Tree-Structured Indexes

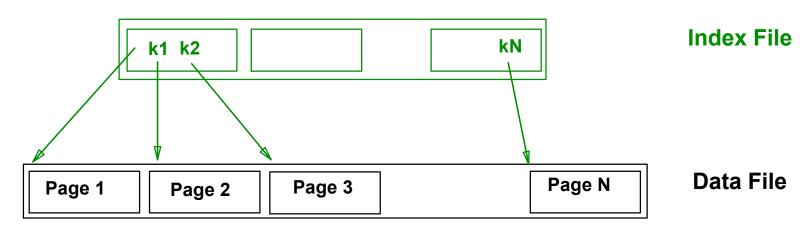
Chapter 10

Introduction

- As for any index, 3 alternatives for data entries k^* :
 - Data record with key value k
 - <k, rid of data record with search key value k>
 - <k, list of rids of data records with search key k>
- Choice is orthogonal to the *indexing technique* used to locate data entries **k***.
- Tree-structured indexing techniques support both range searches and equality searches.
- *ISAM*: static structure; <u>B+ tree</u>: dynamic, adjusts gracefully under inserts and deletes.

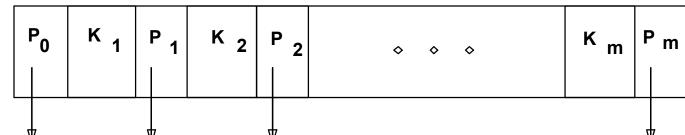
Range Searches

- ``Find all students with gpa > 3.0''
 - If data is in sorted file, do binary search to find first such student, then scan to find others.
 - Cost of binary search can be quite high.
- Simple idea: Create an `index' file.

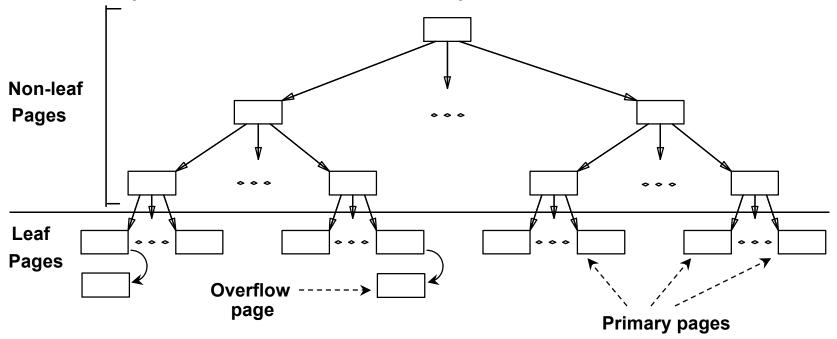


► Can do binary search on (smaller) index file!

ISAM index entry



• Index file may still be quite large. But we can apply the idea repeatedly!



► Leaf pages contain data entries.

Comments on ISAM

- File creation: Leaf (data) pages allocated sequentially, sorted by search key; then index pages allocated, then space for overflow pages.
- Index entries: <search key value, page id>; they `direct' search for data entries, which are in leaf pages.
- Search: Start at root; use key comparisons to go to leaf. Cost $log_F N$; F = # entries/index pg, N = # leaf pgs
- *Insert*: Find leaf data entry belongs to, and put it there.
- <u>Delete</u>: Find and remove from leaf; if empty overflow page, de-allocate.

Data Pages

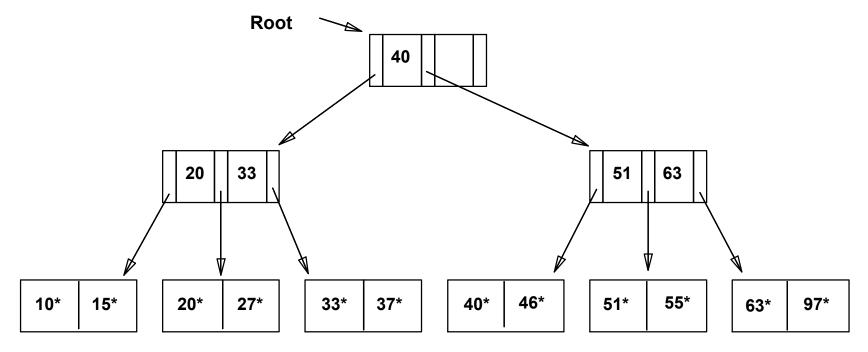
Index Pages

Overflow pages

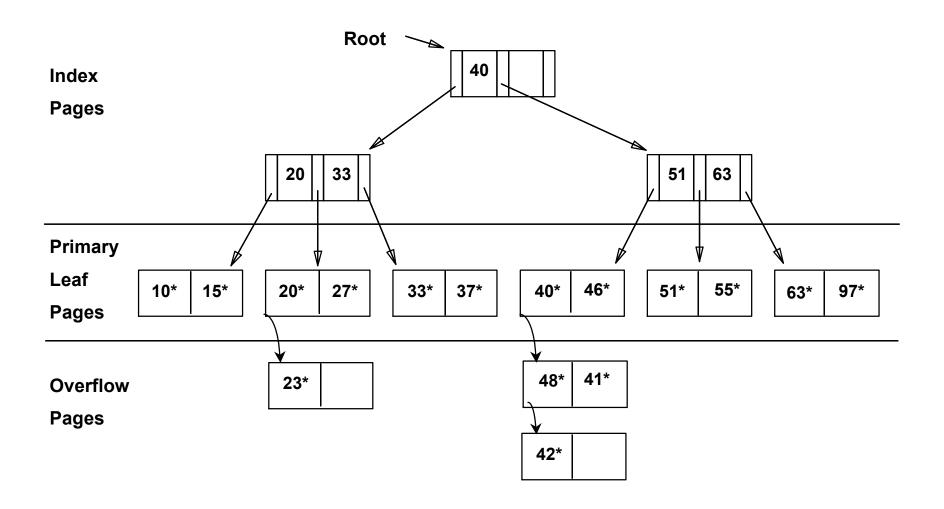
► Static tree structure: *inserts/deletes affect only leaf pages*.

Example ISAM Tree

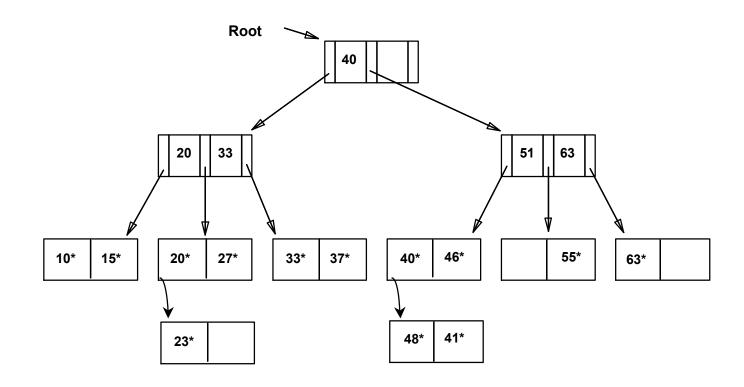
 Each node can hold 2 entries; no need for `next-leaf-page' pointers. (Why?)



After Inserting 23*, 48*, 41*, 42* ...



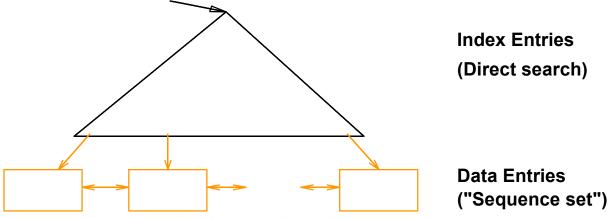
... Then Deleting 42*, 51*, 97*



► Note that 51* appears in index levels, but not in leaf!

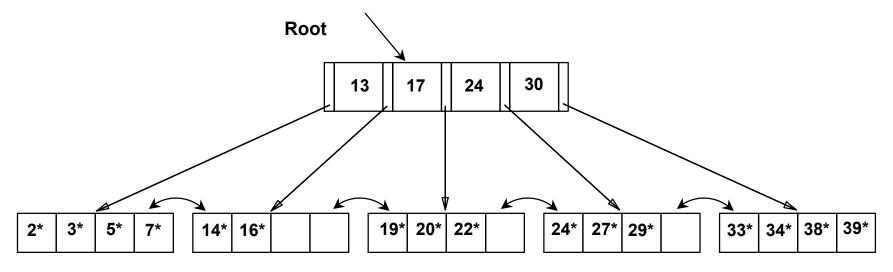
B+ Tree: Most Widely Used Index

- Insert/delete at $\log_F N$ cost; keep tree *height-balanced*. (F = fanout, N = # leaf pages)
- Minimum 50% occupancy (except for root). Each node contains $\mathbf{d} \le \underline{m} \le 2\mathbf{d}$ entries. The parameter \mathbf{d} is called the *order* of the tree.
- Supports equality and range-searches efficiently.



Example B+ Tree

- Search begins at root, and key comparisons direct it to a leaf (as in ISAM).
- Search for 5*, 15*, all data entries >= 24* ...



 \blacksquare Based on the search for 15*, we know it is not in the tree!

B+ Trees in Practice

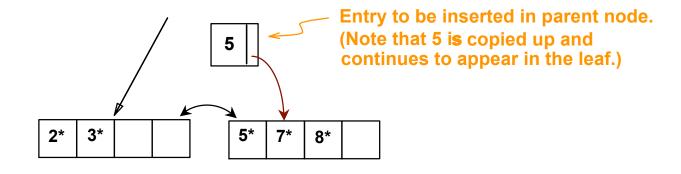
- Typical order: 100. Typical fill-factor: 67%.
 - average fanout = 133
- Typical capacities:
 - Height 4: $133^4 = 312,900,700$ records
 - Height 3: 133^3 = 2,352,637 records
- Can often hold top levels in buffer pool:
 - Level 1 = 1 page = 8 Kbytes
 - Level 2 = 133 pages = 1 Mbyte
 - Level 3 = 17,689 pages = 133 MBytes

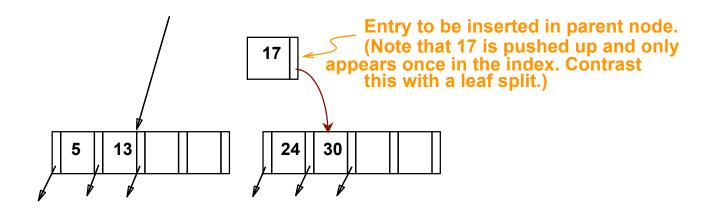
Inserting a Data Entry into a B+ Tree

- Find correct leaf L.
- Put data entry onto *L*.
 - If L has enough space, done!
 - Else, must *split L* (*into L and a new node L2*)
 - Redistribute entries evenly, **copy up** middle key.
 - Insert index entry pointing to *L*2 into parent of *L*.
- This can happen recursively
 - To split index node, redistribute entries evenly, but push up middle key. (Contrast with leaf splits.)
- Splits "grow" tree; root split increases height.
 - Tree growth: gets <u>wider</u> or <u>one level taller at top.</u>

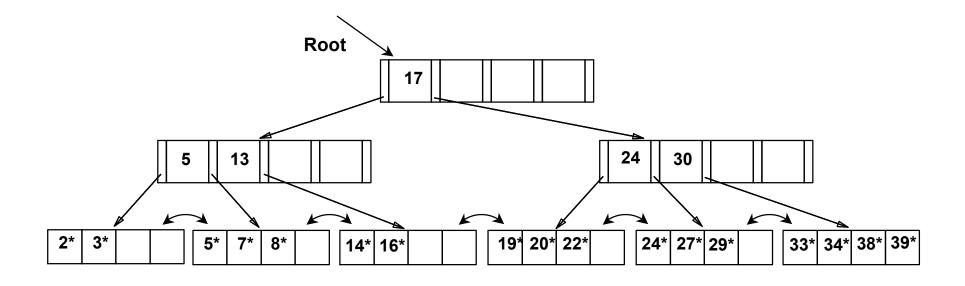
Inserting 8* into Example B+ Tree

- Observe how minimum occupancy is guaranteed in both leaf and index pg splits.
- Note difference between copy-up and push-up; be sure you understand the reasons for this.





Example B+ Tree After Inserting 8*

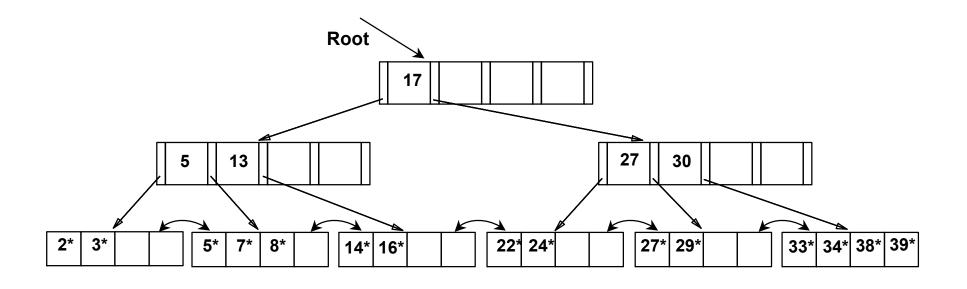


- Notice that root was split, leading to increase in height.
- ❖ In this example, we can avoid split by re-distributing entries; however, this is usually not done in practice.

Deleting a Data Entry from a B+ Tree

- Start at root, find leaf L where entry belongs.
- Remove the entry.
 - If L is at least half-full, *done!*
 - If L has only d-1 entries,
 - Try to re-distribute, borrowing from *sibling* (adjacent node with same parent as L).
 - If re-distribution fails, <u>merge</u> L and sibling.
- If merge occurred, must delete entry (pointing to *L* or sibling) from parent of *L*.
- Merge could propagate to root, decreasing height.

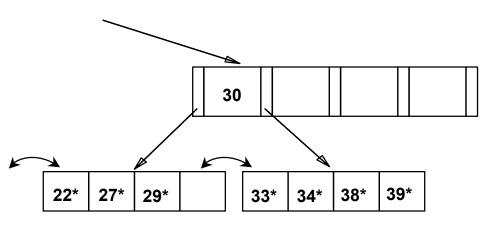
Example Tree After (Inserting 8*, Then) Deleting 19* and 20* ...

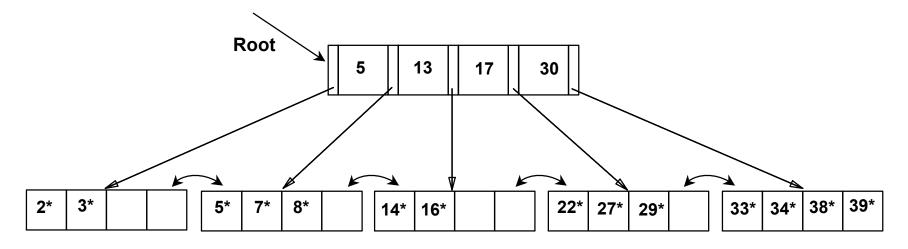


- Deleting 19* is easy.
- Deleting 20* is done with re-distribution.
 Notice how middle key is copied up.

... And Then Deleting 24*

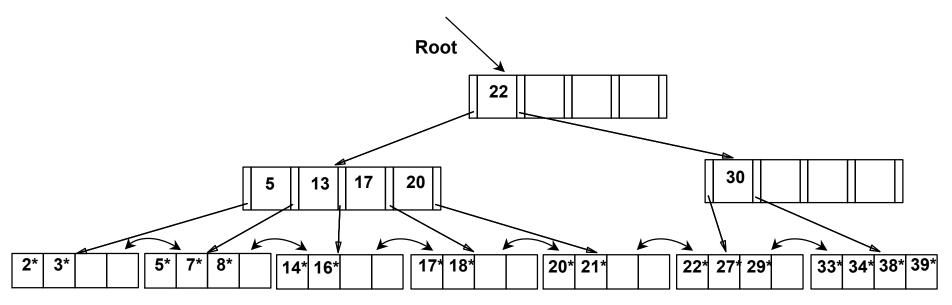
- Must merge.
- Observe `toss' of index entry (on right), and `pull down' of index entry (below).





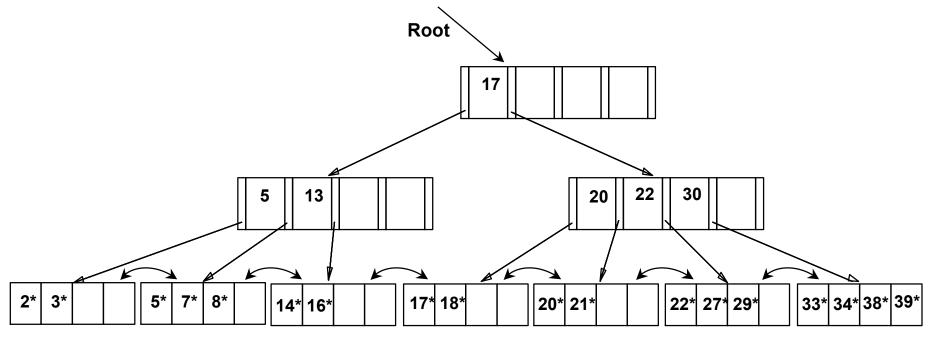
Example of Non-leaf Re-distribution

- Tree is shown below during deletion of 24*. (What could be a possible initial tree?)
- In contrast to previous example, can re-distribute entry from left child of root to right child.



After Re-distribution

- Intuitively, entries are re-distributed by `pushing through' the splitting entry in the parent node.
- It suffices to re-distribute index entry with key 20;
 we've re-distributed 17 as well for illustration.

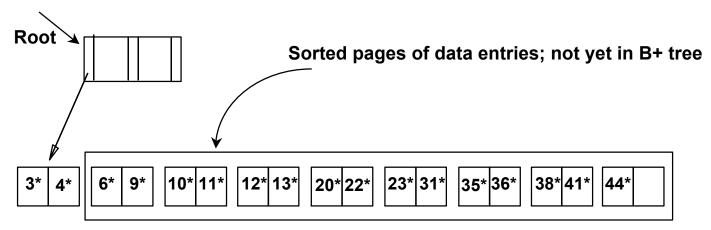


Prefix Key Compression

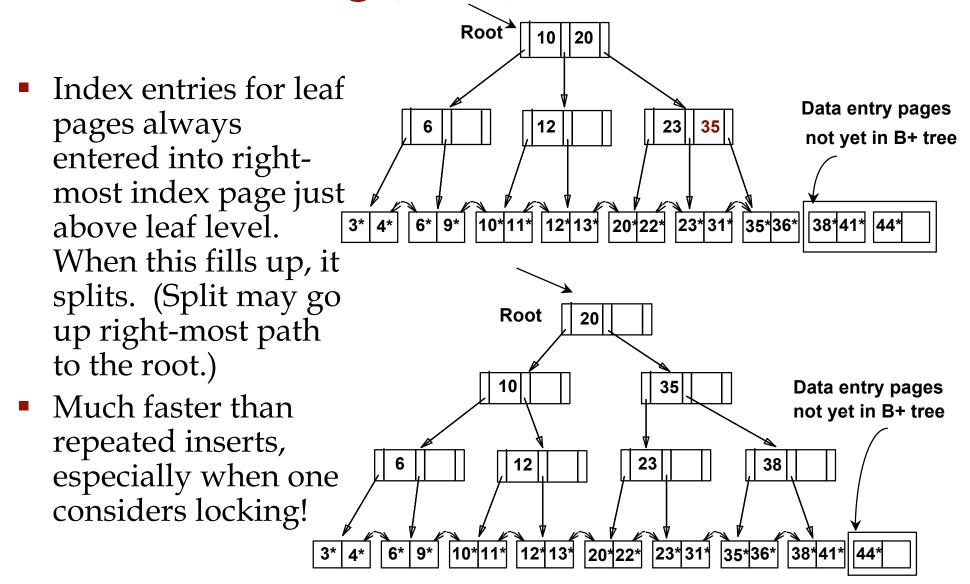
- Important to increase fan-out. (Why?)
- Key values in index entries only `direct traffic'; can often compress them.
 - E.g., If we have adjacent index entries with search key values *Dannon Yogurt*, *David Smith* and *Devarakonda Murthy*, we can abbreviate *David Smith* to *Dav*. (The other keys can be compressed too ...)
 - Is this correct? Not quite! What if there is a data entry *Davey Jones*? (Can only compress *David Smith* to *Davi*)
 - In general, while compressing, must leave each index entry greater than every key value (in any subtree) to its left.
- Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

- If we have a large collection of records, and we want to create a B+ tree on some field, doing so by repeatedly inserting records is very slow.
- Bulk Loading can be done much more efficiently.
- *Initialization*: Sort all data entries, insert pointer to first (leaf) page in a new (root) page.



Bulk Loading (cont.)



Summary of Bulk Loading

- Option 1: multiple inserts.
 - Slow.
 - Does not give sequential storage of leaves.
- Option 2: <u>Bulk Loading</u>
 - Has advantages for concurrency control.
 - Fewer I/Os during build.
 - Leaves will be stored sequentially (and linked, of course).
 - Can control "fill factor" on pages.

A Note on 'Order'

- *Order* (**d**) concept replaced by physical space criterion in practice (`at least half-full').
 - Index pages can typically hold many more entries than leaf pages.
 - Variable sized records and search keys mean differnt nodes will contain different numbers of entries.
 - Even with fixed length fields, multiple records with the same search key value (*duplicates*) can lead to variable-sized data entries (if we use Alternative (3)).

Summary

- Tree-structured indexes are ideal for rangesearches, also good for equality searches.
- ISAM is a static structure.
 - Only leaf pages modified; overflow pages needed.
 - Overflow chains can degrade performance unless size of data set and data distribution stay constant.
- B+ tree is a dynamic structure.
 - Inserts/deletes leave tree height-balanced; log F N cost.
 - High fanout (**F**) means depth rarely more than 3 or 4.
 - Almost always better than maintaining a sorted file.

Summary (cont.)

- Typically, 67% occupancy on average.
- Usually preferable to ISAM, modulo *locking* considerations; adjusts to growth gracefully.
- If data entries are data records, splits can change rids!
- Key compression increases fanout, reduces height.
- Bulk loading can be much faster than repeated inserts for creating a B+ tree on a large data set.
- Most widely used index in database management systems because of its versatility. One of the most optimized components of a DBMS.