, and serves to prove

that a can be logically derived from P .

P ⊢ a is the fancy way to write this. This states that there exists a proof of

a from P .

There are a number of questions to address regarding our proof system.

First, what are the types of inference steps that are permitted? Once we

have established that, we must address soundness and completeness.

• Soundness: For any P and a, if P ⊢ a, then P |= a.

• Completeness: For any P and a, if P |= a, then P ⊢ a.
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⊢ ≡ |=
An Aside

First-order propositional logic is sound and complete. That is, anything

provable in it is in fact true, and anything true with respect to it is

provable.

It is one of the greatest mathematical results of the 20th century that

first-order logic (predicate calculus) without arithmetic is sound and

complete. (Gödel’s Completeness Theorem)

It is arguably the greatest mathematical result of the 20th century that

first-order logic (predicate calculus) with full arithmetic and second-order

logic are necessarily incomplete. (Gödel’s Incompleteness Theorem)
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Refutation Proofs
with Resolution

For our CNF programs, remarkably there is one inference rule that will

suffice: resolution.

(This is not exactly true. We would need more to be complete for CNF

programs. However, it is all we will need for Datalog to come.)

The resolution step is as follows.

(a ∨ l1 ∨ . . . ∨ lk) ∧ (¬a ∨ lk+1 ∨ . . . ∨ ln)

l1 ∨ . . . ∨ ln

in which each li is a positive or a negative occurrence of a proposition.

Refutation proof by resolution:

• Add the negation of what you are trying to prove. E.g.,

P ′ ∪ {¬h}.

• Apply resolution steps until you reach the empty clause.

The empty clause (an or-clause with nothing in it) is equivalent to false.

(Think about it.)
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Refutation Proof by Resolution
of P ′ ∪ {¬h}

Let us show that h logically follows from P ′ once again, this time with a

refutation proof by resolution.

¬h ¬d ∨ h

¬d

¬d d ∨ e

e

¬h ¬f ∨ h

¬f

¬f f ∨ g

g

e ¬e ∨ ¬g ∨ h

¬g ∨ h

g ¬g ∨ h

h

¬h h

2

‘2’ is a fancy symbol used to denote the empty clause.

Thus, we have arrived at ‘2’, or false. This is a contradiction. Therefore, h

cannot be false, (equivalently, ¬h cannot be true), so h must be true (with

respect to P).
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Logic as a Database? Problems?
Horn Programs

What are the problems with using CNF propositional logic for our

knowledge-bases / databases / programs?

1. Looks really unnatural.

2. Allows for meaningless databases / programs (that

is, that have no models).

3. Where’s the data?!

To address both points 1 and 2, we shall restrict the types of clauses

permitted.

Horn clause: At most one positive proposition appears.

Horn clauses are more natural, and have a correspondence to database

concepts.

Rule / View: a← b, c. (a ∨ ¬b ∨ ¬c)

Fact: b. (b)

Query: ← a. (¬a)

• Easy to read when rewrittin as implications.

• Every database / program is meaningful; that is, consistent!

(Really?! . . .)
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Logic as a Database!
Datalog

We call a program that consists of just rules and facts—Horn clauses each

with exactly one positive proposition—a Datalog database.

We write queries as Horn clauses that contain no positive proposition.

A query can be evaluated against a Datalog database as a resolution

refutation proof.

query evalutation ≡ proof

So how do we know an answer to a query (with respect to the database) is

correct?

Its evaluation is equivalent to a proof that it is correct (that it is a logical

consequence)!

We still need to address point 3, “Where’s the data?!”

We shall need to use (first-order) predicate calculus logic instead of just

(first-order) propositional logic.
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Datalog with Resolution
Example

← a, d.

a ← b, c.

← b, c, d.

This is just resolution in disguise.

¬a ∨ ¬d

a ∨ ¬b ∨ ¬c

¬b ∨ ¬c ∨ ¬d
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Datalog Models
Always Consistent!

A Datalog database is always consistent. That is, any datalog database is

guaranteed to have at least one model.

How do we know?

Consider the interpretation in which we assign true to every proposition.

Next, consider each clause: There is exactly one positive proposition per

clause in a Datalog database, by definition. Thus every clause is true with

respect to the all-true interpretation, and thus the all-true interpretation is

a model.

Of course the all-true model is not so interesting. . .but it does guarantee

that any datalog database is consistent.
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The Minimum Model
Datalog

Our example P ′ is not a datalog database because it has non-Horn clauses.

P ′ also has nine models.

Which of the nine models captures the “meaning” of P ′? No one of them,

per se, but rather all of them collectively. . .The fact there are nine of them

is confusing and headache-causing.

It may make sense to consider only the minimal models. That is, throw

away any model that is a super-set of another.

When we do that for P ′, we are left with just four minimal models.

1. {d, f , h}

2. {d, g, h}

3. {e, f , h}

4. {e, g, h}

Better, but we still have multiple models. . .

Any Datalog database has exactly one minimal (hence, minimum) model.

That minimum model is equivalent to exactly the set of propositions that

logically follow.

We consider this minimum model to be the meaning of the Datalog

database.
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The Minimum Model
Example

a ← b, c.

b.

This Datalog database has eight interpretations.

1. {}

2. {a}

3. {b}

4. {c}

5. {a, b}

6. {a, c}

7. {b, c}

8. {a, b, c}

The underlined interpretations are models.

The boxed interpretation is the minimum model.



Winter 2007 COSC-6421: Advanced Databases—Godfrey p. 21

Reasoning about Queries & Databases

Datalog and its logical foundations—model and proof theories—provide us

with tools to address other general questions about queries and databases.

• Given two Datalog queries, are they equivalent with respect to

the database?

That is, must they evaluate to the same answers?

• Does there exist a query of a given question we have in mind?

That is, is the question even askable in Datalog? With this

database?

• Given to Datalog databases, do they represent the same data?

Is any question possible to state for one of them also possible to

state for the other one?

Query equivalence—and more generally, query containment—is

important many places.

For instance, the rewrite query optimizer must guarantee that the rewritten

query is equivalent to the original query.
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Containment
Example

P :

a ← b, c. e ← b, c, f.

a ← d.

Does P |= e→ a? Why or why not?

If not, how should we restrict the semantics for P so that we could infer

e→ a?
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The Move from Propositional Logic
to Predicate Calculus

• Add arguments to propositions.

Now call them predicates.

• Add logical variables.

(For use in rules and in queries.)

• Add quantifiers for the variables: ∀ and ∃.

E.g.,

grandmother (GM, X) ← mother (GM, P), parent (P, X).

By convention, we shall write variables beginning with a capital letter, and

constants—that is, data values—beginning with a lower-case letter or in

single quotes.
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Predicate Calculus
Horn Clauses

grandmother (GM, X) ← mother (GM, P),

parent (P, X).

is just a clause, as before.

Each variable is understood to be within the scope of a forall-quantifier.

So the clause above is shorthand for

∀GM,X,P (grandmother (GM, X) ∨ ¬mother (GM, P)

∨¬parent (P, X))

which is equivalent to

∀GM,X (grandmother (GM, X) ←

∃P (mother (GM, P) ∧ parent (P, X)))

Datalog permits only universal-quantified clauses. Thus no explicit

existential-quantification is allowed.
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Datalog Database versus
“Prolog” Program

We generally call a Horn-clause predicate calculus “theory” that we have

written down a logic program.

The Prolog programming language’s syntax looks just like this.

So when do we call it a Datalog database instead?

If it uses logical function symbols, it is considered a program. If it does

not, it is considered a database.

This is the logical distinction between them.

Logical function symbols??

This is essentially a data-structure, such as a list or record, that we could

use as an argument to a predicate instead of just a simple value.

• grandmothers ([lallage, ruby, sally ] , parke)

• product (#13, widget (a, b) , $23.50)

Function symbols are needed for arithmetic. (We usually add a limited

form of arithmetic to a fuller Datalog.)
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Safeness

We only permit safe clauses in Datalog.

A clause is safe iff every variable that appears in the positive atom (that is,

on the left-hand side of the ’←’) also appears in a negative atom (that is,

on the right-hand side of the ’←’). Thus,

h (X1, . . . , Xk) ← b 1 (Y1, . . . , Yj1), . . . , b n (Yj
n−1+1, . . . , Yjn).

is safe if

{X1, . . . , Xk} ⊆ {Y1, . . . , Yjn}

E.g.,

h (X, Y) ← b (X).

is not safe.

Note that facts in Datalog cannot have variables. A fact with variables is

not safe, by definition.
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Predicate Calculus
Models

The model semantics remains essentially the same as for the propositional

case, but now is much more complex to think about.

In particular, now models can be infinite!

For Datalog databases (DDBs), there are ways to limit our focus to a finite

set of interpretations / models (e.g., the Herbrand interpretations /

models). However, there can be many of them.



Winter 2007 COSC-6421: Advanced Databases—Godfrey p. 28

Predicate Calculus
Proof Theory

The proof theory remains essentially the same as for the propositional case,

but now is much more complex to think about.

Resolution remains a sound and complete inference rule.

We have to add unification: a variable can become bound to a constant (a

value).
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Grandparent Database
Datalog

A simple Datalog database:

grandmother (GM, X) ← mother (GM, P),

parent (P, X).

grandfather (GF, X) ← father (GF, P),

parent (P, X).

parent (M, X) ← mother (M, X).

parent (F, X) ← father (F, X).

mother (judith, parke). father (blan, parke).

mother (ruby, judith). father (alvin, judith).

mother (lallage, blan). father (albert, blan).

Two queries for the database:

← grandmother (G, parke). ← grandmother (lallage, X).

G = ruby; X = parke;

G = lallage; no

no
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Siblings?

How would we write a rule for siblings?

sibling (X, Y) ← parent (P, X),

parent (P, Y),

X 6= Y.

Brother? I.e., B is the brother of X.

brother (B, X) ← parent (P, B),

parent (P, X),

male (B),

B 6= X.

Sister? I.e., S is the sister of X.

sister (B, X) ← parent (P, B),

parent (P, X),

female (B),

B 6= X.
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Ancestor?
Recursion!

ancestor (A, X) ← parent (A, X).

ancestor (A, X) ← parent (A, B),

ancestor (B, X).

We have recursion in Datalog? Of course.

Nothing in our definitions forbids it.

And recursion is a very useful tool in defining rules and queries.
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Cousin?
Negation. . .

cousin (X, Y) ← parent (A, X),

parent (B, Y),

sibling (A, B).

Wait! Siblings are not cousins.

cousin (X, Y) ← parent (A, X),

parent (B, Y),

sibling (A, B),

not sibling (X, Y).

However, this is not Datalog. What is that “not”?

Adding negation to Datalog is going to be a challenge. . .
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Inferring the Negative
Datalog

Is there ever a Datalog program P and an atom a such that P |= ¬a?

No! Recall the all-true interpretation is always a model of any Datalog

database (DDB).

We pulled that trick so that every DDB is guaranteed to be consistent

(that is, to have a model).

So how can we ask negative questions in Datalog?

E.g., Is parke not a student?

Can we?



Winter 2007 COSC-6421: Advanced Databases—Godfrey p. 34

The Closed World Assumption (CWA)
Datalog

Model-theoretic

Only accept the minimum model,M. If a 6∈ M, then say that ¬a is true

(or equivalently, that a is false).

Proof-theoretic

Negation-as-Finite-Failure (NAFF).

If P 6⊢ a, then say that ¬a is true.

NAFF is sound with respect to safe Prolog / Datalog, but it is not

complete.

Full first-order predicate calculus is undecidable.

Okay. This allows negation in queries.

How about within programs themselves, like with cousin?
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What does Datalog have
that SQL doesn’t?

• a clear semantics

• recursion (until recently!)

• is easier to write and think about (?)
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What does SQL have
that Datalog doesn’t?

• aggregation

• negation! (except)

• NULLs

Also SQL is a real language and Datalog is a play language, so they are

hard to compare in this sense.


