
Efficient Online Evaluation of Big Data Stream Classifiers

Albert Bifet
Noah’s Ark Lab

HUAWEI
Hong Kong

bifet.albert@huawei.com

Gianmarco
De Francisci Morales

Aalto University
Helsinki, Finland
gdfm@acm.org

Jesse Read
HIIT

Aalto University
Helsinki, Finland

jesse.read@aalto.fi

Geoff Holmes,
Bernhard Pfahringer

University of Waikato
Hamilton, New Zealand

{geoff,bernhard}@waikato.ac.nz

ABSTRACT
The evaluation of classifiers in data streams is fundamen-
tal so that poorly-performing models can be identified, and
either improved or replaced by better-performing models.
This is an increasingly relevant and important task as stream
data is generated from more sources, in real-time, in large
quantities, and is now considered the largest source of big
data. Both researchers and practitioners need to be able to
effectively evaluate the performance of the methods they em-
ploy. However, there are major challenges for evaluation in a
stream. Instances arriving in a data stream are usually time-
dependent, and the underlying concept that they represent
may evolve over time. Furthermore, the massive quantity of
data also tends to exacerbate issues such as class imbalance.
Current frameworks for evaluating streaming and online al-
gorithms are able to give predictions in real-time, but as
they use a prequential setting, they build only one model,
and are thus not able to compute the statistical significance
of results in real-time. In this paper we propose a new evalu-
ation methodology for big data streams. This methodology
addresses unbalanced data streams, data where change oc-
curs on different time scales, and the question of how to split
the data between training and testing, over multiple models.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining

Keywords
Data Streams, Evaluation, Online Learning, Classification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3664-2/15/08$15.00.
DOI: http://dx.doi.org/10.1145/2783258.2783372.

1. INTRODUCTION
Data is flowing into every area of our life, both professional

and personal. There is no consensus on the definition of big
data, however a popular definition describes it as data whose
characteristics put it beyond the ability of typical tools to
capture, manage, and analyze, due to time and memory con-
straints [21]. This need has spurred a considerable amount
of research in data mining and machine learning, aimed at
extracting information and knowledge from big data.

In this paper, we focus on the evaluation of classifiers
in a big data setting such as the one provided by Apache
SAMOA1 [9] i.e., classifying evolving data streams in a dis-
tributed fashion. When the classification algorithm runs on
top of a distributed system, we can leverage its process-
ing power to train multiple classifiers and provide statistical
significance to the evaluation procedure. There is no pre-
vious work that describes an evaluation methodology that
gives statistically significant results in streaming classifica-
tion, going beyond the standard prequential setting which
builds only one model for the evaluation. Providing sta-
tistical significance is of paramount importance in order to
ensure that evaluation results are valid and not misleading.

Evaluation is a delicate task that has generated numerous
controversies [14, 18]. As mentioned by Japkowicz and Shah
[18], having a standard evaluation approach can be linked
to the desire of having an “acceptable” scientific practice
in the field. Unfortunately, researchers often achieve such
acceptability by taking shortcuts. The problem with this
practice is that the comparisons of algorithms’ performance,
although appearing acceptable, are frequently invalid. In
this paper we highlight the importance of a proper evalua-
tion methodology for streaming classifiers, and contribute to
this discussion by presenting some insightful results. From
these, we develop and present some effective new proposals.

To motivate the need for this discussion, we present three
striking cases of misleading evaluation (details in §4 and §5):

• by comparing two classifiers applied to data streams, we
show that one of them is statistically significantly bet-
ter than the other by using McNemar’s test. However,
the two classifiers are actually two instances of the same
algorithm, randomized ensembles of decision trees, each
seeded with a different number. A test such as McNe-

1http://samoa-project.net

59

KDD '15, August 10-13, 2015, Sydney, NSW, Australia. 

http://samoa-project.net


mar’s, which works properly for small datasets, is mis-
leading when used with larger ones. Nevertheless, this
test is commonly used for data stream classification [24];

• splitting data into several disjoint datasets for training
seems reasonable for large datasets [11]. Unfortunately,
this type of partitioning leads to an evaluation procedure
that cannot distinguish between classifiers that ought to
perform differently by design;

• a simple majority class classifier that keeps the majority
class of a sliding window may have positive κ statistic
and positive harmonic mean accuracy for some periods.

Learning from evolving data streams is quite different
from learning from traditional batch data. Standard cross-
validation techniques do not apply, due to the fact that data
instances can be strongly time-dependent, and classifiers
also evolve along with the data. It is no use training a classi-
fier on a large number of data instances, and then evaluating
it on some following data (analogous to a static train/test
split) without letting classifiers evolve with the new data. In
a big data stream scenario, the instances in the test set could
be millions of instances away from the ones used to train the
model. A classifier may be built using some features as the
most relevant, but when the data changes, the classifier has
to adapt and choose new relevant features. It is therefore
useful to have a statistically valid way to measure the per-
formance of classifiers at any time. Current frameworks for
data streams such as MOA2 [3], VFML3 [16], and Vowpal
Wabbit4 [20] provide only single fold prequential evaluation.
Therefore, they fall short of a statistically sound evaluation
setting.

In this work we identify a set of currently popular ap-
proaches that are problematic, highlight the issues arising
from the big data streaming setting, and finally propose
some solutions. Specifically, we tackle the following issues:

I1. Validation methodology. Prequential evaluation, the
most commonly used evaluation in stream learning,
uses examples first to test and then to train a single
model. This method is unable to provide statistical
significance when comparing classifiers. On the other
hand, the most common error estimation technique for
the batch setting, cross-validation, is not directly ap-
plicable in streaming.

I2. Statistical testing. McNemar’s test, which has been
proposed as one of the best tests for streaming, is mis-
leading.

I3. Unbalanced measure. Common measures of perfor-
mance such as F1 and Accuracy are biased toward one
class.

I4. Forgetting mechanism. The most popular approaches,
sliding window and exponential forgetting, are both
parametric with difficult to choose parameters. In ad-
dition, they allow a mix of distributions in the input
window.

To address these issues we propose: a new prequential
bootstrap validation to address I1; to use the Sign test or

2http://moa.cms.waikato.ac.nz
3http://www.cs.washington.edu/dm/vfml
4http://hunch.net/~vw

the Wilcoxon signed-rank test to address I2; a new measure
for accuracy performance, κm statistic to address I3, and a
new forgetting mechanism for prequential evaluation based
on ADWIN to address I4.

This paper is structured as follows. We present some re-
lated work in Section 2, distributed validation methodologies
in Section 3, statistical tests in Section 4, evaluation perfor-
mance measures in Section 5, and a real-time prequential
measure in Section 6. Finally, Section 7 presents some con-
cluding remarks.

2. RELATED WORK
The most important reference in evaluating data streams

is by Gama et al. [13]. The paper mainly discusses static
streams, and how to extend the static streaming prequential
evaluation to evolving data streams using a sliding window
or a fading factor.

Dietterich [11] reviewed five approximate statistical tests
for determining whether one learning method out-performs
another on a particular classification task. These tests were
compared experimentally to check the type I and type II
errors on the differences. The main conclusion was that
5x2 cross validation test was recommended, due to it being
slightly more powerful than McNemar’s test.

Bouckaert [6] recommends using the 10x10 cross valida-
tion test where all individual accuracies are used to estimate
the mean and variance and with 10 degrees of freedom for
binary data. It has the same properties as other calibrated
repeated k-fold cross validation tests, and he showed that
it empirically outperforms 5x2 cross validation, (corrected)
resampling and k-fold cross validation on power and repli-
cability.

Demsar [10] reviewed statistical tests for comparing more
than two algorithms on multiple datasets. One of his propos-
als is to use the Friedman test with a corresponding post-hoc
test, that we discuss in more detail in Section 4.

Shah [25] proposed a new agreement statistic that is a
generalization of the Cohen’s kappa statistic to the case of
multiclass classification by a fixed group of experts. The
proposed generalization reduces to the classical version of
Cohen’s kappa statistic in the case of binary classification
by two experts. Its main advantage is that it yields tighter
agreement assessments, due to its accounting for expert spe-
cific biases and correlations.

More generally, the recent book by Japkowicz and Shah
[18] is a complete and updated reference for classification
evaluation.

3. METHODS FOR VALIDATION
The validation procedure for a learning algorithm deter-

mines which examples are used for training, and which are
used for testing the learned model.

In traditional batch learning the problem of limited avail-
ability of data is overcome by analyzing and averaging mul-
tiple models produced with different random arrangements
of training and test data. In the stream setting the problem
of (effectively) unlimited data poses different challenges.

In the literature there are two main approaches to evaluate
data streams:

• prequential evaluation, averaging ten experiments when
learners or streams are randomly generated, and when
it is possible to vary their random seeds; otherwise by

60

http://moa.cms.waikato.ac.nz
http://www.cs.washington.edu/dm/vfml
http://hunch.net/~vw


Source Stream Validation 
Methodology

Classifier (fold)

Performance 
Measure Statistical Test

}k classifiers in parallel

Figure 1: Block diagram of the proposed evaluation pipeline for big data stream classifiers.

using only one experiment with real data datasets and
non randomized classifiers;

• standard 10-fold cross-validation, to compare with other
batch methods.

The former cannot be used to obtain statistical signif-
icance of results when using real datasets with any non-
randomized classifier. Furthermore, this strategy is not amenable
to parallelization. The latter treats each fold of the stream
independently, and therefore may miss concept drift occur-
ing in the data stream.

To overcome these problems, we discuss the following strate-
gies. Assume we have k different instances of the classifier
we want to evaluate running in parallel. The classifier does
not need to be randomized. Each time a new example ar-
rives, it is used in one of the following ways:

• k-fold distributed cross-validation: each example is
used for testing in one classifier selected randomly, and
used for training by all the others;

• k-fold distributed split-validation: each example is
used for training in one classifier selected randomly, and
for testing in the other classifiers;

• k-fold distributed bootstrap validation: each ex-
ample is used for training in each classifier according to
a weight from a Poisson(1) distribution. This results in
each example being used for training in approximately
two thirds of the classifiers, with a separate weight in
each classifier, and for testing in the rest.

The first approach is an adaptation of cross-validation to
the distributed streaming setting. It makes maximum use of
the available data at the cost of high redundancy of work.

The split-validation approach has the advantage of cre-
ating totally independent classifiers, as they are trained on
disjoint parts of the stream. However, this approach poten-
tially underutilizes available data.

The last approach simulates drawing random samples with
replacement from the original stream. This approach is also
used in online bagging [23, 22].

All three strategies have a corresponding prequential ver-
sion, where training examples are first used for testing.

A high level block diagram of the whole evaluation pipeline
is shown in Figure 1.

3.1 Streaming Setting
In the streaming setting, classifiers and streams can evolve

over time. As a result, the performance measures of these
classifiers can also evolve over time. Given this dynamic na-

ture, it is interesting to be able to evaluate the performance
of several classifiers online.

For simplicity, let us assume a binary classification prob-
lem. The ideal setting for evaluation when data is abundant
is the following: let X be the instance space, let Dt be a
distribution over X and time, let ft be a target function
ft : X → [0, 1], and let ct be a model evolving over time,
so that it can be different at each time instant t. A clas-
sifier C is a learning algorithm that produces a hypothesis
ct : X → [0, 1].

We are interested in obtaining its error ec(t)(x) = |ct(x)−
ft(x)|, which also depends on time. The true error is ēc(t) =
Ex∈D[ec(t)(x)]. Let the error discrepancy be the difference
between the true and estimated error. In k-fold evaluation
the estimated error is the average over all fold estimates.

3.2 Theoretical Insights
Let us mention here two important theoretical results.

Theorem 1. (Test Set Lower Bound)[19] For all classi-
fiers c, m test instances, and for all δ ∈ (0, 1], the following
holds:

Pr(|true error - est. error| ≤
√

ln(2/δ)

2m
) ≥ 1− δ

In other words, with the same high probability, having more
instances will reduce the discrepancy between the true error
and the estimated error, which, in our case, suggests that a
prequential strategy (using the instances for testing before
training) improves the estimation of the true error.

Following the approach by Blum et al. [5], the second re-
sult is that the discrepancy between true error and estimated
error is reduced using a k−fold strategy.

Theorem 2. ∀q ≥ 1, E[|true error - est. error|q] is no
larger for the prequential k−fold strategy than for a prequen-
tial evaluation strategy, i.e.,

E[|true errork − estimated errork|q] ≤

E[|true error1 − estimated error1|q]

In other words, using k−fold prequential evaluation is bet-
ter than using only prequential evaluation, and gives us the-
oretical ground for addressing issue I1. Given the inter-
dependence between validation methodology and statistical
tests, we defer experimental evaluation to Section 4.

61



Table 1: Comparison of two classifiers with Sign test and
Wilcoxon’s signed-rank test.

Class. A Class. B Diff Rank

77.98 77.91 0.07 4
72.26 72.27 -0.01 1
76.95 76.97 -0.02 2
77.94 76.57 1.37 7
72.23 71.63 0.60 5
76.90 75.48 1.42 8
77.93 75.75 2.18 9
72.37 71.33 1.04 6
76.93 74.54 2.39 10
77.97 77.94 0.03 3

4. STATISTICAL TESTS FOR COMPARING
CLASSIFIERS

The three most used statistical tests for comparing two
classifiers, are the following [18]:

• McNemar. This test is non-parametric. It uses two
variables: the number of examples misclassified by the
first classifier and correctly classified by the second a,
and the number of examples classified the opposite way
b. Hence, it can be used even with a single-fold validation
strategy. The McNemar statistic (M) is computed as
M = sign(a− b)× (a− b)2/(a+ b). The statistic follows
the χ2 distribution under the null hypothesis that the
two classifiers perform equally well.

• Sign test. Is also non-parametric but uses the results
at each fold as a trial. As such, it cannot be used with
a standard prequential strategy. It computes how many
times the first classifier outperforms the second classifier,
and how many times the opposite happens. The null
hypothesis corresponds to the two classifiers performing
equally, and holds if the number of wins follows a bino-
mial distribution. If one of the classifiers performs better
on at least wα folds, then it is considered statistically sig-
nificantly better at the α significance level, where wα is
the critical value for the test at the α confidence level.

• Wilcoxon’s signed-rank test. Is also non-parametric,
and uses the results at each fold as a trial. For each trial
it computes the difference in performance of the two clas-
sifiers. After ranking the absolute values of these differ-
ences, it computes the sum of ranks where the differences
are positive, and the sum of ranks where the differences
are negative. The minimum value of these two sums is
then compared to a critical value Vα. If this minimum
value is lower, the null hypothesis that the performance
of the two classifiers is the same can be rejected at the
α confidence level.

Consider the following example: two classifiers have 10
performance measures, one for each fold, as shown in Ta-
ble 1. Classifier A outperforms classifier B in eight folds.
Using the sign-test, given that for α = .05 we have wα = 8,
we can reject the null hypothesis that the two classifiers
perform similarly at the α = .05 confidence level. To apply
the Wilcoxon’s signed-rank test, first we rank the absolute
values of the differences between the two classifiers’ perfor-
mances. Then we compute the sum of ranks where the dif-
ferences are positive (53), and the sum of ranks where the

differences are negative (3). We compare the minimum of
these two sums (3) to a critical value Vα = 8 at the α = .05
confidence level. As 3 is lower than 8, we reject the null
hypothesis that the the two classifiers perform equally well.

This procedure can be extended to compare multiple clas-
sifiers. Demsar [10] proposes to use the Friedman test with
a corresponding post-hoc test, such as the Nemenyi test.
Let rji be the rank of the j-th of k classifiers on the i-th
of N datasets. The average rank of the j-th classifier is
Rj = 1/n

∑
i r
j
i . The Nemenyi test is the following: two

classifiers are performing differently if the corresponding av-
erage ranks differ by at least the critical difference

CD = qα

√
k(k + 1)

6N

where k is the number of classifiers, N is the number of
datasets, and critical values qα are based on the Studentized
range statistic divided by

√
2.

4.1 Type I and II Error Evaluation
A Type I error or false positive is the incorrect rejection

of a true null hypothesis, in our case, that two classifiers
have the same accuracy. Our experimental setting is the
following: we have a data stream, and we use it as input to
classifiers that have the same accuracy by design since they
are built using the same algorithm. Then, we check which
evaluation methodology is better at avoiding the detection
of a difference between statistically equally-performing clas-
sifiers, i.e., which method has a lower type I error.

We run an experiment following the methodology pre-
sented by Dietterich [11], and build randomized classifiers
with different seeds. We use two different models trained
with random forests [4], and compare them with the statis-
tical tests discussed in this Section.

A Type II error or false negative is the failure to reject
a false null hypothesis, in our case, to detect that two clas-
sifiers have different accuracy. For detecting this type of
error, we perform the following experiment. We have a data
stream that we use to feed a set of classifiers. These clas-
sifiers have different accuracy performance by design. We
build this set of classifiers by using a base classifier and ap-
plying a noise filter. The noise filter changes the class label
of each example prediction of the classifier with probability
pnoise. For a c class problem, if the accuracy of the original
classifier is p0, the filtered classifier has an accuracy of:

p = p0 × (1− pnoise) + (1− p0)× pnoise/c

since p will be p0 minus the correctly predicted examples
that have switched their label (p0×pnoise), plus the incorrect
predicted examples that due to the switch of the class label,
are now correct (1− p0)× pnoise/c. Given that

∆p

pnoise
=
p0 − p
pnoise

=
(c+ 1)p0 − 1

c
,

p will be lower than p0 when p0 > 1/(c+ 1).

Experimental Setting. We compare 10-fold distributed
evaluation with the non prequential and prequential ver-
sions, and with split-validation, cross-validation, and boot-
strapping over 50 runs at the α = 0.05 confidence level.

We use synthetic and real datasets. Synthetic data has
several advantages: it is easier to reproduce and there is little
cost in terms of storage and transmission. We use the data

62



Table 2: Average fraction of null hypothesis rejection for different combinations of validation procedures and statistical tests, aggregated
over all datasets. The first column group concerns Type I errors, and the other two column groups concern Type II errors.

No change Change pnoise = 0.05 Change pnoise = 0.10

bootstrap cv split bootstrap cv split bootstrap cv split

McNemar non-prequential 0.71 0.52 0.66 0.86 0.80 0.73 0.88 0.84 0.75
McNemar prequential 0.77 0.80 0.42 0.88 0.94 0.56 0.90 0.95 0.58
Sign test non-prequentiall 0.11 0.11 0.10 0.77 0.82 0.44 0.82 0.88 0.50
Sign test prequential 0.12 0.12 0.09 0.77 0.83 0.44 0.82 0.89 0.50
Wilcoxon non-prequential 0.11 0.11 0.14 0.79 0.84 0.51 0.83 0.90 0.55
Wilcoxon prequential 0.11 0.10 0.19 0.80 0.84 0.54 0.83 0.91 0.59

Avg. time non-prequential (s) 883 1105 415 877 1121 422 900 1148 421
Avg. time prequential (s) 813 1202 109 820 1214 111 808 1294 112

generators with concept drift most commonly found in the
literature: SEA Concepts Generator [26], Rotating Hyper-
plane [17], Random RBF Generator, and LED Generator [7].
The UCI machine learning repository [1] contains some real-
world benchmark data for evaluating machine learning tech-
niques. We consider two of the largest: Forest Covertype,
and Poker-Hand. In addition, we consider the Electricity
dataset [15, 12]. Experiments can be replicated with the
open-source framework Apache SAMOA [9].

A summary of results is shown in Table 2. The values
show the average fraction of repetitions that detect a dif-
ference between the two classifiers, i.e., that reject the null
hypothesis. Ideally, the value should be close to zero when
the classifiers are the same (first column group), and close to
one when the two classifiers are different (second and third
column groups). Overall, the best validation procedure is
cross-validation, closely followed by bootstrap, while split-
validation performs the worst. For Type II errors, most
statistical tests perform comparably when using a good val-
idation method (cv or bootstrap), i.e., the tests detect the
presence of the additional noise. Conversely, for Type I er-
rors there is a large performance gap. McNemar’s test is
clearly misleading as it detects a non-existent difference at
least 42% of the time, while in fact the two classifiers are
built by the same algorithm.

Table 3 shows a breakdown of the results for McNemar’s
test on each dataset. It is evident that the test has a ten-
dency to overestimate the statistical difference of two clas-
sifiers. On the other hand, Table 4 shows the results for
Wilcoxon’s signed-rank test for all data streams. This test is
more discriminative than the Sign test, and the best strate-
gies are still cross-validation and bootstrap. In most cases
(with the exception of the SEA generator), Wilcoxon’s test
has perfect accuracy for Type II errors, and very high accu-
racy for Type I errors (≤ 10% average error).

A plausible explanation for the difference among the dif-
ferent validation procedures is rooted in the number of ex-
amples that each classification algorithm uses to build the
model. In 10-fold split validation, the models are built on
10% of the examples, in 10-fold cross validation, the mod-
els are built on 90% of the examples, and in bootstrap, the
models use 63.2% of the examples (on average). The ex-
periments show that building the models in each fold with
more examples helps to determine whether the classifiers are
statistically different, for both Type I and Type II errors.

In terms of efficiency, by looking at the average time of the
experiments in Table 2, we conclude that bootstrapping is
the most efficient methodology, as it is the one with the best
ratio of discriminative power against resources consumed.

There is little difference in the results between the pre-
quential and non-prequential version of the experiments.
The prequential version has the advantage that models do
not need to receive separate examples for testing, only re-
ceiving training examples is enough.

Based on these results, we recommend the prequential k-
fold distributed bootstrap validation procedure as the most
efficient methodology to address issue I1. We also recom-
mend avoiding McNemar’s test, and using Wilcoxon’s signed-
rank test to address issue I2.

The main intuition behind the inappropriateness of Mc-
Nemar’s test lies in its use of examples rather than folds
as the unit of its statistical treatment. Given that in a
stream the number of examples (sample size) is virtually
unbounded, the statistical power of the test (its sensitiv-
ity) becomes very high, and also susceptible to small dif-
ferences in performance (magnitude of the effect) caused by
random fluctuations. Tests using folds as their statistical
unit, such as Wilcoxon’s, are thus inherently more robust,
as their power is fixed by the configuration, rather than in-
creasing with the number of examples in the stream. Of
course, folds are not independent of each other, and the
number of folds affects the minimum detectable difference.
This statistical dependence is likely the reason behind the
residual Type I and Type II errors in our analysis, although
further study is needed to characterize its effect.

5. UNBALANCED PERFORMANCE MEA-
SURES

In real data streams, the number of examples for each
class may be evolving and changing. The prequential error
is computed based on an accumulated sum of a loss function
L between the prediction yt and observed values ŷt:

p0 =

n∑
t=1

L(ŷt, yt).

However, the prequential accuracy measure is only appro-
priate when all classes are approximately balanced [18].

In the following we review standard approaches to eval-
uation in imbalanced data, then we point out some prob-
lems with this methodology, and propose a new one, which
we later demonstrate in experiments to be a more accurate
gauge of true performance.

5.1 The Kappa Statistic
When the data stream is unbalanced, simple strategies

that use this fact may have good accuracy. A way to take

63



Table 3: Fraction of null hypothesis rejection on each dataset when using McNemar’s test. Values for the best performing validation
method (closest to zero for Type I errors, closest to one for Type II errors) are shown in bold.

No change Change pnoise = 0.05 Change pnoise = 0.10

bootstrap cv split bootstrap cv split bootstrap cv split

CovType 0.86 0.64 0.98 0.97 0.98 0.98 0.98 0.99 0.99
Electricity 0.45 0.16 0.79 0.99 0.92 0.88 1.00 1.00 0.94
Poker 0.73 0.45 0.86 0.82 0.78 0.98 0.96 0.99 1.00
LED(50000) 0.92 0.85 0.96 0.96 0.92 1.00 0.99 0.96 1.00
SEA(50) 0.67 0.35 0.88 0.69 0.39 0.89 0.70 0.43 0.89
SEA(50000) 0.68 0.35 0.89 0.70 0.41 0.89 0.71 0.44 0.89
HYP(10,0.001) 0.61 0.32 0.61 1.00 1.00 1.00 1.00 1.00 1.00
HYP(10,0.0001) 0.61 0.40 0.83 1.00 1.00 1.00 1.00 1.00 1.00
RBF(0,0) 0.89 0.80 0.36 0.98 0.98 0.39 0.99 0.99 0.40
RBF(50,0.001) 0.26 0.20 0.36 0.18 0.43 0.39 0.20 0.44 0.39
RBF(10,0.001) 0.88 0.74 0.36 0.97 0.96 0.39 0.98 0.98 0.40
RBF(50,0.0001) 0.76 0.68 0.37 0.91 0.76 0.39 0.91 0.76 0.41
RBF(10,0.0001) 0.89 0.80 0.36 0.96 0.92 0.37 0.98 0.94 0.40

Average 0.71 0.52 0.66 0.86 0.80 0.73 0.88 0.84 0.75

Table 4: Fraction of null hypothesis rejection on each dataset when using Wilcoxon’s Signed-Rank test. Values for the best performing
validation method (closest to zero for Type I errors, closest to one for Type II errors) are shown in bold.

No change Change pnoise = 0.05 Change pnoise = 0.10

bootstrap cv split bootstrap cv split bootstrap cv split

CovType 0.12 0.10 0.10 0.99 1.00 0.63 1.00 1.00 0.97
Electricity 0.12 0.13 0.14 1.00 1.00 0.72 1.00 1.00 0.98
Poker 0.08 0.10 0.10 0.79 1.00 1.00 1.00 1.00 1.00
LED(50000) 0.11 0.09 0.10 0.82 0.49 1.00 1.00 0.99 1.00
SEA(50) 0.11 0.12 0.14 0.26 0.27 0.11 0.36 0.45 0.12
SEA(50000) 0.10 0.09 0.09 0.21 0.29 0.11 0.32 0.49 0.11
HYP(10,0.001) 0.09 0.10 0.13 1.00 1.00 1.00 1.00 1.00 1.00
HYP(10,0.0001) 0.13 0.09 0.11 1.00 1.00 1.00 1.00 1.00 1.00
RBF(0,0) 0.11 0.10 0.32 1.00 1.00 0.29 1.00 1.00 0.33
RBF(50,0.001) 0.14 0.10 0.30 0.32 1.00 0.33 0.13 1.00 0.29
RBF(10,0.001) 0.12 0.10 0.32 1.00 1.00 0.28 1.00 1.00 0.28
RBF(50,0.0001) 0.10 0.11 0.31 1.00 0.85 0.31 0.99 0.86 0.30
RBF(10,0.0001) 0.10 0.09 0.31 1.00 1.00 0.32 1.00 1.00 0.29

Average 0.11 0.10 0.19 0.80 0.84 0.54 0.83 0.91 0.59

this into account, is to normalize p0 by using

p′0 =
p0 −min p

max p−min p

where min p and max p are the minimum and maximum
accuracy obtainable in the stream, respectively.

The Kappa statistic κ was introduced by Cohen [8]:

κ =
p0 − pc
1− pc

.

The quantity p0 is the classifier’s prequential accuracy,
and pc is the probability that a chance classifier–one that
assigns the same number of examples to each class as the
classifier under consideration–makes a correct prediction. If
the classifier is always correct then κ = 1. If its predictions
are correct as often as those of a chance classifier, then κ = 0.

For example, if a chance classifier accuracy is 0.48, and
prequential accuracy is 0.65, then κ = 0.65−0.48

1−0.48
= 32.69%

(Table 5).
The efficiency of computing the Kappa statistic is an im-

portant reason why it is more appropriate for data streams
than a measure such as the area under the ROC curve.

Similarly, the Matthews correlation coefficient (MCC) is
a correlation coefficient between the observed and predicted
binary classifications defined as:

MCC =
TP · TN − FN · FP√

(TP + FN)(TP + FP )(FP + TN)(FN + TN)

Note that its numerator (TP · TN − FN · FP ) is the de-
terminant of the confusion matrix (CMD). The κ statistic
has the same numerator:

κ =
p0 − pc
1− pc

= 2 · TP · TN − FN · FP
n2(1− pc)

since

p0 =
TP + TN

n

pc =
(TP + FN)(TP + FP )

n2
+

(FP + TN)(FN + TN)

n2
.

This fact explains why the behavior of these two measures
is so similar: they have the same zero value (TP · TN =
FN · FP ), and the same two extreme values (−1 and 1).

64



5.2 Harmonic Mean
Unbalanced measures that use class label accuracies are

the arithmetic mean and the geometric mean

A = 1/c · (A1 +A2 + . . .+Ac)

G = (A1 ×A2 × . . . Ac)1/c,

where Ai is the prequential accuracy on class i and c is
the number of classes, e.g., in a binary classification setting
AC+ = TP/(TP + FN). Note that the geometric accuracy
of the majority vote classifier would be zero, as accuracy on
the classes other than the majority would be zero. Perfect
classification yields one. If the accuracies of a classifier are
balanced across the classes, then the geometric accuracy is
equal to standard accuracy.

The harmonic mean is defined as:

H = c
/( 1

A1
+

1

A2
+ . . .

1

Ac

)
. (1)

The main advantage of the harmonic mean is that, as it is
always smaller than the arithmetic mean and the geometric
mean (H ≤ G ≤ A), it tends strongly toward the accuracy
of the class with higher error, thus helping to mitigate the
impact of large classes and emphasizing the importance of
smaller ones.

Note that for a two class problem, A,G,H follow a ge-
ometric progression with a common ratio of G/A ≤ 1, as
G = A · (G/A), H = G · (G/A), and H = A · (G/A)2.

This measure is inspired by the F1 measure, the harmonic
mean between precision and recall:

F1 =
2

1/prec. + 1/recall
=

2 · TP
2TP + FN + FP

, (2)

where precision = TP
TP+FP

and recall = TP
TP+FN

.
Note that the F1 measure is not symmetric, as it ignores

TN. We can rewrite F1, to include TN , as

F1′ =
1

1 + 1/2(FN
TP

+ FP
TN

)
,

which is, in fact, equivalent to the harmonic mean:

H =
2

1/ TP
TP+FN

+ 1/ TN
TN+FP

=
2

TP+FN
TP

+ TN+FP
TN

=
1

1 + 1/2(FN
TP

+ FP
TN

)
.

As computing determinants for dimensions larger than 2 is
much more expensive than computing the harmonic mean,
the determinant of the confusion matrix (CMD) may be
used only for binary classification, and the harmonic mean
for multi-class classification.

5.3 Problems with Kappa Statistic and Har-
monic Mean

Consider the simple confusion matrix shown in Table 5.
Class+ is predicted correctly 40 out of 100 times, and Class-
is predicted correctly 25 times. So the accuracy p0 is 65%.
A random classifier that predicts solely by chance–in the
same proportions as the classifier of Table 5–will predict
Class+ and Class- correctly in 31.50% and 16.50% of cases

respectively. Hence, it has an accuracy pc of 48%. The κ
statistic is then 32.69%, MCC is 37.28%, the accuracy for
Class+ is 57.14% and for Class- is 83.33%, the arithmetic
mean A is 70.24%, the geometric mean G is 69.01% and the
harmonic mean H is 67.80%.

It may seem that as the κ statistic is positive (32.69%) and
harmonic mean is high (67.80%), we have a good classifier.
However, if we look at the accuracy of a majority class clas-
sifier that predicts always Class+, it is 70.0%, since Class+
appears in 70% and Class- appears in 30% of examples.

It is commonly, and wrongly, assumed that the κ statistic
is a measure that compares the accuracy of a classifier with
the one of a majority class classifier, and that any major-
ity class classifier will always have κ statistic equal to zero.
However, as we see in Table 5, this is not always the case.
A majority class classifier can perform better than a given
classifier while the classifier has a positive κ statistic. The
reason is that the distribution of predicted classes (45%-
55%) may substantially differ from the distribution of the
actual classes (70%-30%).

Therefore, we propose to use a new measure that indicates
when we are doing better than a majority class classifier, and
name it κm statistic. The κm statistic is defined as:

κm =
p0 − pm
1− pm

.

The quantity p0 is the classifier’s prequential accuracy,
and pm is the prequential accuracy of a majority class clas-
sifier. If the classifier is always correct then κm = 1. If its
predictions are correct as often as those of a majority class
classifier, then κm = 0.

In the example of Table 5, the majority classifier acquires
accuracy of 0.7, and prequential accuracy is 0.65, then κm =
0.65−0.7
1−0.7

= −16.67%. This negative value of κm shows that
the classifier is performing worse than the majority class
classifier.

In summary, we propose to use the κm statistic to address
issue I3, a measure that is easily comprehensible, with a be-
havior similar to CMD and κ, and that deals correctly with
the problems introduced by skew in evolving data streams.

5.4 κm Statistic Evaluation
The main motivation of using the κm statistic is when

data streams are evolving class unbalanced. We show that
this measure has advantages over accuracy and κ-statistic:
it is a comprehensible measure, and it has a zero value for a
majority class classifier.

We perform a prequential evaluation with a sliding win-
dow of 1000 examples, on the Electricity dataset, where the
class label identifies the change of the price relative to a
moving average of electricity demand over the previous 24
hours; with a total of 45, 312 examples. This dataset is a
widely used dataset described by Harries [15] and analysed

Table 5: Simple confusion matrix example.

Predicted Predicted
Class+ Class- Total

Correct Class+ 40 30 70
Correct Class- 5 25 30

Total 45 55 100

65



0 1 2 3 4

·104

0

50

100

Time, examples

H
o
eff

d
in

g
T

re
e

%

p0 accuracy κ statistic

H harmonic accuracy κm statistic

0 1 2 3 4

·104

0

20

40

60

80

100

Time, examples

M
a
jo

ri
ty

C
la

ss
%

p0 accuracy κ statistic

H harmonic accuracy κm statistic

Figure 2: Accuracy, κ Statistic, Harmonic Accuracy, and κm Statistic of a Hoeffding Tree (left) and a Majority Class classifier
(right) on the Electricity Market Dataset.

by Gama [12]. This dataset was collected from the Aus-
tralian New South Wales Electricity Market. In this market,
prices are not fixed but are affected by demand and supply
of the market, and are set every five minutes.

Comparing the usage of p0, κ statistic, harmonic accuracy
H and κm statistic (Figure 2), we see that for the Hoeffding
tree, the κm statistic is similar or lower to the κ statistic, and
for a period of time it is negative. Negative values indicate
that the Hoeffding tree is doing worse than a simple majority
class classifier. This behaviour is not discovered by the other
measures, thus showing the benefit of using this new κm
statistic measure.

In the right part of Figure 2, we compare the different
measures for the majority class classifier that uses a sliding
window of 1000 examples. Of course the κm statistic has
a constant value of zero, but the κ statistic and harmonic
accuracy H have some positive values. This behavior is
due to the evolution of the class labels, as at a certain point
the majority switches from one label to the other. In this
window the κ statistic can be positive. Again, we see the
benefit of using this new κm statistic measure.

5.4.1 The Kappa-Temporal Statistic Measure
Considering the presence of temporal dependencies in data

streams, a new measure the Kappa-Temporal statistic was
proposed in [27], defined as

κper =
p− pper
1− pper

, (3)

where pper is the accuracy of the Persistent classifier. The
Persistent classifier is a classifier that predicts that the next
class label will be the same as the last seen class label.

We would like to note that κper corresponds to the κm
measure computed using a sliding window of size 1. Com-
puting the majority class of a sliding window of size 1 is the
same as using the last seen class label.

6. REAL-TIME PREQUENTIAL MEASURE
The performance of a classifier may be evolving over time.

We propose to evaluate learning systems using real-time
measures of performance: the average of the prequential

measures in the most recent sliding window containing data
that corresponds to the current distribution of data.

Holdout evaluation gives a more accurate estimation of
the accuracy of the classifier on more recent data. However,
it requires recent test data that it is difficult to obtain for
real datasets. Gama et al. [13] propose to use a forgetting
mechanism for estimating holdout accuracy by using pre-
quential accuracy: a sliding window of size w with the most
recent observations

p0(t) =
1

w

t∑
k=t−w+1

L(ŷk, yk),

or fading factors that weigh observations using a decay fac-
tor α. The output of the two mechanisms is very similar
(every window of size w0 may be approximated by some de-
cay factor α0). The authors note in their paper that ”we
observed that the choice of fading factors and the window
size is critical.”

As the output will depend on the scale of change of the
data stream, we propose to use accuracy and κm statistic
measured using an adaptive sliding window such as ADWIN

[2], an algorithm for estimating mean and variance, detect-
ing change and dynamically adjusting the length of a data
window to keep only recent data.
ADWIN keeps a variable-length window of recently seen

items, for example loss function values L(ŷk, yk) in a classi-
fication task, such that the window has the maximal length
statistically consistent with the hypothesis “there has been
no change in the average value inside the window.”

More precisely, an older fragment of the window is dropped
if and only if there is enough evidence that its average value
differs from that of the rest of the window. This has two
consequences: one, that change is reliably declared when-
ever the window shrinks; and two, that at any time the
average over the existing window can be reliably taken as
an estimation of the current average in the stream.
ADWIN is parameter- and assumption-free in the sense that

it automatically detects and adapts to the current rate of
change. Its only parameter is a confidence bound δ, indicat-
ing the desired confidence in the algorithm’s output, inher-
ent to all algorithms dealing with random processes.

66



In our case, ADWIN keeps a sliding window W with the
most recent xt = L(ŷt, yt). Let n denote the length of W ,
W0 · W1 a partition of W , µ̂W the (observed) average of
the elements in W , and µW the (unknown) average of µt
for t ∈W .

Since the values of µt can oscillate wildly, there is no guar-
antee that µW or µ̂W will be anywhere close to the instan-
taneous value µt, even for long W . However, µW is the
expected value of µ̂W , so µW and µ̂W do get close as W
grows.

Now we state our main technical result about computing
prequential accuracy using ADWIN based in [2]:

Theorem 3. Let n0 and n1 be the lengths of W0 and W1

and n be the length of W , so that n = n0 + n1. Let µ̂W0

and µ̂W1 be the averages of the values in W0 and W1, and
µW0 and µW1 their expected values. During the evaluation,
at every time step we have:

1. (False positive rate bound). If µt remains constant
within W , the probability that ADWIN detects a change
and shrinks the window at this step is at most δ.

2. (False negative rate bound). Suppose that for some
partition of W in two parts W0W1 (where W1 contains
the most recent items) we have |µW0 − µW1 | > 2εcut,
where

m =
1

1/n0 + 1/n1
(harmonic mean of n0 and n1),

δ′ =
δ

n
, and εcut =

√
1

2m
· ln 4

δ′
.

Then with probability 1−δ ADWIN detects a change and
shrinks W to W1, or shorter.

ADWIN is efficient, since the total processing time per ex-
ample is O(logW ) (amortized) and O(logW ) (worst-case).

6.1 ADWIN Prequential Evaluation
In the next experiment, we plot the prequential evaluation

for three different sizes of a sliding window: 100, 1 000, and
10 000. The plots are shown in Figure 3. We observe that
the plots are different depending on the size of the window.
In this example, where we plot the accuracy of a Hoeffding
Tree using the Electricity dataset, we see that with a size
of 10 000, the plot is smoothed, with a size of 100, there are
many fluctuations, and that the size that is more similar
to the ADWIN prequential accuracy is the sliding window of
size 1 000. We note that using ADWIN the evaluator does not
need to choose a size for the sliding window, and that it has
theoretical guarantees that the chosen size is optimal.

Figure 4 shows a comparison between a hold-out evalu-
ation, a prequential evaluation using ADWIN, a sliding win-
dow of 100 and a sliding window of 10 000. We observe
that the prequential evaluation using ADWIN is very similar
to hold-out evaluation, and that short sliding windows have
some fluctuations, and large sized sliding windows may have
some delay. For evolving data streams with different rates
of change, the size of the optimal window is not always the
same. ADWIN prequential evaluation is an easy way to have
an estimation similar to hold-out evaluation without need-
ing testing data, and without needing to decide the optimal
size of a sliding window for evaluation.

0 1 2 3 4

·104

0

20

40

60

80

100

Time, instances

H
o
eff

d
in

g
T

re
e

%

ADWIN Window Size 100

0 1 2 3 4

·104

0

20

40

60

80

100

Time, instances

H
o
eff

d
in

g
T

re
e

%

ADWIN Window Size 1 000

Window Size 10 000

Figure 3: Accuracy using a sliding window of 100, 1 000,
10 000 and ADWIN for the Electricity Market Dataset

7. CONCLUSIONS
Evaluating data streams online and in a distributed envi-

ronment opens new challenges. In this paper we discussed
three of the most common issues, namely: (I1) which valida-
tion procedure to use, (I2) the choice of the right statistical
test, (I3) how to deal with unbalanced classes, and (I4) and
the proper forgetting mechanism. We gave insights into each
of these issues, and proposed several solutions: prequential
k-fold distributed bootstrap (I1), Wilcoxon’s signed-rank
test (I2), κm statistic (I3), and ADWIN prequential evaluation
(I4). This new evaluation methodology will be available in
Apache SAMOA, a new open-source platform for mining
big data streams [9].

Our main goal was to contribute to the discussion of how
distributed streaming classification should be evaluated. As
future work, we will extend this methodology to regression,
multi-label, and multi-target learning.

67



0 0.2 0.4 0.6 0.8 1

·106

20

40

60

80

Time, instances

H
o
eff

d
in

g
T

re
e

%

Hold-out ADWIN

Window 100 Window 10 000

Figure 4: Prequential evaluation with several measures on
a stream of a million of instances.

8. REFERENCES
[1] A. Asuncion and D.J. Newman. UCI machine learning

repository, 2007. URL
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[2] Albert Bifet and Ricard Gavaldà. Learning from
time-changing data with adaptive windowing. In SDM,
2007.

[3] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard
Pfahringer. MOA: Massive Online Analysis. Journal of
Machine Learning Research (JMLR), 2010. URL
http://moa.cms.waikato.ac.nz/.

[4] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer.
Leveraging bagging for evolving data streams. In ECML
PKDD, pages 135–150, Berlin, Heidelberg, 2010.
Springer-Verlag.

[5] Avrim Blum, Adam Kalai, and John Langford. Beating the
hold-out: Bounds for k-fold and progressive
cross-validation. In COLT, pages 203–208, 1999.

[6] Remco R. Bouckaert. Choosing between two learning
algorithms based on calibrated tests. In ICML, pages
51–58, 2003.

[7] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth,
1984.

[8] Jacob Cohen. A coefficient of agreement for nominal scales.
Educational and Psychological Measurement, 20(1):37–46,
April 1960.

[9] Gianmarco De Francisci Morales and Albert Bifet.
SAMOA: Scalable Advanced Massive Online Analysis.
Journal of Machine Learning Research, 16:149–153, 2015.
URL http://samoa-project.net.

[10] Janez Demsar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Research,
7:1–30, 2006.

[11] Thomas G. Dietterich. Approximate statistical test for
comparing supervised classification learning algorithms.
Neural Computation, 10(7):1895–1923, 1998.

[12] João Gama, Pedro Medas, Gladys Castillo, and
Pedro Pereira Rodrigues. Learning with drift detection. In
SBIA, pages 286–295, 2004.

[13] João Gama, Raquel Sebastião, and Pedro Pereira
Rodrigues. On evaluating stream learning algorithms.
Machine Learning, pages 1–30, 2013.

[14] D. Hand. Classifier technology and the illusion of progress.
Statistical Science, 21(1):1–14, 2006.

[15] Michael Harries. Splice-2 comparative evaluation:
Electricity pricing. Technical report, The University of
South Wales, 1999.

[16] Geoff Hulten and Pedro Domingos. VFML – a toolkit for
mining high-speed time-changing data streams. 2003. URL
http://www.cs.washington.edu/dm/vfml/.

[17] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining
time-changing data streams. In KDD, pages 97–106, 2001.

[18] N. Japkowicz and M. Shah. Evaluating Learning
Algorithms: A Classification Perspective. Cambridge
University Press, 2011.

[19] John Langford. Tutorial on practical prediction theory for
classification. Journal of Machine Learning Research, 6:
273–306, 2005.

[20] John Langford. Vowpal Wabbit, http://hunch.net/˜vw/,
2011. URL http://hunch.net/~vw/.

[21] James Manyika, Michael Chui, Brad Brown, Jacques
Bughin, Richard Dobbs, Charles Roxburgh, and
Angela Hung Byers. Big data: The next frontier for
innovation, competition, and productivity. McKinsey
Global Institute Report, 2011.

[22] N. Oza and S. Russell. Online bagging and boosting. In
Artificial Intelligence and Statistics 2001, pages 105–112.
Morgan Kaufmann, 2001.

[23] Nikunj C. Oza and Stuart J. Russell. Experimental
comparisons of online and batch versions of bagging and
boosting. In KDD, pages 359–364, 2001.

[24] Nicos G. Pavlidis, Dimitris K. Tasoulis, Niall M. Adams,
and David J. Hand. λ-Perceptron: An adaptive classifier
for data streams. Pattern Recognition, 44(1):78–96, 2011.

[25] Mohak Shah. Generalized agreement statistics over fixed
group of experts. In Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML
PKDD 2011, pages 191–206, 2011.

[26] W. Nick Street and YongSeog Kim. A streaming ensemble
algorithm (SEA) for large-scale classification. In KDD,
pages 377–382, 2001.

[27] Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard
Pfahringer, and Geoff Holmes. Evaluation methods and
decision theory for classification of streaming data with
temporal dependence. Machine Learning, 98(3):455–482,
2015.

68

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://moa.cms.waikato.ac.nz/
http://samoa-project.net
http://www.cs.washington.edu/dm/vfml/
http://hunch.net/~vw/

	Introduction
	Related Work
	Methods for Validation
	Streaming Setting
	Theoretical Insights

	Statistical Tests for Comparing Classifiers
	Type I and II Error Evaluation

	Unbalanced Performance Measures
	The Kappa Statistic
	Harmonic Mean
	Problems with Kappa Statistic and Harmonic Mean
	m Statistic Evaluation
	 The Kappa-Temporal Statistic Measure


	Real-time Prequential Measure
	ADWIN Prequential Evaluation

	Conclusions
	REFERENCES



