DB2 LUW V9.7
SQL Cookbook

Graeme Birchall

Graeme Birchall ©

DB2 V9.7 Cookbook ©

Preface

Important!

If you didn't get this document directly from my personal website, you may have got an older
edition. The book is changed very frequently, so if you want the latest, go to the source. Also,
the latest edition is usually the best book to have, as the examples are often much better. This
is true even if you are using an older version of DB2.

This Cookbook is written for DB2 for LUW (i.e. Linux, Unix, Windows). It is not suitable for
DB2 for z/OS unless you are running DB2 8 in new-function-mode, or (even better) DB2 9.

Acknowledgements

I did not come up with all of the ideas presented in this book. Many of the best examples were
provided by readers, friends, and/or coworkers too numerous to list. Thanks also to the many
people at IBM for their (strictly unofficial) assistance.

Disclaimer & Copyright

DISCLAIMER: This document is a best effort on my part. However, | screw up all the time,
so it would be extremely unwise to trust the contents in its entirety. | certainly don't. And if
you do something silly based on what | say, life is tough.

COPYRIGHT: You can make as many copies of this book as you wish. And | encourage you
to give it to others. But you cannot charge for it (other than to recover reproduction costs), nor
claim the material as your own, nor replace my name with another. You are also encouraged
to use the related class notes for teaching. In this case, you can charge for your time and mate-
rials - and your expertise. But you cannot charge any licensing fee, nor claim an exclusive
right of use. In other words, you can pretty well do anything you want. And if you find the
above too restrictive, just let me know.

TRADEMARKS: Lots of words in this document, like "DB2", are registered trademarks of
the IBM Corporation. Lots of other words, like "Windows", are registered trademarks of the
Microsoft Corporation. Acrobat is a registered trademark of the Adobe Corporation.

Tools Used

This book was written on a Dell PC that came with oodles of RAM. All testing was done in
DB2 V9.7 Express-C for Windows. Word for Windows was used to write the document.
Adobe Acrobat was used to make the PDF file.

Book Binding

This book looks best when printed on a doubled sided laser printer and then suitably bound.
To this end, I did some experiments a few years ago to figure out how to bind books cheaply
using commonly available materials. | came up with what I consider to be a very satisfactory
solution that is fully documented on page 461.

Author / Book

Author: Graeme Birchall ©

Email: Graeme_Birchall@verizon.net

Web: http://mysite._verizon._net/Graeme_Birchall/
Title: DB2 9.7 SQL Cookbook ©

Date: 16-Aug-2011

Preface 3

Graeme Birchall ©

Author Notes

Book History

This book originally began a series of notes for my own use. After a while, friends began to
ask for copies, and enemies started to steal it, so | decided to tidy everything up and give it
away. Over the years, new chapters have been added as DB2 has evolved, and as | have found
new ways to solve problems. Hopefully, this process will continue for the foreseeable future.

Why Free

This book is free because | want people to use it. The more people that use it, and the more
that it helps them, the more inclined | am to keep it up to date. For these reasons, if you find
this book to be useful, please share it with others.

This book is free, rather than formally published, because | want to deliver the best product
that | can. If I had a publisher, | would have the services of an editor and a graphic designer,
but 1 would not be able to get to market so quickly, and when a product changes as quickly as
DB2 does, timeliness is important. Also, giving it away means that | am under no pressure to
make the book marketable. I simply include whatever I think might be useful.

Other Free Documents
The following documents are also available for free from my web site:

e SAMPLE SQL: The complete text of the SQL statements in this Cookbook is available in
an HTML file. Only the first and last few lines of the file have HTML tags, the rest is raw
text, so it can easily be cut and paste into other files.

e CLASS OVERHEADS: Selected SQL examples from this book have been rewritten as
class overheads. This enables one to use this material to teach DB2 SQL to others. Use
this cookbook as the student notes.

e OLDER EDITIONS: This book is rewritten, and usually much improved, with each new
version of DB2. Some of the older editions are available from my website. The others can
be emailed upon request. However, the latest edition is the best, so you should probably
use it, regardless of the version of DB2 that you have.

Answering Questions

As arule, 1 do not answer technical questions because | need to have a life. But I'm interested
in hearing about interesting SQL problems, and also about any bugs in this book. However
you may not get a prompt response, or any response. And if you are obviously an idiot, don't
be surprised if I point out (for free, remember) that you are an idiot.

Software Whines
This book is written using Microsoft Word for Windows. I've been using this software for
many years, and it has generally been a bunch of bug-ridden junk. I do confess that it has

been mildly more reliable in recent years. However, | could have written more than twice as
much that was twice as good in half the time - if it weren't for all of the bugs in Word.

Graeme

DB2 V9.7 Cookbook ©

Book Editions

Upload Dates

1996-05-08: First edition of the DB2 V2.1.1 SQL Cookbook was posted to my web site.
This version was in Postscript Print File format.

1998-02-26: The DB2 V2.1.1 SQL Cookbook was converted to an Adobe Acrobat file
and posted to my web site. Some minor cosmetic changes were made.

1998-08-19: First edition of DB2 UDB V5 SQL Cookbook posted. Every SQL statement
was checked for V5, and there were new chapters on OUTER JOIN and GROUP BY.
1998-08-26: About 20 minor cosmetic defects were corrected in the V5 Cookbook.
1998-09-03: Another 30 or so minor defects were corrected in the V5 Cookbook.
1998-10-24: The Cookbook was updated for DB2 UDB V5.2.

1998-10-25: About twenty minor typos and sundry cosmetic defects were fixed.
1998-12-03: This book was based on the second edition of the V5.2 upgrade.
1999-01-25: A chapter on Summary Tables (new in the Dec/98 fixpack) was added and
all the SQL was checked for changes.

1999-01-28: Some more SQL was added to the new chapter on Summary Tables.
1999-02-15: The section of stopping recursive SQL statements was completely rewritten,
and a new section was added on denormalizing hierarchical data structures.

1999-02-16: Minor editorial changes were made.

1999-03-16: Some bright spark at IBM pointed out that my new and improved section on
stopping recursive SQL was all wrong. Damn. | undid everything.

1999-05-12: Minor editorial changes were made, and one new example (on getting mul-
tiple counts from one value) was added.

1999-09-16: DB2 V6.1 edition. All SQL was rechecked, and there were some minor ad-
ditions - especially to summary tables, plus a chapter on "DB2 Dislikes".

1999-09-23: Some minor layout changes were made.

1999-10-06: Some bugs fixed, plus new section on index usage in summary tables.
2000-04-12: Some typos fixed, and a couple of new SQL tricks were added.
2000-09-19: DB2 V7.1 edition. All SQL was rechecked. The new areas covered are:
OLAP functions (whole chapter), ISO functions, and identity columns.

2000-09-25: Some minor layout changes were made.

2000-10-26: More minor layout changes.

2001-01-03: Minor layout changes (to match class notes).

2001-02-06: Minor changes, mostly involving the RAND function.

2001-04-11: Document new features in latest fixpack. Also add a new chapter on Iden-
tity Columns and completely rewrite sub-query chapter.

2001-10-24: DB2 V7.2 fixpack 4 edition. Tested all SQL and added more examples, plus
a new section on the aggregation function.

2002-03-11: Minor changes, mostly to section on precedence rules.

2002-08-20: DB2 V8.1 (beta) edition. A few new functions are added. New section on
temporary tables. Identity Column and Join chapters rewritten. Whine chapter removed.
2003-01-02: DB2 V8.1 (post-Beta) edition. SQL rechecked. More examples added.
2003-07-11: New sections added on DML, temporary tables, compound SQL, and user
defined functions. Halting recursion section changed to use user-defined function.
2003-09-04: New sections on complex joins and history tables.

2003-10-02: Minor changes. Some more user-defined functions.

2003-11-20: Added "quick find" chapter.

Book Editions 5

Graeme Birchall ©

2003-12-31: Tidied up the SQL in the Recursion chapter, and added a section on the
merge statement. Completely rewrote the chapter on materialized query tables.
2004-02-04: Added select-from-DML section, and tidied up some code. Also managed
to waste three whole days due to bugs in Microsoft Word.

2004-07-23: Rewrote chapter of identity column and sequences. Made DML separate
chapter. Added chapters on protecting data and XML functions. Other minor changes.
2004-11-03: Upgraded to V8.2. Retested all SQL. Documented new SQL features. Some
major hacking done on the GROUP BY chapter.

2005-04-15:
2005-06-01:
2005-11-11:
2005-12-01:
2005-12-16:
2006-01-26:

Added short section on cursors, and a chapter on using SQL to make SQL.
Added a chapter on triggers.

Updated MQT table chapter and added bibliography. Other minor changes.
Applied fixpack 10. Changed my website name.

Added notes on isolation levels, data-type functions, transforming data.
Fixed dumb bugs generated by WORD. What stupid software. Also wrote

an awesome new section on joining meta-data to real data.

2006-02-17: Touched up the section on joining meta-data to real data. Other minor fixes.
2006-02-27: Added precedence rules for SQL statement processing, and a description of
a simplified nested table expression.

2006-03-23: Added better solution to avoid fetching the same row twice.

2006-04-26: Added trigger that can convert HEX value to number.

2006-09-08: Upgraded to V9.1. Retested SQL. Removed the XML chapter as it is now
obsolete. I'm still cogitating about XQuery. Looks hard. Added some awesome java code.

2006-09-13:
2006-10-17:
2006-11-06:

Fixed some minor problems in the initial V9.1 book.
Fixed a few cosmetic problems that were bugging me.
Found out that IBM had removed the "UDB" from the DB2 product name,

so | did the same. It is now just plain "DB2 V9".

2006-11-29

2006-12-15:
2007-02-22:
2007-11-20:
2008-09-20:
2008-11-28:
2009-01-18:
2009-03-12:
2010-10-12:
2010-11-05:
2010-11-14:
2011-01-11:
2011-01-14:
2011-08-16:

| goofed. Turns out DB2 is now called "DB2 9". | relabeled accordingly.
Improved code to update or delete first "n" rows.

Get unique timestamp values during multi-row insert. Other minor changes.
Finished the DB2 V9.5 edition. Lots of changes!

Fixed some minor problems.

Fixed some minor problems.

Fixed some minor problems, plus lots of bugs in Microsoft WORD!
Converted to a new version of Adobe Acrobat, plus minor fixes.
Finished initial V9.7 edition. Only minor changes. More to come.

First batch of cute/deranged V9.7 SQL examples added.

Fixed some minor typos.

Added LIKE_COLUMN function. Removed bibliography.

Added HASH function. Other minor edits.

Fixed some minor problems.

DB2 V9.7 Cookbook ©

Table of Contents

P REF A CE ... it teitttt ittt e e e e et e e e e et e e e e e et e ea e aaaae 3
AUTHOR NOTES 1o ttttiiiti ittt ettt et et et s e e e e e e e e et b s e e e e e e et bt a e e e e e e e eebab e r e e e e e e eeabaan s 4
200] g =] 0] N S PSP PPPTPTSPPRN 5
T ABLE OF CONTENTS L.uuttttttttttitiin s e e e teettati s e e et eeststa s e e e e e e eesbaa e s e e e e ee e tban s e e e e e e e eebbneeeaeeeeebanan s 7
L 10 Tt 11N o U 17
[LaTo F=y o L @0 gL =Y o] £SO SSUUR 17
INTRODUCTION TO SQL ..ttt ettt e e e e e e e e e e e e e e aenaanns

Syntax Diagram Conventions

SQL Components
DB2 Objects

DB2 Data Types
DECFLOAT Arithmetic
Date/Time Arithmetic
DB2 Special Registers
Distinct Types
Fullselect, Subselect, & Common Table Expression . .32
SELECT Statement
FETCH FIRST Clause
Correlation Name....
Renaming Fields..
Working with Nulls
Quotes and Double-quotes

SQL Predicates
Basic Predicate.......
Quantified Predicate
BETWEEN Predicate
EXISTS Predicate...
IN Predicate......
LIKE Predicate
LIKE_COLUMN Function
NULL Predicate
Special Character Usage .. .44
Precedence Rules..........
Processing Sequence

CAST Expression

VALUES SEAEIMENT ...ttt et e e e e e sttt e e e e sttt e e e e e hb et e e e e e s e st et e e e s aaantreeeeeaaas 47
(07 NS o T o T =T1o Lo o PSR 50
CASE Syntax Styles

Sample SQL

Select Into..
Prepare...
Describe .
Execute
Execute Immediate
Set Variable

Set DB2 Control Structures

Table of Contents 7

Graeme Birchall ©

Unit-of-Work Processing

Commit
Savepoint
Release Savepoint
Rollback
DATA MANIPULATION LANGUAGEt ittt iettitie s e e et ettt s e e e e e e eaata s e e e e e s eestaasaeeeseeaasnanseeeaaeennes 61
I S Bl e 61
L 0T - =PSRN 65
(1= = = RO SSPRN 68
SEIECT DML CRANGES ...ttt ettt h e sht e bt et e et e she e e bt e ek e e bt e re e e bt e s et e enbee s 70
L o = SRR 73
COMPOUND SQL . iiittiiiiiiiee sttt sttt e e st s e e e e e e e e e s e e e e e e eeeeb s e e e e e e eeebaaaeneaesennrens 79
[N o Yo [T3 o o ISR SSPR 79
3 = L 0 T o B LY 41 (= RO PR PP 79

SQL Statement Usage ...
DECLARE Variables.....

FOR Statement
GET DIAGNOSTICS Stateme
IF Statement...........ccoeeveeennn
ITERATE Statement.
LEAVE Statement
SIGNAL Statement
WHILE Statement

Other Usage
Trigger......
Scalar Function ..
Table Function

COLUMN FUNCTIONS
Introduction

COUNT_BIG
COVARIANCE
GROUPING.
MAX ..
MIN ...

(@I N = I N[04 10 N LT N 97

Introduction
The Bad Old Days

Concepts
PARTITION Expression
Window Definition
ROWS vs. RANGE
ORDER BY Expression
Table Designator
Nulls Processing

OLAP Functions
RANK and DENSE_RANK .
ROW_NUMBERcccccuue.
FIRST_VALUE and LAST_VALUE

DB2 V9.7 Cookbook ©

LAG and LEAD.....
Aggregation

SCALAR FUNCTIONS «ettttiiiiieettetiiti e e e e e s easbise s e e et eesbaaas s e e e e e e aes s s e e e e eeeebbaan s e e e seeesabanneeeaees 127
Introduction
Sample Data

Scalar Functions, Definitions
ABS or ABSVAL

COALESCE ..
COLLATION_KEY_BIT.
COMPARE_DECFLOAT..
CONCAT ...

DAYOFWEEK...
DAYOFWEEK_ISO
DAYOFYEAR....

DECFLOAT.............
DEC or DECIMAL

DECRYPT_BIN and DECRYPT_CHAR....
DEGREES.....

INT or INTEGER..
JULIAN_DAY
LCASE or LOWER..

LONG_VARCHAR

Table of Contents 9

Graeme Birchall ©

MAX_CARDINALITY
MICROSECOND

MONTHNAME....
MULTIPLY_ALT
NORMALIZE_DECFLOAT
NULLIF..

PARTITION..
POSITION
POSSTR ..
POWER....

TABLE_NAME....
TABLE_SCHEMA..

TIMESTAMP_FORMAT ..
TIMESTAMP_ISO
TIMESTAMPDIFF .

VARCHAR_BIT_FORMAT .
VARCHAR_FORMAT......
VARCHAR_FORMAT_BIT .
VARGRAPHIC..........

DB2 V9.7 Cookbook ©

USER DEFINED FUNCTIONSiiitiieieiieeeeii s esetee e e e et e eeeaa s e s eaneeseetaneeeesnnsesesnnsesesnnaeennnnseenes 185
SOUFCEA FUNCLIONS ..eviiiieii ittt e e et e e e e e et e e e e e s et e s e eeeeeeetbaaeeeaeeeaanseeesaasssaeeeeseennsnrees 185
Scalar Functions
Description
| T o] (=TT P PP PP OPRPPN

Table Functions
Description........
Examples...

Useful User-Defined Functions
Julian Date Functions
Get Prior Date
Generating Numbers
Check Data Value Type.
Hash Function

ORDER BY, GROUP BY, AND HAVINGcouuiiiiite et e et e et e e st e e e e e s e e e eeaas 201

Order By
Notes.........
Sample Data.....
Order by Examples .

Group By and Having
Rules and Restrictions
GROUP BY Flavors
GROUP BY Sample Data
Simple GROUP BY Statements ..
GROUPING SETS Statement
ROLLUP Statement
CUBE Statement
Complex Grouping Sets - Done Easy
Group By and Order By
Group By in Join
COUNT and No Rows

Why Joins Matter
Sample Views

Join Syntax
Query Processing Sequence ...
ON vs. WHERE

Join Types....
Inner Join.......
Left Outer Join ..
Right Outer Join
Full Outer Joins....
Cartesian Product...

Join Notes
Using the COALESCE Function..
Listing non-matching rows only...
Join in SELECT Phrase
Predicates and Joins, a Lesson
Joins - Things to Remember
Complex Joins

SUB-QUERY
SAMPIE TADIES ...ttt b bbbt ekt ekt ekt E £ ekt e ke e R e e R e e R e R e e R e e R R et Rt R bR e Re R s

Sub-query Flavors
Sub-query Syntax ...

Table of Contents 11

Graeme Birchall ©

Correlated vs. Uncorrelated Sub-Queries
Multi-Field Sub-Queries
Nested Sub-Queries

Usage Examples
True if NONE Match.
True if ANY Match....
True if TEN Match .
True if ALL match

UNION, INTERSECT, AND EXCEPT ..iittiiiiiiiiiii ittt ettt st e e et et e e e e st e e s e sba e saneeeas 259

Syntax Diagram
Sample Views

Usage Notes
Union & Union All
Intersect & Intersect All
Except, Except All, & Minus
Precedence Rules...........

Unions and Views

MATERIALIZED QUERY TABLES . itttuuiiiiitttittiiiiies e e et eetiabas e s e seesaabans s e s s s eeaasbn s e e e seeaasennnneees 263
(L1 goTo [N To1 i o] o S TP VSRUPPRON 263
Usage Notes .. .263
Syntax Options... ..264

Select Statement.... .
Optimizer Options..... ..266
Refresh Deferred Tables .
Refresh Immediate Tables.. .
Usage Notes and Restrictions...... .271
Multi-table Materialized Query Tables
Indexes on Materialized Query Tables
Organizing by Dimensions
Using Staging Tables

IDENTITY COLUMNS AND SEQUENGCES.....uuiituiiitiiittiiitiesitiiestsistestiiesanessteestessnesssnsessneasnees 277

Identity Columns
Rules and Restrictions.....
Altering Identity Column Options ..
Gaps in Identity Column Values
Find Gaps in Values......................
IDENTITY_VAL_LOCAL Function

S T=To T =T o Lo = ST PP PP PP UPPPPPPR RPN 286
Getting the Sequence Valu ..287
Multi-table Usage289
Counting Deletes ..290
Identity Columns vs. SEqUENCES - @ COMPATISONcuieiieiieiieieete ettt e e e et et et e et e e st e e ar e e srean e et e e neaneeneeneas 291

Roll Your Own
Support Multi-row Inserts....

TEMPORARY TABLES ...ciititttttieteeetteitttie s e e et e eetat st e e e e e e aast e e e e e et eettaa s e eaeeeesasan e eeaaseastnnnnns 297
[LaR (e Yo [UTe3 (1o] o WSSO UP P OPUPPP 297
Temporary Tables - iN STALEMENTcciiii e e e s e e e e st e e s teeessaaeeesaeeesnseeeessneeannaeeannnes 299

RECURSIVE SQL

12

Common Table Expression ...
Full-Select

Use Recursion To
When (Not) to Use Recursion

How Recursion Works...
List Dependents of AAA ..
Notes & Restrictions........
Sample Table DDL & DML ...

DB2 V9.7 Cookbook ©

Introductory Recursion
List all Children #1
List all Children #2
List Distinct Children
Show Item Level
Select Certain Levels..
Select Explicit Level..........c.cccc......

Trace a Path - Use Multiple Recursions
Extraneous Warning Message

(o Yo or- I o 11T = T o o YA P Ao U U SRR 317
Divergent Hierarchy
Convergent Hierarchy .
Recursive Hierarchy

Balanced & Unbalanced Hierarchies
Data & POINTEI HIBTAICHIES.iiuiiieie ittt stk ekt e ekt e e e e e b e e e E e e e m e e et e e nr e e s e e e nbeenreenneenneens

Halting Recursive Processing
Sample Table DDL & DML
Stop After "n" Levels
Stop When Loop Found
Keeping the Hierarchy Clean

Clean Hierarchies and Efficient Joins
INrOdUCHION ...

Limited Update Solution.
Full Update Solution

LRI LCT T = =TS T

Trigger Syntax...
Usage Notes
Trigger Usage

Trigger Examples
Sample Tables.......cccccevveiiennne

Before Row Triggers - Set Values..
Before Row Trigger - Signal Error-.....
After Row Triggers - Record Data States.
After Statement Triggers - Record Changes
Examples of Usage

PROTECTING YOUR D AT A ettt ettt ettt e e et e e et e e e e st e e s e et e e ean e e ebeeraans 341

Sample Application
Enforcement Tools
Distinct Data Types
Customer-Balance Table ..
US-Sales Table.......

Triggers
[©o] 4 o1 U 1S3 o o TPV UPPPRPPN 348

RETAINING A RECORD ...uuiiiiii ettt e et e e et e st s et e et b e e sb e s e s sba e sanesebeernsens

Schema Design .
Recording Changes
Multiple Versions of the World

USING SQL TO MAKE SQL ..uuiiiiiieeeiie it e e et s e e e e e et e e e e e e e annnanas 361

Export Command
SQL to Make SQL

RUNNING SQL WITHIN SQL .. 365

Introduction
Generate SQL within SQL...........
Make Query Column-Independent .
BusiNess USES........cccoveernveennnnes
Meta Data Dictionaries

DB2 SQL Functions

Table of Contents 13

Graeme Birchall ©

Function and Stored Procedure Used....
Different Data Types....
Usage Examples ...

Java Functions
Scalar Functions....
Tabular Functions..
Transpose Function

Update Real Data using Meta-Data
Usage Examples

FUNWITH SOQL ..ttt e e e e e e eeeeeeeeeees

Creating Sample Data
Data Generation
Make Reproducible Random Data
Make Random Data - Different Ranges
Make Random Data - Varying Distribution
Make Random Data - Different Flavours ..
Make Test Table & Data

Time-Series Processing
Find Overlapping Rows......
Find Gaps in Time-Series
Show Each Day in Gap

Other Fun Things
Randomly Sample Data.
Convert Character to Numeric..
Convert Number to Character...
Convert Timestamp to Numeric
Selective Column Output
Making Charts Using SQL ..
Multiple Counts in One Pass
Find Missing Rows in Series / Count all Values.
Multiple Counts from the Same Row .
Normalize Denormalized Data
Denormalize Normalized Data
Transpose Numeric Data
Reversing Field Contents
Fibonacci Series..............
Business Day Calculation...
Query Runs for "n" Seconds..
Sort Character Field Contents ..
Calculating the Median
Converting HEX Data@ t0 NUMDETuiiiiieiiiie ettt ettt s et e et e e sbe et e eab e e eabe e e abbeeeeab e e e bbeeenbneeanneeanees 424

QUIRKS IN SQL ..t tttttettttieietetetetetetebebeee b ee et e et st sttt
Trouble with Timestamps
No Rows Match
Dumb Date Usage
RAND in Predicate
Date/Time Manipulation...
Use of LIKE on VARCHAR.
Comparing Weeks.......
DB2 Truncates, not Rounds
CASE Checks in Wrong Sequence.
Division and Average
Date Output Order
Ambiguous Cursors.....
Multiple User Interactions
What Timeis It.........
Floating Point Numbers...

DATA_FILE_NAMES

14

DB2 V9.7 Cookbook ©

DEPARTMENT
EMPLOYEE ...

EMP_PHOTO....
EMP_RESUME.

Table of Contents 15

16

Graeme Birchall ©

DB2 V9.7 Cookbook ©

Quick Find

This brief chapter is for those who want to find how to do something, but are not sure what
the task is called. Hopefully, this list will identify the concept.

Index of Concepts

Join Rows

To combine matching rows in multiple tables, use a join (see page 223).

EMP_NM EMP_JB SELECT nm.id ANSWER

Fom - + e + ,hm._name

| ID|NAME | |iIDjioB | ,jb.job 1D NAME JOB
l--1--—-- I 1--1--——- | FROM emp_nm nm @ —— ———————
|10]Sanders| |10]Sales] ,emp_jb jb 10 Sanders Sales
|20|Pernal | |20|Clerk] WHERE nm.id = jb.id 20 Pernal Clerk
|50|Hanes | +-----——- + ORDER BY 1;

Fom e +

Figure 1, Join example

Outer Join

To get all of the rows from one table, plus the matching rows from another table (if there are
any), use an outer join (see page 226).

EMP_NM EMP_JB SELECT nm.id ANSWER

Fom - + + ,hm.name

| 1D NAME | |iIDbjJoB | ,jb.job 1D NAME JoB
l--1---——-- I 1--1--——- | FROM emp_nm nm —— ——————— ————
|10]Sanders] |10]Sales] LEFT OUTER JOIN 10 Sanders Sales
|20|Pernal | |20|Clerk] emp_jb jb 20 Pernal Clerk
|50|Hanes | +-----——- + ON nm.id = jb.id 50 Hanes -
o + ORDER BY nm.1id;

Figure 2, Left-outer-join example

To get rows from either side of the join, regardless of whether they match (the join) or not,
use a full outer join (see page 230).

Null Values - Replace

Use the COALESCE function (see page 136) to replace a null value (e.g. generated in an
outer join) with a non-null value.

Select Where No Match

To get the set of the matching rows from one table where something is true or false in another
table (e.g. no corresponding row), use a sub-query (see page 245).

EMP_NM EMP_JB SELECT * ANSWER
Fom + e + FROM emp_nm nm ========
| ID|NAME | liIDjJoB | WHERE NOT EXISTS 1D NAME
R P I et (SELECT * == =====
|10]Sanders| |10]Sales] FROM emp_jb jb 50 Hanes
|20]Pernal | |20]|Clerk] WHERE nm.id = jb.id)

|50|Hanes | +-—————-—- + ORDER BY 1id;

Fom e +

Figure 3, Sub-query example

Quick Find 17

Graeme Birchall ©

Append Rows

To add (append) one set of rows to another set of rows, use a union (see page 259).

EMP_NM EMP_JB SELECT * ANSWER

Fom - + Fe———_— + FROM emp_nm —========
| ID|NAME | liIDjJoB | WHERE name < "S- ID 2
=l [Bl [unbon == e
|10]Sanders| |10]Sales] SELECT * 10 Sales
|20]Pernal | |20]|Clerk] FROM emp_jb 20 Clerk
|50]Hanes | +-----——- + ORDER BY 1,2; 20 Pernal
Fom———— + 50 Hanes

Figure 4, Union example
Assign Output Numbers

To assign line numbers to SQL output, use the ROW_NUMBER function (see page 111).

EMP_JB SELECT id

oD + ,job ANSWER
[1D]J0B | ,ROW_NUMBER() OVER(ORDER BY job) AS R ==========
|--1----- | FROM emp_jb ID JOB R
|10]|Sales]| ORDER BY job; — mm—m -
120 Clerk] 20 Clerk 1
e + 10 Sales 2

Figure 5, Assign row-numbers example
Assign Unique Key Numbers

To make each row inserted into a table automatically get a unique key value, use an identity
column, or a sequence, when creating the table (see page 277).

If-Then-Else Logic
To include if-then-else logical constructs in SQL stmts, use the CASE phrase (see page 50).

EMP_JB SELECT id ANSWER
e + ,job
|iIDjJoB | ,CASE ID JOB STATUS
I--1----- | WHEN job = "Sales®* = —= ————n —————-
|10]sales] THEN “Fire” 10 Sales Fire
|20|Clerk] ELSE “Demote* 20 Clerk Demote
Foo + END AS STATUS

FROM emp_jb;

Figure 6, Case stmt example
Get Dependents

To get all of the dependents of some object, regardless of the degree of separation from the
parent to the child, use recursion (see page 309).

FAMILY WITH temp (persn, Ivl) AS ANSWER

Fom + (SELECT parnt, 1 =========
| PARNT|CHILD] FROM family PERSN LVL
|-——- |-——- | WHERE parnt = “Dad~ ———— -
|GrDad|Dad | UNION ALL Dad 1
|[Dad |Dghtr] SELECT child, Lvl + 1 Dghtr 2
|Dghtr|GrSon] FROM temp, GrSon 3
|Dghtr |GrDtr| family GrDtr 3
Fom + WHERE persn = parnt)

SELECT *

FROM temp;
Figure 7, Recursion example

Convert String to Rows

To convert a (potentially large) set of values in a string (character field) into separate rows
(e.g. one row per word), use recursion (see page 409).

18 Index of Concepts

DB2 V9.7 Cookbook ©

INPUT DATA Recursive SQL ANSWER
e ——> s —p————
"Some silly text" TEXT LINE#
Some 1
silly 2
text 3

Figure 8, Convert string to rows
Be warned - in many cases, the code is not pretty.
Convert Rows to String

To convert a (potentially large) set of values that are in multiple rows into a single combined
field, use recursion (see page 410).

INPUT DATA Recursive SQL ANSWER

e —— ::::::::::::>

TEXT LINE# "Some silly text"”
Some 1

silly 2

text 3

Figure 9, Convert rows to string

Fetch First "n" Rows

To fetch the first "n™ matching rows, use the FETCH FIRST notation (see page 35).

EMP_NM SELECT * ANSWER
Femm e ————— + FROM emp_nm —=—==—=====
| IDINAME | ORDER BY id DESC ID NAME
|--1--—-- | FETCH FIRST 2 ROWS ONLY; == ——————
|10 Sanders] 50 Hanes
|20|Pernal | 20 Pernal
|50|Hanes |

Fomm e +

Figure 10, Fetch first "n" rows example

Another way to do the same thing is to assign row numbers to the output, and then fetch those
rows where the row-number is less than "n" (see page 112).

Fetch Subsequent "n" Rows

To the fetch the "n™ through "n + m" rows, first use the ROW_NUMBER function to assign
output numbers, then put the result in a nested-table-expression, and then fetch the rows with
desired numbers (see page 112).

Fetch Uncommitted Data

To retrieve data that may have been changed by another user, but which they have yet to
commit, use the WITH UR (Uncommitted Read) notation.

EMP_NM SELECT * ANSWER
e + FROM emp_nm ———=—=—=—=—=—==
| 1D | NAME | WHERE name like "S%" ID NAME
l--1--—-- | WITH UR; —m e
|10]Sanders]| 10 Sanders
|20|Pernal |

|50|Hanes |

Fomm e +

Figure 11, Fetch WITH UR example

Using this option can result in one fetching data that is subsequently rolled back, and so was
never valid. Use with extreme care.

Quick Find 19

Graeme Birchall ©

Summarize Column Contents

Use a column function (see page 89) to summarize the contents of a column.

EMP_NM SELECT AVG(id) AS avg ANSWER
e + ,MAX(name) AS maxn

| ID|NAME | ,COUNT(*) AS #rows AVG MAXN #ROWS
|--1---——- | FROM emp_nm; mmm e
|10 Sanders] 26 Sanders 3

|20]Pernal |
|50|Hanes |

Figure 12, Column Functions example

Subtotals and Grand Totals

To obtain subtotals and grand-totals, use the ROLLUP or CUBE statements (see page 211).

SELECT job ANSWER
,dept
,SUM(salary) AS sum_sal JOB DEPT SUM_SAL #EMPS
,COUNT(*) AS #emps =000 @ mmmmm e e oo
FROM staff Clerk 15 84766.70 2
WHERE dept < 30 Clerk 20 77757.35 2
AND salary < 90000 Clerk - 162524.05 4
AND job < "S- Mgr 10 243453.45 3
GROUP BY ROLLUP(job, dept) Mgr 15 80659.80 1
ORDER BY job Mgr - 324113.25 4
,dept; - - 486637.30 8

Figure 13, Subtotal and Grand-total example
Enforcing Data Integrity

When a table is created, various DB2 features can be used to ensure that the data entered in
the table is always correct:

e Uniqueness (of values) can be enforced by creating unique indexes.
e Check constraints can be defined to limit the values that a column can have.
o Default values (for a column) can be defined - to be used when no value is provided.

e |dentity columns (see page 277), can be defined to automatically generate unique nu-
meric values (e.g. invoice numbers) for all of the rows in a table. Sequences can do the
same thing over multiple tables.

o Referential integrity rules can be created to enforce key relationships between tables.

e Triggers can be defined to enforce more complex integrity rules, and also to do things
(e.g. populate an audit trail) whenever data is changed.

See the DB2 manuals for documentation or page 341 for more information about the above.
Hide Complex SQL

One can create a view (see page 22) to hide complex SQL that is run repetitively. Be warned
however that doing so can make it significantly harder to tune the SQL - because some of the
logic will be in the user code, and some in the view definition.

Summary Table

Some queries that use a GROUP BY can be made to run much faster by defining a summary
table (see page 263) that DB2 automatically maintains. Subsequently, when the user writes
the original GROUP BY against the source-data table, the optimizer substitutes with a much
simpler (and faster) query against the summary table.

20 Index of Concepts

DB2 V9.7 Cookbook ©

Introduction to SQL

This chapter contains a basic introduction to DB2 SQL. It also has numerous examples illus-
trating how to use this language to answer particular business problems. However, it is not
meant to be a definitive guide to the language. Please refer to the relevant IBM manuals for a
more detailed description.

Syntax Diagram Conventions

This book uses railroad diagrams to describe the DB2 SQL statements. The following dia-
gram shows the conventions used.

Start , Continue
/ Default \

L r ALL AT an item
w SELECT t DISTINCT J t ’

*

Resume / Repeat End \

F FROM % table name N
view name LWH ERE expressionj_‘
{ and/or

Mandatory Optional
Figure 14, Syntax Diagram Conventions

Rules

e Upper Case text is a SQL keyword.

o ltalic text is either a placeholder, or explained elsewhere.
e Backward arrows enable one to repeat parts of the text.

e A branch line going above the main line is the default.

e A branch line going below the main line is an optional item.
SQL Comments

A comment in a SQL statement starts with two dashes and goes to the end of the line:

SELECT name -- this is a comment.
FROM staff -- this is another comment.
ORDER BY id;

Figure 15, SQL Comment example

Some DB2 command processors (e.g. DB2BATCH on the PC, or SPUFI on the mainframe)
can process intelligent comments. These begin the line with a "--#SET" phrase, and then iden-
tify the value to be set. In the following example, the statement delimiter is changed using an
intelligent comment:

-—#SET DELIMITER !

SELECT name FROM staff WHERE id

-—#SET DELIMITER ;
SELECT name FROM staff WHERE id = 20;

Figure 16, Set Delimiter example

10t

Introduction to SQL 21

Graeme Birchall ©

When using the DB2 Command Processor (batch) script, the default statement terminator can
be set using the "-tdx" option, where "x" is the value have chosen.

NOTE: See the section titled Special Character Usage on page 44 for notes on how to re-
fer to the statement delimiter in the SQL text.

Statement Delimiter

DB2 SQL does not come with a designated statement delimiter (terminator), though a semi-
colon is often used. A semi-colon cannot be used when writing a compound SQL statement
(see page 79) because that character is used to terminate the various sub-components of the
statement.

SQL Components

DB2 Objects

DB2 is a relational database that supports a variety of object types. In this section we shall
overview those items which one can obtain data from using SQL.

Table

A table is an organized set of columns and rows. The number, type, and relative position, of
the various columns in the table is recorded in the DB2 catalogue. The number of rows in the
table will fluctuate as data is inserted and deleted.

The CREATE TABLE statement is used to define a table. The following example will define
the EMPLOYEE table, which is found in the DB2 sample database.

CREATE TABLE employee

(empno CHARACTER (00006) NOT NULL
,Firstnme VARCHAR (00012) NOT NULL
,midinit CHARACTER (00001) NOT NULL
,lastname VARCHAR (00015) NOT NULL
,workdept CHARACTER (00003)

,phoneno CHARACTER (00004)

,hiredate DATE

.job CHARACTER (00008)
Jedlevel SMALLINT NOT NULL
.SEX CHARACTER (00001)

,birthdate DATE

,salary DECIMAL (00009,02)
,bonus DECIMAL (00009,02)
,comm DECIMAL (00009,02)

)

DATA CAPTURE NONE;
Figure 17, DB2 sample table - EMPLOYEE
View

A view is another way to look at the data in one or more tables (or other views). For example,
a user of the following view will only see those rows (and certain columns) in the
EMPLOYEE table where the salary of a particular employee is greater than or equal to the
average salary for their particular department.

22 SQL Components

DB2 V9.7 Cookbook ©

CREATE VIEW employee_view AS
SELECT a.empno, a.firstnme, a.salary, a.workdept
FROM employee a
WHERE a.salary >=
(SELECT AVG(b.salary)
FROM employee b
WHERE a.workdept = b.workdept);

Figure 18, DB2 sample view - EMPLOYEE_VIEW

A view need not always refer to an actual table. It may instead contain a list of values:

CREATE VIEW silly (cl, c2, c3)

AS VALUES (11, "AAA", SMALLINT(22))
,(12, "BBB", SMALLINT(33))
,(13, =ccct, NULL);

Figure 19, Define a view using a VALUES clause

Selecting from the above view works the same as selecting from a table:

SELECT cl, c2, c3 ANSWER

FROM sil ly —=—===—=====

ORDER BY cl1 aSC; Ci1 cC2 C3
11 AAA 22
12 BBB 33
13 CCC -

Figure 20, SELECT from a view that has its own data

We can go one step further and define a view that begins with a single value that is then ma-
nipulated using SQL to make many other values. For example, the following view, when se-
lected from, will return 10,000 rows. Note however that these rows are not stored anywhere in
the database - they are instead created on the fly when the view is queried.
CREATE VIEW test_data AS
WITH templ (numl) AS
(VALUES (1)
UNION ALL
SELECT numl + 1
FROM templ
WHERE numl < 10000)
SELECT *
FROM templ;

Figure 21, Define a view that creates data on the fly

Alias

An alias is an alternate name for a table or a view. Unlike a view, an alias can not contain any
processing logic. No authorization is required to use an alias other than that needed to access
to the underlying table or view.

CREATE ALIAS employee_all FOR employee;
COMMIT;

CREATE ALIAS employee al2 fOR employee_all;
COMMIT;

CREATE ALIAS employee_al3 FOR employee_al2;
COMMIT;

Figure 22, Define three aliases, the latter on the earlier

Neither a view, nor an alias, can be linked in a recursive manner (e.g. V1 points to V2, which
points back to V1). Also, both views and aliases still exist after a source object (e.g. a table)
has been dropped. In such cases, a view, but not an alias, is marked invalid.

Introduction to SQL 23

Graeme Birchall ©

Nickname

A nickname is the name that one provides to DB2 for either a remote table, or a non-relational
object that one wants to query as if it were a table.

CREATE NICKNAME emp FOR unixserver _production.employee;
Figure 23, Define a nickname

Tablesample

Use of the optional TABLESAMPLE reference enables one to randomly select (sample) some
fraction of the rows in the underlying base table:

SELECT *
FROM staff TABLESAMPLE BERNOULLI(10);

Figure 24, TABLESAMPLE example
See page 396 for information on using the TABLESAMPLE feature.

DB2 Data Types

DB2 comes with the following standard data types:

e SMALLINT, INT, and BIGINT (i.e. integer numbers).

e FLOAT, REAL, and DOUBLE (i.e. floating point numbers).

e DECIMAL and NUMERIC (i.e. decimal numbers).

e DECFLOAT (i.e. decimal floating-point numbers).

e CHAR, VARCHAR, and LONG VARCHAR (i.e. character values).

e GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC (i.e. graphical values).
e BLOB, CLOB, and DBCLOB (i.e. binary and character long object values).
o DATE, TIME, and TIMESTAMP (i.e. date/time values — see page: 25).

e DATALINK (i.e. link to external object).

o XML (i.e. contains well formed XML data).

Below is a simple table definition that uses some of the above data types:

CREATE TABLE sales_record

(sales# INTEGER NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1
, INCREMENT BY 1
,NO MAXVALUE

,NO CYCLE)
,sale_ts TIMESTAMP NOT NULL
,hum_items SMALLINT NOT NULL
,payment_type CHAR(2) NOT NULL
,sale_value DECIMAL(12,2) NOT NULL
,sales_tax DECIMAL(12,2)
,employee# INTEGER NOT NULL

,CONSTRAINT salesl CHECK(payment_type IN ("CS","CR"))
,CONSTRAINT sales2 CHECK(sale_value > 0)
,CONSTRAINT sales3 CHECK(num_items > 0)
,CONSTRAINT sales4 FOREIGN KEY(employee#)

REFERENCES staff(id) ON DELETE RESTRICT
,PRIMARY KEY(sales#));

Figure 25, Sample table definition

24 SQL Components

DB2 V9.7 Cookbook ©

In the above table, we have listed the relevant columns, and added various checks to ensure
that the data is always correct. In particular, we have included the following:

e The sales# is automatically generated (see page 277 for details). It is also the primary key
of the table, and so must always be unique.

e The payment-type must be one of two possible values.
e Both the sales-value and the num-items must be greater than zero.

e The employee# must already exist in the staff table. Furthermore, once a row has been
inserted into this table, any attempt to delete the related row from the staff table will fail.

Default Lengths

The following table has two columns:

CREATE TABLE default_values
(c1 CHAR NOT NULL
,dl DECIMAL NOT NULL);

Figure 26, Table with default column lengths

The length has not been provided for either of the above columns. In this case, DB2 defaults
to CHAR(2) for the first column and DECIMAL(5,0) for the second column.

Data Type Usage

In general, use the standard DB2 data types as follows:

e Always store monetary data in a decimal field.

e Store non-fractional numbers in one of the integer field types.
o Use floating-point when absolute precision is not necessary.

A DB2 data type is not just a place to hold data. It also defines what rules are applied when
the data in manipulated. For example, storing monetary data in a DB2 floating-point field is a
no-no, in part because the data-type is not precise, but also because a floating-point number is
not manipulated (e.g. during division) according to internationally accepted accounting rules.
DECFLOAT Arithmetic

DECFLOAT numbers have quite different processing characteristics from the other number
types. For a start, they support more values:

e Zero.

o Negative and positive numbers (e.g. -1234.56).
e Negative and positive infinity.

o Negative and positive NaN (i.e. Not a Number).

e Negative and positive sNaN (i.e. signaling Not a Number).
NaN Usage

The value NaN represents the result of an arithmetic operation that does not return a number
(e.g. the square root of a negative number), but is also not infinity. For example, the expres-
sion 0/0 returns NaN, while 1/0 returns infinity.

Introduction to SQL 25

Graeme Birchall ©

The value NaN propagates through any arithmetic expression. Thus the final result is always
either positive or negative NaN, as the following query illustrates:

SELECT DECFLOAT(+1.23) + NaN AS NaN"*
,DECFLOAT(-1.23) + NaN AS " NaN"*
,DECFLOAT(-1.23) + -NaN AS -NaN"*
,DECFLOAT(+infinity) + NaN AS " NaN"*
,DECFLOAT (+sNaN) + NaN AS NaN"*
,DECFLOAT (-sNaN) + NaN AS " -NaN"
,DECFLOAT (+NaN) + NaN AS NaN"*
,DECFLOAT (-NaN) + NaN AS " -NaN"

FROM sysibm.sysdummyl;

Figure 27, NaN arithmetic usage

NOTE: Any reference to a signaling NaN value in a statement (as above) will result in a
warning message being generated.

Infinity Usage
The value infinity works similar to NaN. Its reference in an arithmetic expression almost al-

ways returns either positive or negative infinity (assuming NaN is not also present). The one
exception is division by infinity, which returns a really small, but still finite, number:

SELECT DECFLOAT(1) / +infinity AS " OE-6176"
,DECFLOAT(1) * +infinity AS " Infinity"”
,DECFLOAT(1) + +infinity AS " Infinity"”
,DECFLOAT(1) - +infinity AS "-Infinity"”
,DECFLOAT(1) / -infinity AS " -OE-6176"
,DECFLOAT(1) * -infinity AS "-Infinity"”
,DECFLOAT(1) + -infinity AS "-Infinity"”
,DECFLOAT(1) - -infinity AS " Infinity”

FROM sysibm.sysdummy1l;

Figure 28, Infinity arithmetic usage

The next query shows some situations where either infinity or NaN is returned:

SELECT DECFLOAT(+1.23) / 0 AS " Infinity"
,DECFLOAT(-1.23) / 0 AS "-Infinity"”
,DECFLOAT(+1.23) + infinity AS " Infinity"”
,DECFLOAT(0) / 0 AS " NaN"*
,DECFLOAT(infinity) + ~—infinity AS " NaN**
,LOG(DECFLOAT(0)) AS "-Infinity"
,LOG(DECFLOAT(-123)) AS ™ NaN"
.SQRT(DECFLOAT(-123)) AS ™ NaN'

FROM sysibm.sysdummyl;

Figure 29, DECFLOAT arithmetic results
DECFLOAT Value Order

The DECFLOAT values have the following order, from low to high:

-NaN -sNan -infinity -1.2 -1.20 0 1.20 1.2 infinity sNaN NaN
Figure 30, DECFLOAT value order

Please note that the numbers 1.2 and 1.200 are "equal®, but they will be stored as different
values, and will have a different value order. The TOTALORDER function can be used to
illustrate this. It returns one of three values:

e Zero if the two values have the same order.
e +1 if the first value has a higher order (even if it is equal).

o -1if the first value has a lower order (even if it is equal).

26 SQL Components

DB2 V9.7 Cookbook ©

ANSWER

WITH templ (d1, d2) AS ======
(VALUES (DECFLOAT(+1.0), DECFLOAT(+1.00)) 1

, (DECFLOAT(-1.0), DECFLOAT(-1.00)) -1

, (DECFLOAT(+0.0), DECFLOAT(+0.00)) 1

, (DECFLOAT(-0.0), DECFLOAT(-0.00)) 1
,(DECFLOAT(+0), DECFLOAT(-0)) 0

)
SELECT TOTALORDER(d1,d2)
FROM templ;

Figure 31, Equal values that may have different orders

The NORMALIZE_DECFLOAT scalar function can be used to strip trailing zeros from a
DECFLOAT value:

WITH templ (d1) AS
(VALUES (DECFLOAT(+0 ,16))
,(DECFLOAT(+0.0 .18))
. (DECFLOAT(+0.00 ,16))
- (DECFLOAT(+0.000 .16))

)
SELECT di
,HEX(d1) AS hex_dl1
,NORMAL1ZE_DECFLOAT(d1) AS d2
,HEX(NORMAL1ZE_DECFLOAT(d1)) AS hex_d2
FROM templ;

ANSWER

D1 HEX D1 D2 HEX_D2

0 0000000000003822 0 0000000000003822
0.0 0000000000003422 0O 0000000000003822
0.00 0000000000003022 0O 0000000000003822
0.000 0000000000002C22 0O 0000000000003822

Figure 32, Remove trailing zeros
DECFLOAT Scalar Functions

The following scalar functions support the DECFLOAT data type:

e COMPARE_DECFLOAT: Compares order of two DECFLOAT values.

o DECFLOAT: Converts input value to DECFLOAT.

e NORMALIZE_DECFLOAT: Removes trailing blanks from DECFLOAT value.
e QUANTIZE: Converts number to DECFLOAT, using mask to define precision.
e TOTALORDER: Compares order of two DECFLOAT values.

Date/Time Arithmetic

Manipulating date/time values can sometimes give unexpected results. What follows is a brief
introduction to the subject. The basic rules are:

e Multiplication and division is not allowed.
e Subtraction is allowed using date/time values, date/time durations, or labeled durations.
e Addition is allowed using date/time durations, or labeled durations.

The valid labeled durations are listed below:

Introduction to SQL 27

Graeme Birchall ©

LABELED DURATIONS ITEM WORKS WITH DATE/TIME
L > FIXED L >
SINGULAR PLURAL SIZE DATE TIME TIMESTAMP
YEAR YEARS N Y - Y
MONTH MONTHS N Y - Y
DAY DAYS Y Y - Y
HOUR HOURS Y - Y Y
MINUTE MINUTES Y - Y Y
SECOND SECONDS Y - Y Y
MICROSECOND MICROSECONDS Y - Y Y

Figure 33, Labeled Durations and Date/Time Types

Usage Notes
e It doesn't matter if one uses singular or plural. One can add "4 day" to a date.

e Some months and years are longer than others. So when one adds "2 months" to a date
the result is determined, in part, by the date that you began with. More on this below.

e One cannot add "minutes" to a date, or "days" to a time, etc.

e One cannot combine labeled durations in parenthesis: "date - (1 day + 2 months)" will
fail. One should instead say: "date - 1 day - 2 months".

e Adding too many hours, minutes or seconds to a time will cause it to wrap around. The
overflow will be lost.

e Adding 24 hours to the time '00.00.00" will get '24.00.00'. Adding 24 hours to any other
time will return the original value.

o When a decimal value is used (e.g. 4.5 days) the fractional part is discarded. So to add (to
a timestamp value) 4.5 days, add 4 days and 12 hours.

Now for some examples:

ANSWER
SELECT sales_date <= 1995-12-31
,sales_date - 10 DAY AS di1 <= 1995-12-21
,sales_date + -1 MONTH AS d2 <= 1995-11-30
,sales_date + 99 YEARS AS d3 <= 2094-12-31
,sales_date + 55 DAYS
- 22 MONTHS AS d4 <= 1994-04-24
,sales_date + (4+6) DAYS AS d5 <= 1996-01-10
FROM sales
WHERE sales_person "GOUNOT*™

AND sales_date "1995-12-31"
Figure 34, Example, Labeled Duration usage

Adding or subtracting months or years can give somewhat odd results when the month of the
beginning date is longer than the month of the ending date. For example, adding 1 month to
'2004-01-31" gives '2004-02-29', which is not the same as adding 31 days, and is not the same
result that one will get in 2005. Likewise, adding 1 month, and then a second 1 month to
'2004-01-31" gives '2004-03-29', which is not the same as adding 2 months. Below are some
examples of this issue:

28 SQL Components

DB2 V9.7 Cookbook ©

SELECT sales_date

ANSWER

<= 1995-12-31

,sales_date + 2 MONTH AS di <= 1996-02-29
,sales_date + 3 MONTHS AS d2 <= 1996-03-31
,sales_date + 2 MONTH
+ 1 MONTH AS d3 <= 1996-03-29

,sales_date + (2+1) MONTHS AS d4 <= 1996-03-31

FROM sales

WHERE sales_person = "GOUNOT*

AND sales_date = "1995-12-31";

Figure 35, Adding Months - Varying Results

Date/Time Duration Usage

When one date/time value is subtracted from another date/time value the result is a date, time,
or timestamp duration. This decimal value expresses the difference thus:

DURATION-TYPE FORMAT NUMBER-REPRESENTS USE-WITH-D-TYPE

DATE DECIMAL(8,0) yyyymmdd TIMESTAMP, DATE
TIME DECIMAL(6,0) hhmmss TIMESTAMP, TIME
TIMESTAMP DECIMAL(20,6) yyyymmddhhmmss.zzzzzz TIMESTAMP

Figure 36, Date/Time Durations

Below is an example of date duration generation:

SELECT empno ANSWER
,hiredate
,birthdate EMPNO HIREDATE BIRTHDATE
,hiredate - birthdate @ ------ - - - --o»o- . 0@ i i i o i i i il
FROM employee 000150 1972-02-12 1947-05-17 240826.
WHERE workdept = "D11* 000200 1966-03-03 1941-05-29 240905.
AND lastname < "L* 000210 1979-04-11 1953-02-23 260116.

ORDER BY empno;
Figure 37, Date Duration Generation

A date/time duration can be added to or subtracted from a date/time value, but it does not
make for very pretty code:

ANSWER
SELECT hiredate <= 1972-02-12
,hiredate - 12345678. <= 0733-03-26
,hiredate - 1234 years
- 56 months
78 days <= 0733-03-26
FROM employee

WHERE empno = "000150°;
Figure 38, Subtracting a Date Duration

Date/Time Subtraction

One date/time can be subtracted (only) from another valid date/time value. The result is a
date/time duration value. Figure 37 above has an example.

DB2 Special Registers

A special register is a DB2 variable that contains information about the state of the system.
The complete list follows:

Introduction to SQL 29

SPECIAL REGISTER

Graeme Birchall ©

UPDATE DATA-TYPE

CURRENT CLIENT_ACCTNG

CURRENT CLIENT_APPLNAME
CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME
CURRENT DATE

CURRENT DBPARTITIONNUM

CURRENT DECFLOAT ROUNDING MODE
CURRENT DEFAULT TRANSFORM GROUP
CURRENT DEGREE

CURRENT EXPLAIN MODE

CURRENT EXPLAIN SNAPSHOT
CURRENT FEDERATED ASYNCHRONY
CURRENT IMPLICIT XMLPARSE OPTION
CURRENT [ISOLATION

CURRENT LOCK TIMEOUT

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT MDC ROLLOUT MODE
CURRENT OPTIMIZATION PROFILE
CURRENT PACKAGE PATH

CURRENT PATH

CURRENT QUERY OPTIMIZATION
CURRENT REFRESH AGE

CURRENT SCHEMA

CURRENT SERVER

CURRENT TIME

CURRENT TIMESTAMP

CURRENT TIMEZONE

CURRENT USER

SESSION_USER

SYSTEM_USER

USER

Figure 39, DB2 Special Registers

Usage Notes

no
no
no
no
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no
yes
no
yes

VARCHAR (255)
VARCHAR(255)
VARCHAR (255)
VARCHAR(255)
DATE

INTEGER
VARCHAR(128)
VARCHAR(18)
CHAR(5)
VARCHAR(254)
CHAR(8)
INTEGER
VARCHAR (19)
CHAR(2)
INTEGER
VARCHAR(254)
VARCHAR(9)
VARCHAR (261)
VARCHAR (4096)
VARCHAR (2048)
INTEGER
DECIMAL(20,6)
VARCHAR(128)
VARCHAR(128)
TIME
TIMESTAMP
DECIMAL(6,0)
VARCHAR(128)
VARCHAR(128)
VARCHAR(128)
VARCHAR(128)

e Some special registers can be referenced using an underscore instead of a blank in the

name - as in: CURRENT_DATE.

e Some special registers can be updated using the SET command (see list above).

o All special registers can be queried using the SET command. They can also be referenced

in ordinary SQL statements.

e Those special registers that automatically change over time (e.g. current timestamp) are
always the same for the duration of a given SQL statement. So if one inserts a thousand
rows in a single insert, all will get the same current timestamp.

e One can reference the current timestamp in an insert or update, to record in the target
table when the row was changed. To see the value assigned, query the DML statement.

See page 70 for details.

Refer to the DB2 SQL Reference Volume 1 for a detailed description of each register.

Sample SQL

SET CURRENT ISOLATION
SET CURRENT SCHEMA

RR;
"ABC";

SELECT CURRENT TIME AS cur_TIME
,CURRENT ISOLATION AS cur_ISO
,CURRENT SCHEMA AS cur_ID

FROM sysibm.sysdummyl;

Figure 40, Using Special Registers

30

ANSWER

CUR_TIME CUR_I1SO CUR_ID

12:15:16 RR ABC

SQL Components

DB2 V9.7 Cookbook ©

Distinct Types

A distinct data type is a field type that is derived from one of the base DB2 field types. It is
used when one wants to prevent users from combining two separate columns that should
never be manipulated together (e.g. adding US dollars to Japanese Yen).

One creates a distinct (data) type using the following syntax:

F CREATE DISTINCT TYPE — type-name —source-type — WITH COMPARISONS »
Figure 41, Create Distinct Type Syntax

NOTE: The following source types do not support distinct types: LOB, LONG VARCHAR,
LONG VARGRAPHIC, and DATALINK.

The creation of a distinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. Support for
the basic comparison operators (=, <>, <, <=, >, and >=) is also provided.

Below is a typical create and drop statement:

CREATE DISTINCT TYPE JAP_YEN AS DECIMAL(15,2) WITH COMPARISONS;
DROP DISTINCT TYPE JAP_YEN;

Figure 42, Create and drop distinct type
NOTE: A distinct type cannot be dropped if it is currently being used in a table.
Usage Example
Imagine that we had the following customer table:
CREATE TABLE customer

(id INTEGER NOT NULL

,Fname VARCHAR(00010) NOT NULL WITH DEFAULT *"*
, Iname VARCHAR(00015) NOT NULL WITH DEFAULT **
,date_of _birth DATE

,citizenship CHAR(03)

,usa_sales DECIMAL(9,2)

,eur_sales DECIMAL(9,2)

,sales_office# SMALLINT

, last_updated TIMESTAMP

,PRIMARY KEY(id));
Figure 43, Sample table, without distinct types

One problem with the above table is that the user can add the American and European sales
values, which if they are expressed in dollars and euros respectively, is silly:

SELECT id
,usa_sales + eur_sales AS tot_sales
FROM customer;

Figure 44, Silly query, but works

To prevent the above, we can create two distinct types:

CREATE DISTINCT TYPE USA_DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;
CREATE DISTINCT TYPE EUR_DOLLARS AS DECIMAL(9,2) WITH COMPARISONS;

Figure 45, Create Distinct Type examples

Now we can define the customer table thus:

Introduction to SQL 31

CREATE TABLE customer

(id INTEGER

,Fname VARCHAR(00010)
, Iname VARCHAR(00015)
,date_of _birth DATE
,citizenship CHAR(03)

,usa_sales
,eur_sales
,sales_office#

, last_updated
,PRIMARY KEY(id));

Figure 46, Sample table, with distinct types

USA_DOLLARS
EUR_DOLLARS
SMALLINT
TIMESTAMP

Now, when we attempt to run the following, it will fail:

Graeme Birchall ©

NOT NULL
NOT NULL WITH DEFAULT *"*
NOT NULL WITH DEFAULT *"*

SELECT id
,usa_sales + eur_sales AS tot_sales
FROM customer;

Figure 47, Silly query, now fails

The creation of a distinct type, under the covers, results in the creation two implied functions
that can be used to convert data to and from the source type and the distinct type. In the next
example, the two monetary values are converted to their common decimal source type, and

then added together:

SELECT id
,DECIMAL(usa_sales) +
DECIMAL(eur_sales) AS tot_sales
FROM customer;

Figure 48, Silly query, works again

Fullselect, Subselect, & Common Table Expression

It is not the purpose of this book to give you detailed description of SQL terminology, but
there are a few words that you should know. For example, the following diagram illustrates

the various components of a query:

WITH
get matEnTng roWws "AS
(
SELECT 1d
,hame
,salary .. SUBSELECT
FROM staff
WHERE id < 50
UNTON&A et FULLSELECT
SELECT id
,hame
,salary e SUBSELECT
FROM staff
WHERE id = 100
)
SELECT * :
FROM get_matching_rows: e COMMON TABLE
ORDER BY id i EXPRESSI0ON
FETCH FIRST 10 ROWS ONLY SUBSELECT

FORTFETCH ONLY
WITH UR;

Figure 49, Query components

Query Components

e SUBSELECT: A query that selects zero or more rows from one or more tables.

32

SQL Components

DB2 V9.7 Cookbook ©

e FULLSELECT: One or more subselects or VALUES clauses, connected using a UNION,
INTERSECT, or EXCEPT, all enclosed in parenthesis.

¢ COMMON TABLE EXPRESSION: A named fullselect that can be referenced one more
times in another subselect. See page 300 for a more complete definition.
SELECT Statement

A SELECT statement is used to query the database. It has the following components, not all
of which need be used in any particular query:

e SELECT clause. One of these is required, and it must return at least one item, be it a col-
umn, a literal, the result of a function, or something else. One must also access at least
one table, be that a true table, a temporary table, a view, or an alias.

e WITH clause. This clause is optional. Use this phrase to include independent SELECT
statements that are subsequently accessed in a final SELECT (see page 300).

e ORDER BY clause. Optionally, order the final output (see page 201).

e FETCH FIRST clause. Optionally, stop the query after "n" rows (see page 35). If an op-
timize-for value is also provided, both values are used independently by the optimizer.

o READ-ONLY clause. Optionally, state that the query is read-only. Some queries are in-
herently read-only, in which case this option has no effect.

e FOR UPDATE clause. Optionally, state that the query will be used to update certain col-
umns that are returned during fetch processing.

e OPTIMIZE FOR n ROWS clause. Optionally, tell the optimizer to tune the query assum-
ing that not all of the matching rows will be retrieved. If a first-fetch value is also pro-
vided, both values are used independently by the optimizer.

Refer to the IBM manuals for a complete description of all of the above. Some of the more

interesting options are described below.
SELECT statement 4}

¢l

WITH L common table expression J

} L ORDER BY clause J L FIRST FETCH clause J k READ-ONLY clause ﬂ
FOR UPDATE clause

X -

’ LOPTIMIZE FOR clausej
Figure 50, SELECT Statement Syntax (general)
SELECT Clause

Every query must have at least one SELECT statement, and it must return at least one item,
and access at least one object.

Introduction to SQL 33

Graeme Birchall ©

w SELECT *Ean item }
*

F FROM ;table name | }
view name :‘ correlation name J
alias name AS
(full select)

} L WHERE — expressionj—‘ N

and /or

Figure 51, SELECT Statement Syntax
SELECT Items

e Column: A column in one of the table being selected from.

o Literal: A literal value (e.g. "ABC"). Use the AS expression to name the literal.
e Special Register: A special register (e.9. CURRENT TIME).

e Expression: An expression result (e.g. MAX(COL1*10)).

o Full Select: An embedded SELECT statement that returns a single row.
FROM Objects

e Table: Either a permanent or temporary DB2 table.
e View: A standard DB2 view.
e Alias: A DB2 alias that points to a table, view, or another alias.

e Full Select: An embedded SELECT statement that returns a set of rows.

Sample SQL
SELECT deptno ANSWER
,admrdept
,"ABC" AS abc DEPTNO ADMRDEPT ABC
FROM department e
WHERE deptname LIKE "%ING%" BO1 AOO ABC
ORDER BY 1; D11 D01 ABC

Figure 52, Sample SELECT statement

To select all of the columns in a table (or tables) one can use the "*" notation:

SELECT * ANSWER (part of)
FROM department

WHERE deptname LIKE "%ING%" DEPTNO etc...
ORDER BY 21; e e >>>

BO1 PLANNING
D11 MANUFACTU

Figure 53, Use "*" to select all columns in table

To select both individual columns, and all of the columns (using the "*" notation), in a single
SELECT statement, one can still use the "*", but it must fully-qualified using either the object
name, or a correlation name:

34 SQL Components

DB2 V9.7 Cookbook ©

SELECT deptno ANSWER (part of)
,department.*

FROM department DEPTNO DEPTNO etc...

WHERE deptname LIKE "%ING%* = ———mmm e e >>>

ORDER BY 1; BO1 BO1 PLANNING

D11 D11 MANUFACTU
Figure 54, Select an individual column, and all columns

Use the following notation to select all the fields in a table twice:

SELECT department.* ANSWER (part of)
,department._*

FROM department DEPTNO etc...

WHERE deptname LIKE "%NING%* e o >>>

ORDER BY 1; BO1 PLANNING

Figure 55, Select all columns twice

FETCH FIRST Clause

The fetch first clause limits the cursor to retrieving "n" rows. If the clause is specified and no
number is provided, the query will stop after the first fetch.

1
>447FETCHIHRST [ROW ONLY
L integer — L ROWSJ }

Figure 56, Fetch First clause Syntax

If this clause is used, and there is no ORDER BY, then the query will simply return a random
set of matching rows, where the randomness is a function of the access path used and/or the
physical location of the rows in the table:

SELECT years ANSWER
,hame
,id YEARS NAME 1D
FROM staff e e
FETCH FIRST 3 ROWS ONLY; 7 Sanders 10
8 Pernal 20

5 Marenghi 30
Figure 57, FETCH FIRST without ORDER BY, gets random rows

WARNING: Using the FETCH FIRST clause to get the first "n" rows can sometimes return
an answer that is not what the user really intended. See below for details.

If an ORDER BY is provided, then the FETCH FIRST clause can be used to stop the query
after a certain number of what are, perhaps, the most desirable rows have been returned.
However, the phrase should only be used in this manner when the related ORDER BY
uniquely identifies each row returned.

To illustrate what can go wrong, imagine that we wanted to query the STAFF table in order to
get the names of those three employees that have worked for the firm the longest - in order to
give them a little reward (or possibly to fire them). The following query could be run:

SELECT years ANSWER

,hame

,id YEARS NAME ID
FROM staf¢# e e
WHERE years 1S NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260
FETCH FIRST 3 ROWS ONLY; 10 Hanes 50

Figure 58, FETCH FIRST with ORDER BY, gets wrong answer

Introduction to SQL 35

Graeme Birchall ©

The above query answers the question correctly, but the question was wrong, and so the an-
swer is wrong. The problem is that there are two employees that have worked for the firm for
ten years, but only one of them shows, and the one that does show was picked at random by
the query processor. This is almost certainly not what the business user intended.

The next query is similar to the previous, but now the ORDER ID uniquely identifies each
row returned (presumably as per the end-user's instructions):

SELECT years ANSWER

,hame

,id YEARS NAME 1D
FROM staff e e
WHERE years IS NOT NULL 13 Graham 310
ORDER BY years DESC 12 Jones 260

,id DESC 10 Quill 290

FETCH FIRST 3 ROWS ONLY;
Figure 59, FETCH FIRST with ORDER BY, gets right answer

WARNING: Getting the first "n" rows from a query is actually quite a complicated prob-
lem. Refer to page 114 for a more complete discussion.

Correlation Name

The correlation name is defined in the FROM clause and relates to the preceding object name.
In some cases, it is used to provide a short form of the related object name. In other situations,
it is required in order to uniquely identify logical tables when a single physical table is re-
ferred to twice in the same query. Some sample SQL follows:

SELECT a.empno ANSWER
,a.lastname
FROM employee a EMPNO LASTNAME
, (SELECT MAX(empno)AS empno —————— oo
FROM employee) AS b 000340 GOUNOT

WHERE a.empno = b.empno;
Figure 60, Correlation Name usage example

SELECT a.empno ANSWER
,a.lastname
,b_deptno AS dept EMPNO LASTNAME DEPT
FROM employee a e e
,department b 000090 HENDERSON E11
WHERE a.workdept = b.deptno 000280 SCHNEIDER E11
AND a.job <> "SALESREP* 000290 PARKER E11
AND b.deptname = "OPERATIONS" 000300 SMITH E11
AND a.sex IN ("M","F") 000310 SETRIGHT E11
AND b.location 1S NULL
ORDER BY 1;

Figure 61, Correlation name usage example

Renaming Fields

The AS phrase can be used in a SELECT list to give a field a different name. If the new name
is an invalid field name (e.g. contains embedded blanks), then place the name in quotes:

SELECT empno AS e_num ANSWER

,midinit AS "m int"

,phoneno AS "__." E_NUM M INT
FROM employee —m———— -——-
WHERE empno < "000030* 000010 1 3978
ORDER BY 1; 000020 L 3476

Figure 62, Renaming fields using AS

36 SQL Components

DB2 V9.7 Cookbook ©

The new field name must not be qualified (e.g. A.C1), but need not be unique. Subsequent
usage of the new name is limited as follows:

e It can be used in an order by clause.
e It cannot be used in other part of the select (where-clause, group-by, or having).
e It cannot be used in an update clause.

o Itis known outside of the fullselect of nested table expressions, common table expres-
sions, and in a view definition.

CREATE view emp2 AS

SELECT empno AS e_num
,midinit AS "m int"
,phoneno AS "_._."

FROM employee; ANSWER

SELECT * E_NUM M INT

FROM emp2 mmmmee e -——
WHERE *"...'" = "3978"; 000010 1 3978

Figure 63, View field names defined using AS

Working with Nulls

In SQL something can be true, false, or null. This three-way logic has to always be consid-
ered when accessing data. To illustrate, if we first select all the rows in the STAFF table
where the SALARY is < $10,000, then all the rows where the SALARY is >= $10,000, we
have not necessarily found all the rows in the table because we have yet to select those rows
where the SALARY is null.

The presence of null values in a table can also impact the various column functions. For ex-
ample, the AVG function ignores null values when calculating the average of a set of rows.

This means that a user-calculated average may give a different result from a DB2 calculated
equivalent:

SELECT AVG(comm) AS al ANSWER
,SUM(comm) / COUNT(*) AS a2
FROM staff Al A2

WHERE id < 100 Lo To.
796.025 530.68

Figure 64, AVG of data containing null values

Null values can also pop in columns that are defined as NOT NULL. This happens when a
field is processed using a column function and there are no rows that match the search crite-
ria:

SELECT COUNT(*) AS num ANSWER
,MAX(lastname) AS max ========
FROM employee NUM MAX

WHERE firstnme = "FRED"; _—
0o -
Figure 65, Getting a NULL value from a field defined NOT NULL

Why Nulls Exist

Null values can represent two kinds of data. In first case, the value is unknown (e.g. we do not
know the name of the person's spouse). Alternatively, the value is not relevant to the situation
(e.g. the person does not have a spouse).

Many people prefer not to have to bother with nulls, so they use instead a special value when
necessary (e.g. an unknown employee name is blank). This trick works OK with character

Introduction to SQL 37

Graeme Birchall ©

data, but it can lead to problems when used on numeric values (e.g. an unknown salary is set
to zero).

Locating Null Values

One can not use an equal predicate to locate those values that are null because a null value
does not actually equal anything, not even null, it is simply null. The IS NULL or IS NOT
NULL phrases are used instead. The following example gets the average commission of only
those rows that are not null. Note that the second result differs from the first due to rounding
loss.

SELECT AVG(comm) AS al ANSWER
,SUM(comm) / COUNT(*) AS a2
FROM staff Al A2
WHERE id<100 e e
AND comm IS NOT NULL; 796.025 796.02

Figure 66, AVG of those rows that are not null

Quotes and Double-quotes

To write a string, put it in quotes. If the string contains quotes, each quote is represented by a
pair of quotes:

SELECT "JOHN" AS J1

, "JOHN""S* AS J2 ANSWER

,"""JOHN""S""*" AS J3

, """JOHN" =S~ AS J4 Ji1 J2 J3 J4
FROM staff e e e
WHERE id = 10; JOHN JOHN®"S "JOHN®"S®" ""JOHN®S™

Figure 67, Quote usage

Double quotes can be used to give a name to a output field that would otherwise not be valid.
To put a double quote in the name, use a pair of quotes:

SELECT id AS "USER ID" ANSWER
,dept AS "'D#"
,years AS "#Y" USER ID D# #Y "TXT" "quote™ fld
,"ABC" AS "T"TXT™" e el m el
,'ll' AS llllllquotellll fldll 10 20 7 ABC L

FROM staff s 20 20 8 ABC "

WHERE id < 40 30 38 5 ABC "

ORDER BY ""USER ID";
Figure 68, Double-quote usage

SQL Predicates

A predicate is used in either the WHERE or HAVING clauses of a SQL statement. It speci-
fies a condition that true, false, or unknown about a row or a group.

Predicate Precedence

As arule, a query will return the same result regardless of the sequence in which the various
predicates are specified. However, note the following:

e Predicates separated by an OR may need parenthesis - see page 45.

e Checks specified in a CASE statement are done in the order written - see page 52.

38 SQL Predicates

DB2 V9.7 Cookbook ©

Basic Predicate

A basic predicate compares two values. If either value is null, the result is unknown. Other-
wise the result is either true or false.

expresion = expression ’

} LNOTJ <>

Figure 69, Basic Predicate syntax, 1 of 2

SELECT id, job, dept ANSWER

FROM staff

WHERE job = “Mgr® ID JOB DEPT
AND NOT job <> "Mgr- _—— ———— =
AND NOT job = “Sales” 10 Mgr 20
AND id <> 100 30 Mgr 38
AND id >= 0 50 Mgr 15
AND id <= 150 140 Mgr 51
AND NOT dept = 50

ORDER BY id;
Figure 70, Basic Predicate examples

A variation of this predicate type can be used to compare sets of columns/values. Everything

on both sides must equal in order for the expressions to match:

} (v expression j;) = v expression j;) 4’
L NOT J
Figure 71, Basic Predicate syntax, 2 of 2
SELECT id, dept, job ANSWER
FROM staff ——=—=—=—===—==—=
WHERE (id,dept) = (30,28) ID DEPT JOB
OR (id,years) = (%0, 7 m= e —
OR (dept,job) = (38, "Mgr-) 30 38 Mgr

ORDER BY 1;
Figure 72, Basic Predicate example, multi-value check

Below is the same query written the old fashioned way:

SELECT id, dept, job ANSWER
FROM staff —===—=—=—=—===—=
WHERE (id =30 AND dept = 28) ID DEPT JOB
OR (id = 90 AND vyears = r0 N e
OR (dept = 38 AND job = "Mgr-) 30 38 Mgr
ORDER BY 1;

Figure 73, Same query as prior, using individual predicates

Quantified Predicate

A quantified predicate compares one or more values with a collection of values.

Introduction to SQL

39

Graeme Birchall ©

expression = SOME — (fullselect)g}
} L NOT J <> ANY }
< ALL

<=
>=

L (hd expression j;) N

SOME
"L SoME T
Figure 74, Quantified Predicate syntax
SELECT id, job ANSWER
FROM staff ========
WHERE job = ANY (SELECT job FROM staff) ID JOB
AND id <= ALL (SELECT id FROM staff) ——— ———
ORDER BY id; 10 Mgr
Figure 75, Quantified Predicate example, two single-value sub-queries
SELECT id, dept, job ANSWER
FROM staff
WHERE (id,dept) = ANY ID DEPT JOB
(SELECT dept, id mmm e oo
FROM staff) 20 20 Sales
ORDER BY 1;

Figure 76, Quantified Predicate example, multi-value sub-query

See the sub-query chapter on page 245 for more data on this predicate type.

BETWEEN Predicate

The BETWEEN predicate compares a value within a range of values.

>ﬁ exprsn. BETWEEN — low val. — AND—— high val. %
NOT E NOT j

Figure 77, BETWEEN Predicate syntax

The between check always assumes that the first value in the expression is the low value and
the second value is the high value. For example, BETWEEN 10 AND 12 may find data, but
BETWEEN 12 AND 10 never will.

SELECT id, job ANSWER
FROM staff =========
WHERE id BETWEEN 10 AND 30 ID JOB
AND id NOT BETWEEN 30 AND 20 ——— ——
AND NOT id NOT BETWEEN 10 AND 30 10 Mgr
ORDER BY 1id; 20 Sales
30 Mgr

Figure 78, BETWEEN Predicate examples

EXISTS Predicate

An EXISTS predicate tests for the existence of matching rows.

EXISTS — (fullselect)
> or g

Figure 79, EXISTS Predicate syntax

40 SQL Predicates

DB2 V9.7 Cookbook ©

SELECT id, job ANSWER
FROM staff a —————=——=—=
WHERE EXISTS ID JOB
(SELECT *» e e
FROM staff b 10 Mgr
WHERE b.id = a.id 20 Sales
AND b.id < 50) 30 Mgr
ORDER BY 1id; 40 Sales

Figure 80, EXISTS Predicate example
NOTE: See the sub-query chapter on page 245 for more data on this predicate type.

IN Predicate
The IN predicate compares one or more values with a list of values.
exprsn. L J IN (fullselect) }
NOT NOT (L_;axpression J—) —
expression

(v expression j;)

(fullselect)

IN
L NOT J
Figure 81, IN Predicate syntax

The list of values being compared in the IN statement can either be a set of in-line expres-
sions (e.g. ID in (10,20,30)), or a set rows returned from a sub-query. Either way, DB2 simply
goes through the list until it finds a match.

SELECT id, job ANSWER
FROM staff a ——=——======
WHERE id IN (10,20,30) ID JOB
AND id IN (SELECT 44 mmm e
FROM staff) 10 Mgr
AND id NOT IN 99 20 Sales
ORDER BY 1id; 30 Mgr

Figure 82, IN Predicate examples, single values

The IN statement can also be used to compare multiple fields against a set of rows returned
from a sub-query. A match exists when all fields equal. This type of statement is especially
useful when doing a search against a table with a multi-columns key.

WARNING: Be careful when using the NOT IN expression against a sub-query result. If
any one row in the sub-query returns null, the result will be no match. See page 245 for

more details.

SELECT empno, lastname ANSWER

FROM employee

WHERE (empno, "AD3113") IN EMPNO LASTNAME
(SELECT empno, projno —mmmmm o
FROM emp_act 000260 JOHNSON
WHERE emptime > 0.5) 000270 PEREZ

ORDER BY 1;

Figure 83, IN Predicate example, multi-value

NOTE: See the sub-query chapter on page 245 for more data on this statement type.

LIKE Predicate
The LIKE predicate does partial checks on character strings.

Introduction to SQL 41

Graeme Birchall ©

>ﬁ exprsn. LIKE — pattern
NOT E NOT j L ESCAPE — patternJ

Figure 84, LIKE Predicate syntax

The percent and underscore characters have special meanings. The first means skip a string of
any length (including zero) and the second means skip one byte. For example:

e LIKE'AB_D%' Finds '"ABCD' and 'ABCDE', but not ‘ABD’, nor ‘ABCCD'.

e LIKE' X Finds 'XX"and 'DX', but not "X', nor 'ABX', nor 'AXB'.

o LIKE '%X Finds 'AX', X', and 'AAX’, but not 'XA".

SELECT id, name ANSWER

FROM staff

WHERE name LIKE "S%n*® 1D NAME
OR name LIKE "_a_a%" _——
OR name LIKE "%r_%a" 130 Yamaguchi

ORDER BY id; 200 Scoutten

Figure 85, LIKE Predicate examples
The ESCAPE Phrase

The escape character in a LIKE statement enables one to check for percent signs and/or un-
derscores in the search string. When used, it precedes the '%' or '_" in the search string indicat-
ing that it is the actual value and not the special character which is to be checked for.

When processing the LIKE pattern, DB2 works thus: Any pair of escape characters is treated
as the literal value (e.g. "++" means the string "+"). Any single occurrence of an escape char-
acter followed by either a "%" or a"_" means the literal "%" or "_" (e.g. "+%" means the

string "%"). Any other "%" or "_" is used as in a normal LIKE paﬁtern.

LIKE STATEMENT TEXT WHAT VALUES MATCH

LIKE “AB%" Finds AB, any string
LIKE "AB%" ESCAPE *+* Finds AB, any string
LIKE "AB+%" ESCAPE "+~ Finds AB%

LIKE "AB++" ESCAPE "+°" Finds AB+

LIKE “AB+%%" ESCAPE "+* Finds AB%, any string
LIKE "AB++%" ESCAPE "+* Finds AB+, any string
LIKE “AB+++%" ESCAPE "+* Finds AB+%

LIKE "AB+++%%" ESCAPE "+* Finds AB+%, any string
LIKE "AB+%+%%" ESCAPE "+* Finds AB%%, any string
LIKE "AB++++" ESCAPE "+" Finds AB++

LIKE "AB+++++%" ESCAPE "+°" Finds AB++%

LIKE "AB++++%" ESCAPE "+*" Finds AB++, any string
LIKE "AB+%++%" ESCAPE "+* Finds AB%+, any string

Figure 86, LIKE and ESCAPE examples
Now for sample SQL.:

SELECT id ANSWER
FROM staff ======
WHERE id = 10 ID
AND “ABC" LIKE “AB%" -
AND "A%C" LIKE "A/%C" ESCAPE "/~ 10

AND "A_C" LIKE "A_C" ESCAPE "\~
AND "A_$" LIKE "A$_$$" ESCAPE "$7;
Figure 87, LIKE and ESCAPE examples

42 SQL Predicates

DB2 V9.7 Cookbook ©

LIKE_COLUMN Function

The LIKE predicate cannot be used to compare one column against another. One may need to
do this when joining structured to unstructured data. For example, imagine that one had a list
of SQL statements (in a table) and a list of view names in a second table. One might want to
scan the SQL text (using a LIKE predicate) to find those statements that referenced the views.
The LOCATE function can be used to do a simple equality check. The LIKE predicate allows
a more sophisticated search.

The following code creates a scalar function and dependent procedure that can compare one
column against another (by converting both column values into input variables). The function
is just a stub. It passes the two input values down to the procedure where they are compared
using a LIKE predicate. If there is a match, the function returns one, else zero.

--#SET DELIMITER ! IMPORTANT

CREATE PROCEDURE LIKE_COLUMN (IN instrl VARCHAR(4000) This example
,IN instr2 VARCHAR(4000) uses an "I

,OUT outval SMALLINT) as the stmt
LANGUAGE SQL delimiter.
CONTAINS SQL
DETERMINISTIC
NO EXTERNAL ACTION
BEGIN

SET outval = CASE
WHEN instrl LIKE instr2

THEN 1
ELSE O
END;
RETURN;
END!

CREATE FUNCTION LIKE_COLUMN (instrl VARCHAR(4000)
, instr2 VARCHAR(4000))
RETURNS SMALLINT
LANGUAGE SQL
CONTAINS SQL
DETERMINISTIC
NO EXTERNAL ACTION
BEGIN ATOMIC
DECLARE outval SMALLINT;
CALL LIKE_COLUMN(instrl,instr2,outval);
RETURN outval;
END!

Figure 88, Create LIKE_COLUMN function

Below is an example of the above function being used to compare to the contents of one col-
umn against another:

WITH templ (jtest) AS ANSWER
(VALUES ("_gr%")

,("S_1e%™) 1D NAME JOB JTEST

) _____________________
SELECT s.id 10 Sanders Mgr _gr%
,S.name 20 Pernal Sales S_le%

,S-job 30 Marenghi Mgr _gr%
,t.jtest 40 O"Brien Sales S_le%

FROM staff s 50 Hanes Mgr _gr%
,templ t 60 Quigley Sales S_le%

WHERE LIKE_COLUMN(s.job,t.jtest) = 1
AND s.id < 70
ORDER BY s.id;

Figure 89, Use LIKE_COLUMN function

Introduction to SQL 43

Graeme Birchall ©

NULL Predicate

The NULL predicate checks for null values. The result of this predicate cannot be unknown.
If the value of the expression is null, the result is true. If the value of the expression is not
null, the result is false.

Fﬁ exprsn. IS NULL
NOT B NOT] ’

Figure 90, NULL Predicate syntax

SELECT id, comm ANSWER
FROM staff —==—======
WHERE id < 100 ID COMM
AND id 1S NOT NULL _—— ————
AND comm IS NULL 10 -
AND NOT comm IS NOT NULL 30 -
ORDER BY 1id; 50 -

Figure 91, NULL predicate examples

NOTE: Use the COALESCE function to convert null values into something else.

Special Character Usage

To refer to a special character in a predicate, or anywhere else in a SQL statement, use the
"X" notation to substitute with the ASCII hex value. For example, the following query will
list all names in the STAFF table that have an "a" followed by a semi-colon:

SELECT id
,hame
FROM staff

WHERE name LIKE "%a" || X"3B" || %"
ORDER BY id;

Figure 92, Refer to semi-colon in SQL text

Precedence Rules

Expressions within parentheses are done first, then prefix operators (e.g. -1), then multiplica-
tion and division, then addition and subtraction. When two operations of equal precedence are
together (e.g. 1 * 5/ 4) they are done from left to right.

Example: 555 + -22 / (12 - 3) * 66 ANSWER

5th 2nd 3rd 1st 4th

Figure 93, Precedence rules example

Be aware that the result that you get depends very much on whether you are doing integer or
decimal arithmetic. Below is the above done using integer numbers:

SELECT (12 - 3) AS intl
, 22/ (12 -23) AS int2
22 / (12 - 3) * 66 AS int3

:555 + -22 / (12 3) * 66 AS int4
FROM sysibm.sysdummyl; ANSWER

INT1 INT2 INT3 INT4

9 -2 -132 423

Figure 94, Precedence rules, integer example

NOTE: DB2 truncates, not rounds, when doing integer arithmetic.

Here is the same done using decimal numbers:

44 SQL Predicates

DB2 V9.7 Cookbook ©

SELECT (12.0 - 3) AS decl
, -22 / (12.0 - 3) AS dec2
, -22 / (12.0 - 3) * 66 AS dec3
,555 + -22 / (12.0 - 3) * 66 AS decd
FROM sysibm.sysdummyl; ANSWER
DEC1 DEC2 DEC3 DEC4
9.0 -2.4 -161.3 393.6

Figure 95, Precedence rules, decimal example

AND/OR Precedence

AND operations are done before OR operations. This means that one side of an OR is fully
processed before the other side is begun. To illustrate:

SELECT *
FROM tablel
WHERE coll =
AND coll >=
OR col2 >=
ORDER BY col1l;
SELECT *
FROM tablel
WHERE (coll =
AND coll >=
OR col2 >=
ORDER BY col1l;
SELECT *
FROM tablel
WHERE coll =
AND (coll >=
OR col2 >=

ORDER BY col1l;

ANSWER>>
cr
A"
“AA"

ANSWER>>
Tok
"AT)
“AA*

ANSWER>>
Tk

At
“AAT)

Figure 96, Use of OR and parenthesis

COL1 COL2
A AA

B BB

c CC
COL1 COL2
A AA

B BB

C cc
COL1 CcOoL2
C cC

TABLE1

WARNING: The omission of necessary parenthesis surrounding OR operators is a very
common mistake. The result is usually the wrong answer. One symptom of this problem is
that many more rows are returned (or updated) than anticipated.

Processing Sequence

The various parts of a SQL statement are always executed in a specific sequence in order to
avoid semantic ambiguity:

FROM clause
JOIN ON clause
WHERE clause
GROUP BY

HAVING clause
SELECT list

ORDER BY clause
FETCH FIRST

and aggregate

Figure 97, Query Processing Sequence

Observe that ON predicates (e.g. in an outer join) are always processed before any WHERE
predicates (in the same join) are applied. Ignoring this processing sequence can cause what
looks like an outer join to run as an inner join (see figure 633). Likewise, a function that is
referenced in the SELECT section of a query (e.g. row-number) is applied after the set of
matching rows has been identified, but before the data has been ordered.

Introduction to SQL

Graeme Birchall ©

CAST Expression

The CAST is expression is used to convert one data type to another. It is similar to the various
field-type functions (e.g. CHAR, SMALLINT) except that it can also handle null values and
host-variable parameter markers.

F CAST (—E expression ———— AS — data-type —) 4}

NULL
parameter maker —

Figure 98, CAST expression syntax
Input vs. Output Rules

o EXPRESSION: If the input is neither null, nor a parameter marker, the input data-type is
converted to the output data-type. Truncation and/or padding with blanks occur as re-
quired. An error is generated if the conversion is illegal.

e NULL: If the input is null, the output is a null value of the specified type.

e PARAMETER MAKER: This option is only used in programs and need not concern us
here. See the DB2 SQL Reference for details.

Examples

Use the CAST expression to convert the SALARY field from decimal to integer:

SELECT id ANSWER

,salary

,CAST(salary AS INTEGER) AS sal2 ID SALARY SAL2
FROM staff# e e
WHERE id < 30 10 98357.50 98357
ORDER BY id; 20 78171.25 78171

Figure 99, Use CAST expression to convert Decimal to Integer

Use the CAST expression to truncate the JOB field. A warning message will be generated for
the second line of output because non-blank truncation is being done.

SELECT id ANSWER
,jOb —=======—=—=—=—==
,CAST(Job AS CHAR(3)) AS job2 ID JOB JOoB2
FROM staf¢ o o o
WHERE id < 30 10 Mgr Mgr
ORDER BY id; 20 Sales Sal

Figure 100, Use CAST expression to truncate Char field

Use the CAST expression to make a derived field called JUNK of type SMALLINT where all
of the values are null.

SELECT id ANSWER
,CAST(NULL AS SMALLINT) AS junk =======

FROM staff ID JUNK
WHERE id<30 e e
ORDER BY id; 10 -
20 -

Figure 101, Use CAST expression to define SMALLINT field with null values

The CAST expression can also be used in a join, where the field types being matched differ:

46 CAST Expression

DB2 V9.7 Cookbook ©

SELECT stf.id ANSWER
,emp.empno —=—=—=—=====
FROM staff stf ID EMPNO
LEFT OUTER JOIN —— —mm
employee emp 10 -
ON stf.id = CAST(emp.empno AS INTEGER) 20 000020
AND emp.job = "MANAGER" 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 102, CAST expression in join

Of course, the same join can be written using the raw function:

SELECT stf.id ANSWER
,emp.empno —=—=—=—=====
FROM staff stf ID EMPNO
LEFT OUTER JOIN —— —me
employee emp 10 -
ON stf.id = [INTEGER(emp.empno) 20 000020
AND emp.job = "MANAGER" 30 000030
WHERE stf.id < 60 40 -
ORDER BY stf.id; 50 000050

Figure 103, Function usage in join

VALUES Statement

The VALUES clause is used to define a set of rows and columns with explicit values. The
clause is commonly used in temporary tables, but can also be used in view definitions. Once
defined in a table or view, the output of the VALUES clause can be grouped by, joined to,
and otherwise used as if it is an ordinary table - except that it can not be updated.

expression ‘

V VALUES L , ’
(+ expression ‘)

NULL
Figure 104, VALUES expression syntax

Each column defined is separated from the next using a comma. Multiple rows (which may
also contain multiple columns) are separated from each other using parenthesis and a comma.
When multiple rows are specified, all must share a common data type. Some examples fol-
low:

VALUES 6 <=1 row, 1 column
VALUES (6) <=1 row, 1 column
VALUES 6, 7, 8 <=1 row, 3 columns
VALUES (6), (7), (8) <= 3 rows, 1 column
VALUES (6,66), (7,77), (8,NULL) <= 3 rows, 2 columns
Figure 105, VALUES usage examples
Sample SQL

The VALUES clause can be used by itself as a very primitive substitute for the SELECT
statement. One key difference is that output columns cannot be named. But they can be or-
dered, and fetched, and even named externally, as the next example illustrates:

Introduction to SQL a7

Graeme Birchall ©

PLAIN VALUES VALUES + WITH VALUES + SELECT ANSWER

WITH temp (cl,c2) AS SELECT * 1 2

VALUES (1,2) (VALUES (1,2) FROM (VALUES (1,2) -— -

.(2,3) .(2,3) .(2,3) 3 4

,(3,4) ,(3,4)) .(3.4) 2 3

ORDER BY 2 DESC; SELECT * dtemp (cl,c2) 1 2
FROM temp ORDER BY 2 DESC;

ORDER BY 2 DESC;
Figure 106, Logically equivalent VALUES statements

The VALUES clause can encapsulate several independent queries:

VALUES ((SELECT COUNT(*) FROM employee) ANSWER

, (SELECT AVG(salary) FROM staff)

, (SELECT MAX(deptno) FROM department)) 1 2 3
FOR FETCH ONLY mm e
WITH UR; 42 67932.78 J22

Figure 107, VALUES running selects

The next statement defines a temporary table containing two columns and three rows. The
first column defaults to type integer and the second to type varchar.

WITH templ (coll, col2) AS ANSWER
(VALUES C 0, "AAT") =========
,(C 1, "BB") COL1 coL2
,C o2, NULL) e
) 0 AA
SELECT * 1 BB
FROM templ; 2 _

Figure 108, Use VALUES to define a temporary table (1 of 4)

If we wish to explicitly control the output field types we can define them using the appropri-
ate function. This trick does not work if even a single value in the target column is null.

WITH templ (coll, col2) AS ANSWER
(VALUES (DECIMAL(O ,3,1), "AAT") =========
, (DECIMAL(1 ,3,1), "BB~) COoL1 coL2
,(DECIMAL(C2 ,3,1), NULL e ————
) 0.0 AA
SELECT * 1.0 BB
FROM templ; 2.0 -

Figure 109, Use VALUES to define a temporary table (2 of 4)

If any one of the values in the column that we wish to explicitly define has a null value, we
have to use the CAST expression to set the output field type:

WITH templ (coll, col2) AS ANSWER
(VALUES (0, CAST("AAT™ AS CHAR(D))) =========
,(1, CAST("BB" AS CHAR(1))) COL1 coL2
,(2, CAST(NULL AS CHAR(D))) == ———-
) 0A
SELECT * 1B
FROM templ; 2 -

Figure 110, Use VALUES to define a temporary table (3 of 4)

Alternatively, we can set the output type for all of the not-null rows in the column. DB2 will
then use these rows as a guide for defining the whole column:

48 VALUES Statement

DB2 V9.7 Cookbook ©

WITH templ (coll, col2) AS ANSWER
(VALUES (0, CHAR("AA",1)) =========
,(1, CHAR("BB",1)) CoL1 coL2
,C 2, NUILL mmee
) 0A
SELECT * 1B
FROM templ; 2 -

Figure 111, Use VALUES to define a temporary table (4 of 4)
More Sample SQL

Temporary tables, or (permanent) views, defined using the VALUES expression can be used
much like a DB2 table. They can be joined, unioned, and selected from. They can not, how-
ever, be updated, or have indexes defined on them. Temporary tables can not be used in a
sub-query.
WITH templ (coll, col2, col3) AS ANSWER
(VALUES (0, "AA", 0.00) ==========
,(1, "BB", 1.11) COL1B COLX
,(2, rTcct, 222 ool oo-

,temp2 (collb, colx) AS 1211

(SELECT col1l 2 4.22
,coll + col3

FROM templ

)
SELECT *
FROM temp2;

Figure 112, Derive one temporary table from another
CREATE VIEW silly (cl, c2, c3)
AS VALUES (11, "AAA", SMALLINT(22))
,(12, "BBB", SMALLINT(33))
,(13, "CCC", NULL);
COMMIT;
Figure 113, Define a view using a VALUES clause
WITH templ (coll) AS ANSWER
(VALUES 0 ======
UNION ALL coL1
SELECT coll + 1 -——

FROM templ 0
WHERE coll + 1 < 100 1

)
SELECT * 3
FROM templ; etc

Figure 114, Use VALUES defined data to seed a recursive SQL statement

All of the above examples have matched a VALUES statement up with a prior WITH expres-
sion, so as to name the generated columns. One doesn't have to use the latter, but if you don't,
you get a table with unnamed columns, which is pretty useless:
SELECT * ANSWER
FROM (VALUES (123,"ABC") ======
,(234,"DEF*) e

)AS ttt 234 DEF
ORDER BY 1 DESC; 123 ABC

Figure 115, Generate table with unnamed columns

Combine Columns

The VALUES statement can be used inside a TABLE function to combine separate columns
into one. In the following example, three columns in the STAFF table are combined into a
single column — with one row per item:

Introduction to SQL 49

Graeme Birchall ©

SELECT id ANSWER
,salary AS sal
,comm AS com 1D SAL COM COMBO TYP
,combo e e
.typ 10 98357.50 - - COM
FROM staff 10 98357.50 - 98357.50 SAL
, TABLE(VALUES(salary, "SAL"™) 20 78171.25 612.45 612.45 COM
,(comm, "COM") 20 78171.25 612.45 78171.25 SAL
)AS tab(combo, typ) 30 77506.75 - - COM
WHERE id < 40 30 77506.75 - 77506.75 SAL
ORDER BY id
>typ;

Figure 116, Combine columns example
The above query works as follows:
e The set of matching rows are obtained from the STAFF table.

e For each matching row, the TABLE function creates two rows, the first with the salary
value, and the second with the commission.

e Each new row as gets a second literal column — indicating the data source.

o Finally, the "AS" expression assigns a correlation name to the table output, and also de-
fines two column names.

The TABLE function is resolved row-by-row, with the result being joined to the current row
in the STAFF table. This explains why we do not get a Cartesian product, even though no join
criteria are provided.

NOTE: The keyword LATERAL can be used instead of TABLE in the above query.

. __|

CASE Expression

CASE expressions enable one to do if-then-else type processing inside of SQL statements.
WARNING: The sequence of the CASE conditions can affect the answer. The first WHEN
check that matches is the one used.

CASE Syntax Styles

There are two general flavors of the CASE expression. In the first kind, each WHEN state-
ment does its own independent check. In the second kind, all of the WHEN conditions do
similar "equal" checks against a common reference expression.

CASE Expression, 1st Type

VCASE i WHEN — search-condition —— THEN T result T‘—>
NULL

’ f ELSE NULL T END }
L ELSE — result J

Figure 117, CASE expression syntax - 1st type

50 CASE Expression

DB2 V9.7 Cookbook ©

SELECT Lastname ANSWER
,Sex AS sx
,CASE sex LASTNAME SX SEXX
WHEN *F® THEN *"FEMALE®* = o o
WHEN *M® THEN "MALE* JEFFERSON M MALE
ELSE NULL JOHN F FEMALE
END AS sexx JOHNSON F FEMALE
FROM employee JONES M MALE
WHERE lastname LIKE *"J%"
ORDER BY 1;

Figure 118, Use CASE (1st type) to expand a value
CASE Expression, Type 2

r CASE —expression iWHEN — value-equal — THEN result j_L}

("ELSE NULL ‘j AI: NULL
END

} tAVELSE — result AJ

Figure 119, CASE expression syntax - 2nd type

SELECT lastname ANSWER
,Sex AS sx
,CASE LASTNAME SX SEXX
WHEN sex = "F® THEN "FEMALE®* ——————m ——
WHEN sex = "M" THEN "MALE" JEFFERSON M MALE
ELSE NULL JOHN F FEMALE
END AS sexx JOHNSON F FEMALE
FROM employee JONES M MALE
WHERE lastname LIKE "J%"
ORDER BY 1;

Figure 120, Use CASE (2nd type) to expand a value

Notes & Restrictions
o If more than one WHEN condition is true, the first one processed that matches is used.

e If no WHEN matches, the value in the ELSE clause applies. If no WHEN matches and
there is no ELSE clause, the result is NULL.

e There must be at least one non-null result in a CASE statement. Failing that, one of the
NULL results must be inside of a CAST expression.

o All result values must be of the same type.

e Functions that have an external action (e.g. RAND) can not be used in the expression part
of a CASE statement.

Sample SQL
SELECT lastname ANSWER
,midinit AS mi
,Sex AS sx LASTNAME MI SX MX
,CASE mmmmmmm e e
WHEN midinit > SEX JEFFERSON J M M
THEN midinit JOHN K K K
ELSE sex JOHNSON P F P
END AS mx JONES T M T
FROM employee
WHERE lastname LIKE "J%"
ORDER BY 1;

Figure 121, Use CASE to display the higher of two values

Introduction to SQL 51

Graeme Birchall ©

SELECT COUNT(*) AS tot ANSWER
,SUM(CASE sex WHEN "F" THEN 1 ELSE O END) AS #f =========
,SUM(CASE sex WHEN *M® THEN 1 ELSE O END) AS #m TOT #F #M

FROM employee _—— = =

WHERE lastname LIKE "J%"; 4 2 2

Figure 122, Use CASE to get multiple counts in one pass

SELECT lastname ANSWER
,LENGTH(RTRIM(lastname)) AS len
,SUBSTR(lastname, 1, LASTNAME LEN LASTNM

CASsE e e e

WHEN LENGTH(RTRIM(lastname)) JEFFERSON 9 JEFFER
> 6 THEN 6 JOHN 4 JOHN

ELSE LENGTH(RTRIM(lastname)) JOHNSON 7 JOHNSO

END) AS lastnm JONES 5 JONES

FROM employee

WHERE lastname LIKE "J%"

ORDER BY 1;

Figure 123, Use CASE inside a function

The CASE expression can also be used in an UPDATE statement to do any one of several
alternative updates to a particular field in a single pass of the data:

UPDATE staff
SET comm = CASE dept
WHEN 15 THEN comm * 1.1
WHEN 20 THEN comm * 1.2
WHEN 38 THEN
CASE
WHEN years < 5 THEN comm * 1.3
WHEN years >= 5 THEN comm * 1.4
ELSE NULL
END
ELSE comm
END
WHERE comm IS NOT NULL
AND dept < 50;

Figure 124, UPDATE statement with nested CASE expressions
In the next example a CASE expression is used to avoid a divide-by-zero error:

WITH templ (cl,c2) AS ANSWER
(VALUES (88,9),(44,3),(22,0),(0,1)) ========
SELECT cl1 C1 Cc2 C3
,C2 — e =
,CASE c2 88 9 9
WHEN O THEN NULL 44 3 14
ELSE cl/c2 22 0 -
END AS c3 0 1 0

FROM templ;
Figure 125, Use CASE to avoid divide by zero

At least one of the results in a CASE expression must be a value (i.e. not null). This is so that
DB2 will know what output type to make the result.

Problematic CASE Statements

The case WHEN checks are always processed in the order that they are found. The first one
that matches is the one used. This means that the answer returned by the query can be affected
by the sequence on the WHEN checks. To illustrate this, the next statement uses the SEX
field (which is always either "F" or "M") to create a new field called SXX. In this particular
example, the SQL works as intended.

52 CASE Expression

DB2 V9.7 Cookbook ©

SELECT lastname
,Sex
,CASE
WHEN sex >= *M®" THEN "MAL*
WHEN sex >= "F" THEN "FEM"
END AS sxx
FROM employee
WHERE lastname LIKE "J%"
ORDER BY 1;

Figure 126, Use CASE to derive a value (correct)

ANSWER

LASTNAME SX SXX
JEFFERSON M MAL
JOHN F FEM
JOHNSON F FEM
JONES M MAL

In the example below all of the values in SXX field are "FEM". This is not the same as what
happened above, yet the only difference is in the order of the CASE checks.

SELECT lastname
,Sex
,CASE
WHEN sex >= "F" THEN "FEM"
WHEN sex >= "M" THEN "MAL"
END AS sxx
FROM employee
WHERE lastname LIKE *"J%"
ORDER BY 1;

Figure 127, Use CASE to derive a value (incorrect)

ANSWER

LASTNAME SX SXX
JEFFERSON M FEM
JOHN F FEM
JOHNSON F FEM
JONES M FEM

In the prior statement the two WHEN checks overlap each other in terms of the values that
they include. Because the first check includes all values that also match the second, the latter
never gets invoked. Note that this problem can not occur when all of the WHEN expressions

are equality checks.
CASE in Predicate

The result of a CASE expression can be referenced in a predicate:

id
,dept
,salary
,comm
staff
CASE
WHEN
WHEN
WHEN
WHEN
AND
WHEN

SELECT

FROM
WHERE

comm < 70
name LIKE "W%*"

salary < 11000
salary < 18500
dept <> 33
salary < 19000

END IN ("A","C","E")

ORDER BY id;
Figure 128, Use CASE

in a predicate

THEN
THEN
THEN

THEN
THEN

A"
"B"
_C"

D*
“E"

ANSWER

ID DEPT SALARY COMM

130 42 10505.90 75.60
270 66 18555.50 -
330 66 10988.00 55.50

The above query is arguably more complex than it seems at first glance, because unlike in an
ordinary query, the CASE checks are applied in the sequence they are defined. So a row will
only match "B" if it has not already matched "A".

In order to rewrite the above query using standard AND/OR predicates, we have to reproduce
the CASE processing sequence. To this end, the three predicates in the next example that look
for matching rows also apply any predicates that preceded them in the CASE statement:

Introduction to SQL

53

Graeme Birchall ©

ANSWER
ID DEPT SALARY COMM
SELECT id mmm e e
,name 130 42 10505.90 75.60
,salary 270 66 18555.50 -
,comm 330 66 10988.00 55.50
FROM staff

WHERE (comm < 70)
OR (salary < 11000 AND NOT name LIKE "W%")
OR (salary < 19000 AND NOT (name LIKE "W%*
OR (salary < 18500 AND dept <> 33)))
ORDER BY id;

Figure 129, Same stmt as prior, without CASE predicate

Miscellaneous SQL Statements

This section will briefly discuss several miscellaneous SQL statements. See the DB2 manuals
for more details.

Cursor

A cursor is used in an application program to retrieve and process individual rows from a re-
sult set. To use a cursor, one has to do the following:

e DECLARE the cursor. The declare statement has the SQL text that the cursor will run. If
the cursor is declared "with hold", it will remain open after a commit, otherwise it will be
closed at commit time.

NOTE: The declare cursor statement is not actually executed when the program is run. It
simply defines the query that will be run.

e OPEN the cursor. This is when the contents of on any host variables referenced by the
cursor (in the predicate part of the query) are transferred to DB2.

e FETCH rows from the cursor. One does as many fetches as is needed. If no row is found,
the SQLCODE from the fetch will be 100.

e CLOSE the cursor.

Declare Cursor Syntax

V DECLARE — cursor-name — CURSOR

LWITH HOLD J
FOR select-statement :'—{

F 10 CALLERT L statement-name

L TO CLIENT J

Figure 130, DECLARE CURSOR statement syntax

Syntax Notes

tWITH RETURN

e The cursor-name must be unique with the application program.

e The WITH HOLD phrase indicates that the cursor will remain open if the unit of work
ends with a commit. The cursor will be closed if a rollback occurs.

54 Miscellaneous SQL Statements

DB2 V9.7 Cookbook ©

The WITH RETURN phrase is used when the cursor will generate the result set returned
by a stored procedure. If the cursor is open when the stored procedure ends the result set
will be return either to the calling procedure, or directly to the client application.

The FOR phrase can either refer to a select statement, the text for which will follow, or to
the name of a statement has been previously prepared.

Usage Notes

Cursors that require a sort (e.g. to order the output) will obtain the set of matching rows
at open time, and then store them in an internal temporary table. Subsequent fetches will
be from the temporary table.

Cursors that do not require a sort are resolved as each row is fetched from the data table.

All references to the current date, time, and timestamp will return the same value (i.e. as
of when the cursor was opened) for all fetches in a given cursor invocation.

One does not have to close a cursor, but one cannot reopen it until it is closed. All open
cursors are automatically closed when the thread terminates, or when a rollback occurs,
or when a commit is done - except if the cursor is defined "with hold".

One can both update and delete "where current of cursor”. In both cases, the row most
recently fetched is updated or deleted. An update can only be used when the cursor being
referenced is declared "for update of".

Examples

DECLARE fred CURSOR FOR
WITH RETURN TO CALLER

SELECT id
,hame
,salary
,comm
FROM staff
WHERE id < :id-var

AND salary > 1000
ORDER BY id ASC
FETCH FIRST 10 ROWS ONLY
OPTIMIZE FOR 10 ROWS
FOR FETCH ONLY
WITH UR

Figure 131, Sample cursor

DECLARE fred CURSOR WITH HOLD FOR
SELECT name
,salary
FROM staff
WHERE id > -id-var
FOR UPDDATE OF salary, comm

OPEN fred

DO UNTIL SQLCODE = 100
FETCH fred
INTO name-var

,-salary-var
IF salary < 1000 THEN DO
UPDATE staff

SET salary = :new-salary-var
WHERE CURRENT OF fred
END-IF
END-DO
CLOSE fred

Figure 132, Use cursor in program

Introduction to SQL 55

Graeme Birchall ©

Select Into

A SELECT-INTO statement is used in an application program to retrieve a single row. If
more than one row matches, an error is returned. The statement text is the same as any ordi-
nary query, except that there is an INTO section (listing the output variables) between the
SELECT list and the FROM section.

Example
SELECT name
,salary
INTO name-var

, -salary-var
FROM staff
WHERE id = :id-var
Figure 133, Singleton select
Prepare

The PREPARE statement is used in an application program to dynamically prepare a SQL
statement for subsequent execution.

V PREPARE - statement-name }
- OUTPUT - .]
INTO __ result-descriptor-name

’ L INPUTINTO _ input-descrptor-nameJ FROM — host-variable
Figure 134, PREPARE statement syntax

Syntax Notes

e The statement name names the statement. If the name is already in use, it is overridden.

e The OUTPUT descriptor will contain information about the output parameter markers.
The DESCRIBE statement may be used instead of this clause.

e The INPUT descriptor will contain information about the input parameter markers.
e The FROM phrase points to the host-variable which contains the SQL statement text.

Prepared statement can be used by the following:

STATEMENT CAN BE USED BY STATEMENT TYPE
DESCRIBE Any statement
DECLARE CURSOR Must be SELECT
EXECUTE Must not be SELECT

Figure 135, What statements can use prepared statement

Describe

The DESCRIBE statement is typically used in an application program to get information
about a prepared statement. It can also be used in the DB2 command processor (but not in
DB2BATCH) to get a description of a table, or the output columns in a SQL statement:

56 Miscellaneous SQL Statements

DB2 V9.7 Cookbook ©

a OUTPUTj

V DESCRIBE E select-statement {

call-statement
XQUERY — XQuery-statement —

TABLE table-name
INDEXESFORTABLE — | L SHOW DETAIL J

DATA PARTITIONS FOR TABLE -
Figure 136, DESCRIBE statement syntax

Below are some examples of using the statement:
DESCRIBE OUTPUT SELECT * FROM staff

SQLDA Information
sqldaid : SQLDA sqldabc: 896 sqln: 20 sqld: 7
Column Information

sqltype sqllen sqglname.data sqlname. length
500 SMALLINT 2 1D 2
449 VARCHAR 9 NAME 4
501 SMALLINT 2 DEPT 4
453 CHARACTER 5 JOB 3
501 SMALLINT 2 YEARS 5
485 DECIMAL 7, 2 SALARY 6
485 DECIMAL 7, 2 COMM 4

Figure 137, DESCRIBE the output columns in a select statement
DESCRIBE TABLE staff

Column Type Type

name schema name Length Scale Nulls
ID SYSIBM SMALLINT 2 0 No
NAME SYSIBM VARCHAR 9 0 Yes
DEPT SYSIBM SMALLINT 2 0 Yes
JOB SYSIBM CHARACTER 5 0 Yes
YEARS SYSIBM SMALLINT 2 0 Yes
SALARY SYSIBM DECIMAL 7 2 Yes
COMM SYSIBM DECIMAL 7 2 Yes

Figure 138, DESCRIBE the columns in a table

Execute

The EXECUTE statement is used in an application program to execute a prepared statement.
The statement can not be a select.

Execute Immediate

The EXECUTE IMMEDIATE statement is used in an application program to prepare and
execute a statement. Only certain kinds of statement (e.g. insert, update, delete, commit) can
be run this way. The statement can not be a select.

Set Variable

The SET statement is used in an application program to set one or more program variables to
values that are returned by DB2.

Introduction to SQL 57

Graeme Birchall ©

Examples

SET :-host-var = CURRENT TIMESTAMP
Figure 139, SET single host-variable

SET :host-vl = CURRENT TIME
, -host-v2 = CURRENT DEGREE
, -host-v3 = NULL

Figure 140, SET multiple host-variables

The SET statement can also be used to get the result of a select, as long as the select only re-
turns a single row:

SET (zhvi
,-hv2
,-hv3) =
(SELECT id
,hame
,salary
FROM staff
WHERE id = fid-var)
Figure 141, SET using row-fullselect

Set DB2 Control Structures

In addition to setting a host-variable, one can also set various DB2 control structures:

SET CONNECTION

SET CURRENT DEFAULT TRANSFORM GROUP
SET CURRENT DEGREE

SET CURRENT EXPLAIN MODE

SET CURRENT EXPLAIN SNAPSHOT

SET CURRENT ISOLATION

SET CURRENT LOCK TIMEOUT

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET

SET CURRENT QUERY OPTIMIZATION

SET CURRENT REFRESH AGE

SET ENCRYPTION PASSWORD

SET EVENT MONITOR STATE

SET INTEGRITY

SET PASSTHRU

SET PATH

SET SCHEMA

SET SERVER OPTION

SET SESSION AUTHORIZATION

Figure 142, Other SET statements

Unit-of-Work Processing

No changes that you make are deemed to be permanent until they are committed. This section
briefly lists the commands one can use to commit or rollback changes.

Commit

The COMMIT statement is used to commit whatever changes have been made. Locks that
were taken as a result of those changes are freed. If no commit is specified, an implicit one is
done when the thread terminates.

58 Unit-of-Work Processing

DB2 V9.7 Cookbook ©

Savepoint

The SAVEPOINT statement is used in an application program to set a savepoint within a unit
of work. Subsequently, the program can be rolled back to the savepoint, as opposed to rolling
back to the start of the unit of work.

V SAVEPOINT — savepoint-name

L UNIQUE _! 4

— ON ROLLBACK RETAIN LOCKS —
V ON ROLLBACK RETAIN CURSORS {

Figure 143, SAVEPOINT statement syntax

Notes

o If the savepoint name is the same as a savepoint that already exists within the same level,
it overrides the prior savepoint - unless the latter was defined a being unique, in which
case an error is returned.

e The RETAIN CURSORS phrase tells DB2 to, if possible, keep open any active cursors.

e The RETAIN LOCKS phrase tells DB2 to retain any locks that were obtained subsequent
to the savepoint. In other words, the changes are rolled back, but the locks that came with
those changes remain.

Savepoint Levels

Savepoints exist within a particular savepoint level, which can be nested within another level.
A new level is created whenever one of the following occurs:

e A new unit of work starts.
e A procedure defined with NEW SAVEPOINT LEVEL is called.
e An atomic compound SQL statement starts.

A savepoint level ends when the process that caused its creation finishes. When a savepoint
level ends, all of the savepoints created within it are released.

The following rules apply to savepoint usage:

e Savepoints can only be referenced from within the savepoint level in which they were
created. Active savepoints in prior levels are not accessible.

e The uniqueness of savepoint names is only enforced within a given savepoint level. The
same name can exist in multiple active savepoint levels.

Example

Savepoints are especially useful when one has multiple SQL statements that one wants to run
or rollback as a whole, without affecting other statements in the same transaction. For exam-
ple, imagine that one is transferring customer funds from one account to another. Two up-
dates will be required - and if one should fail, both should fail:

Introduction to SQL 59

Graeme Birchall ©

INSERT INTO transaction_audit_table;
SAVEPOINT before_updates ON ROLLBACK RETAIN CURSORS;

UPDATE savings_account
SET balance = balance - 100
WHERE cust# = 1234;
IF SQLCODE <> O THEN
ROLLBACK TO SAVEPOINT before_updates;

ELSE
UPDATE checking_account
SET balance = balance + 100
WHERE cust# = 1234;

IF SQLCODE <> O THEN
ROLLBACK TO SAVEPOINT before_updates;
END
END

COMMIT;
Figure 144, Example of savepoint usage

In the above example, if either of the update statements fail, the transaction is rolled back to
the predefined savepoint. And regardless of what happens, there will still be a row inserted
into the transaction-audit table.

Savepoints vs. Commits
Savepoints differ from commits in the following respects:
e One cannot rollback changes that have been committed.

e Only a commit guarantees that the changes are stored in the database. If the program sub-
sequently fails, the data will still be there.

e Once a commit is done, other users can see the changed data. After a savepoint, the data
is still not visible to other users.

Release Savepoint

The RELEASE SAVEPOINT statement will remove the named savepoint. Any savepoints
nested within the named savepoint are also released. Once run, the application can no longer
rollback to any of the released savepoints.

TO
V RELEASE- L~ | SAVEPOINT-_ savepoint-name 4
Figure 145, RELEASE SAVEPOINT statement syntax

Rollback
The ROLLBACK statement is used to rollback any database changes since the beginning of
the unit of work, or since the named savepoint - if one is specified.

WORK
V ROLLBACK | 1 | {
L TO SAVEPOINT C , =
savepomt-name

Figure 146, ROLLBACK statement syntax

60 Unit-of-Work Processing

DB2 V9.7 Cookbook ©

Data Manipulation Language

The chapter has a very basic introduction to the DML (Data Manipulation Language) state-
ments. See the DB2 manuals for more details.

Select DML Changes

A special kind of SELECT statement (see page 70) can encompass an INSERT, UPDATE, or
DELETE statement to get the before or after image of whatever rows were changed (e.g. se-
lect the list of rows deleted). This kind of SELECT can be very useful when the DML state-
ment is internally generating a value that one needs to know (e.g. an INSERT automatically
creates a new invoice number using a sequence column).

Insert

The INSERT statement is used to insert rows into a table, view, or fullselect. To illustrate
how it is used, this section will use a copy of the EMP_ACT sample table:

CREATE TABLE emp_act_copy

(empno CHARACTER (00006) NOT NULL
,projno CHARACTER (00006) NOT NULL
,actno SMALLIENT NOT NULL
,emptime DECIMAL (05,02)

,emstdate DATE

,emendate DATE) ;

Figure 147, EMP_ACT_COPY sample table - DDL

Insert Syntax

V INSERT INTO — table-name ’
view-name t , i J
t(full-select) j (i column-name)

tINCLUDE —(i column-name —— data-type J—) J
}—r VALUES — (i expression —L)

LWITH —— common-table-expression J
Figure 148, INSERT statement syntax
Target Objects

full-select J

One can insert into a table, view, nickname, or SQL expression. For views and SQL expres-
sions, the following rules apply:

o The list of columns selected cannot include a column function (e.g. MIN).
e There must be no GROUP BY or HAVING acting on the select list.
e The list of columns selected must include all those needed to insert a new row.

e The list of columns selected cannot include one defined from a constant, expression, or a
scalar function.

Data Manipulation Language 61

Graeme Birchall ©

e Sub-queries, and other predicates, are fine, but are ignored (see figure 153).
e The query cannot be a join, nor (plain) union.

e Aunion all" is permitted - as long as the underlying tables on either side of the union
have check constraints such that a row being inserted is valid for one, and only one, of
the tables in the union.

All bets are off if the insert is going to a table that has an INSTEAD OF trigger defined.

Usage Notes

e One has to provide a list of the columns (to be inserted) if the set of values provided does
not equal the complete set of columns in the target table, or are not in the same order as
the columns are defined in the target table.

e The columns in the INCLUDE list are not inserted. They are intended to be referenced in
a SELECT statement that encompasses the INSERT (see page 70).

e The input data can either be explicitly defined using the VALUES statement, or retrieved
from some other table using a fullselect.

Direct Insert

To insert a single row, where all of the columns are populated, one lists the input the values in
the same order as the columns are defined in the table:
INSERT INTO emp_act_copy VALUES
("100000* ,*ABC" ,10 ,1.4 ,"2003-10-22", "2003-11-24%);
Figure 149, Single row insert

To insert multiple rows in one statement, separate the row values using a comma:
INSERT INTO emp_act_copy VALUES
("200000" ,"ABC" ,10 ,1.4 ,"2003-10-22", "2003-11-24%")
,("200000" ,"DEF" ,10 ,1.4 ,"2003-10-22", "2003-11-24%)
,("200000" ,"1JK" ,10 ,1.4 ,"2003-10-22", "2003-11-24%);

Figure 150, Multi row insert

NOTE: If multiple rows are inserted in one statement, and one of them violates a unique
index check, all of the rows are rejected.

The NULL and DEFAULT keywords can be used to assign these values to columns. One can
also refer to special registers, like the current date and current time:
INSERT INTO emp_act_copy VALUES
("400000" ,"ABC" ,10 ,NULL ,DEFAULT, CURRENT DATE);
Figure 151,Using null and default values

To leave some columns out of the insert statement, one has to explicitly list the columns that
are included. When this is done, one can refer to the columns used in any order:

INSERT INTO emp_act_copy (projno, emendate, actno, empno) VALUES
("ABC* ,DATE(CURRENT TIMESTAMP) ,123 ,*500000%);

Figure 152, Explicitly listing columns being populated during insert
Insert into Full-Select

The next statement inserts a row into a fullselect that just happens to have a predicate which,
if used in a subsequent query, would not find the row inserted. The predicate has no impact
on the insert itself:

62 Insert

DB2 V9.7 Cookbook ©

INSERT INTO
(SELECT *
FROM emp_act_copy
WHERE empno < "1°

))
VALUES ("510000" ,"ABC" ,10 ,1.4 ,"2003-10-22", "2003-11-24%");
Figure 153, Insert into a fullselect

NOTE: One can insert rows into a view (with predicates in the definition) that are outside
the bounds of the predicates. To prevent this, define the view WITH CHECK OPTION.

Insert from Select
One can insert a set of rows that is the result of a query using the following notation:

INSERT INTO emp_act_copy

SELECT LTRIM(CHAR(id + 600000))
,SUBSTR(UCASE(hame),1,6)
,salary / 229
,123
,CURRENT DATE
,"2003-11-11"

FROM staff

WHERE id < 50;

Figure 154,Insert result of select statement

NOTE: In the above example, the fractional part of the SALARY value is eliminated when
the data is inserted into the ACTNO field, which only supports integer values.

If only some columns are inserted using the query, they need to be explicitly listed:

INSERT INTO emp_act_copy (empno, actno, projno)
SELECT LTRIM(CHAR(id + 700000))
,MINUTE(CURRENT TIME)
, "DEF"
FROM staff
WHERE id < 40;

Figure 155, Insert result of select - specified columns only

One reason why tables should always have unique indexes is to stop stupid SQL statements
like the following, which will double the number of rows in the table:

INSERT INTO emp_act_copy
SELECT * FROM emp_act_copy;

Figure 156, Stupid - insert - doubles rows

The select statement using the insert can be as complex as one likes. In the next example, it
contains the union of two queries:

INSERT INTO emp_act _copy (empno, actno, projno)

SELECT LTRIM(CHAR(id + 800000))
(7
. XYZ®

FROM staff

WHERE id < 40

UNION

SELECT LTRIM(CHAR(id + 900000))
,SALARY / 100
, DEF*

FROM staff

WHERE id < 50;

Figure 157, Inserting result of union

The select can also refer to a common table expression. In the following example, six values
are first generated, each in a separate row. These rows are then selected during the insert:

Data Manipulation Language

63

Graeme Birchall ©

INSERT INTO emp_act_copy (empno, actno, projno, emptime)
WITH templ (coll) AS
(VALUES (1),(2),(3),(4),(5),(6))
SELECT LTRIM(CHAR(coll + 910000))
,coll
,CHAR(col1)
,coll /7 2
FROM templ;

Figure 158, Insert from common table expression

The next example inserts multiple rows - all with an EMPNO beginning "92". Three rows are
found in the STAFF table, and all three are inserted, even though the sub-query should get
upset once the first row has been inserted. This doesn't happen because all of the matching
rows in the STAFF table are retrieved and placed in a work-file before the first insert is done:

INSERT INTO emp_act_copy (empno, actno, projno)
SELECT LTRIM(CHAR(id + 920000))
,id
, ABC*
FROM staff
WHERE id < 40
AND NOT EXISTS
(SELECT *
FROM emp_act_copy
WHERE empno LIKE "92%");

Figure 159, Insert with irrelevant sub-query
Insert into Multiple Tables

Below are two tables that hold data for US and international customers respectively:

CREATE TABLE us_customer CREATE TABLE intl_customer
(cust# INTEGER NOT NULL (cust# INTEGER NOT NULL
,Chame CHAR(10) NOT NULL ,chame CHAR(10) NOT NULL
,country CHAR(03) NOT NULL ,country CHAR(03) NOT NULL
,CHECK (country = "USA") ,CHECK (country <> "USA"™)
,PRIMARY KEY (cust#)); ,PRIMARY KEY (cust#));

Figure 160, Customer tables - for insert usage

One can use a single insert statement to insert into both of the above tables because they have
mutually exclusive check constraints. This means that a new row will go to one table or the
other, but not both, and not neither. To do so one must refer to the two tables using a "union
all" phrase - either in a view, or a query, as is shown below:

INSERT INTO
(SELECT *
FROM us_customer
UNION ALL
SELECT *
FROM intl_customer)
VALUES (111,"Fred","USA")
,(222,"Dave","USA")
, (333, "Juan”, "MEX") ;

Figure 161, Insert into multiple tables

The above statement will insert two rows into the table for US customers, and one row into
the table for international customers.

64 Insert

DB2 V9.7 Cookbook ©

Update

The UPDATE statement is used to change one or more columns/rows in a table, view, or full-
select. Each column that is to be updated has to specified. Here is an example:

UPDATE emp_act_copy

SET emptime = NULL
,emendate = DEFAULT
,emstdate = CURRENT DATE + 2 DAYS
,actno = ACTNO / 2
,projno = "ABC"
WHERE empno = "100000";

Figure 162, Single row update
Update Syntax
r UPDATE _ table-name or view-name or (full-select)

L corr-name .

A A 4

t INCLUDE —— (i column-name —— data-type 7‘)J

F SET i::olumn-name — = — expression ‘

LWHERE N predicatesJ {
Figure 163, UPDATE statement syntax

Usage Notes

e One can update rows in a table, view, or fullselect. If the object is not a table, then it must
be updateable (i.e. refer to a single table, not have any column functions, etc).

e The correlation name is optional, and is only needed if there is an expression or predicate
that references another table.

e The columns in the INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the UPDATE (see page 70).

e The SET statement lists the columns to be updated, and the new values they will get.

e Predicates are optional. If none are provided, all rows in the table are updated.

e Usually, all matching rows are updated. To update some fraction of the matching rows,
use a fullselect (see page: 66).

Update Examples

To update all rows in a table, leave off all predicates:
UPDATE emp_act_copy
SET actno = actno / 2;

Figure 164, Mass update

In the next example, both target columns get the same values. This happens because the result
for both columns is calculated before the first column is updated:
UPDATE emp_act_copy acl
SET actno = actno * 2
,emptime = actno * 2
WHERE empno LIKE "910%";
Figure 165, Two columns get same value

Data Manipulation Language 65

Graeme Birchall ©

One can also have an update refer to the output of a select statement - as long as the result of
the select is a single row:

UPDATE emp_act_copy

SET actno = (SELECT MAX(salary) / 10
FROM staff)

WHERE empno = "200000°%;

Figure 166, Update using select

The following notation lets one update multiple columns using a single select:

UPDATE emp_act_copy
SET (actno
,emstdate
,projno) = (SELECT MAX(salary) / 10
,CURRENT DATE + 2 DAYS
,MIN(CHAR(id))
FROM staff
WHERE id <> 33)
WHERE empno LIKE "600%";

Figure 167, Multi-row update using select

Multiple rows can be updated using multiple different values, as long as there is a one-to-one
relationship between the result of the select, and each row to be updated.

UPDATE emp_act_copy acl
SET (actno
,emptime) = (SELECT ac2.actno + 1
,acl._emptime / 2
FROM emp_act_copy ac2
WHERE ac2.empno LIKE "60%"
AND SUBSTR(ac2.empno,3) = SUBSTR(acl.empno,3))
WHERE EMPNO LIKE "700%";

Figure 168, Multi-row update using correlated select
Use Full-Select

An update statement can be run against a table, a view, or a fullselect. In the next example,
the table is referred to directly:
UPDATE emp_act_copy
SET emptime = 10
WHERE empno = "000010"
AND projno = "MA2100";
Figure 169, Direct update of table

Below is a logically equivalent update that pushes the predicates up into a fullselect:

UPDATE
(SELECT *
FROM emp_act_copy
WHERE empno = "000010°
AND projno = "MA2100*
)AS ea

SET emptime = 20;
Figure 170, Update of fullselect

Update First "n" Rows

An update normally changes all matching rows. To update only the first "n" matching rows
do the following:

o Inafullselect, retrieve the first "n" rows that you want to update.

e Update all rows returned by the fullselect.

66 Update

DB2 V9.7 Cookbook ©

In the next example, the first five staff with the highest salary get a nice fat commission:

UPDATE
(SELECT *
FROM staff

ORDER BY salary DESC
FETCH FIRST 5 ROWS ONLY
)AS xxx

SET comm = 10000;

Figure 171, Update first "n" rows

WARNING: The above statement may update five random rows — if there is more than
one row with the ordering value. To prevent this, ensure that the list of columns provided
in the ORDER BY identify each matching row uniquely.

Use OLAP Function

Imagine that we want to set the employee-time for a particular row in the EMP_ACT table to
the MAX time for that employee. Below is one way to do it:

UPDATE emp_act _copy eal
SET emptime = (SELECT MAX(emptime)
FROM emp_act_copy ea2
WHERE eal.empno = ea2.empno)
WHERE empno = "000010"
AND projno = "MA2100";
Figure 172, Set employee-time in row to MAX - for given employee

The same result can be achieved by calling an OLAP function in a fullselect, and then updat-
ing the result. In next example, the MAX employee-time per employee is calculated (for each
row), and placed in a new column. This column is then used to do the final update:
UPDATE
(SELECT eal.*

,MAX(emptime) OVER(PARTITION BY empno) AS maxtime
FROM emp_act_copy eal

)AS ea2
SET emptime = maxtime
WHERE empno = "000010"

AND projno = "MA2100";
Figure 173, Use OLAP function to get max-time, then apply (correct)

The above statement has the advantage of only accessing the EMP_ACT table once. If there
were many rows per employee, and no suitable index (i.e. on EMPNO and EMPTIME), it
would be much faster than the prior update.

The next update is similar to the prior - but it does the wrong update! In this case, the scope of
the OLAP function is constrained by the predicate on PROJNO, so it no longer gets the MAX
time for the employee:

UPDATE emp_act_copy

SET emptime = MAX(emptime) OVER(PARTITION BY empno)

WHERE empno "000010"

AND projno "MA2100";

Figure 174, Use OLAP function to get max-time, then apply (wrong)

Correlated and Uncorrelated Update

In the next example, regardless of the number of rows updated, the ACTNO will always come
out as one. This is because the sub-query that calculates the row-number is correlated, which
means that it is resolved again for each row to be updated in the "AC1" table. At most, one
"AC2" row will match, so the row-number must always equal one:

Data Manipulation Language 67

Graeme Birchall ©

UPDATE emp_act_copy acl
SET (actno
,emptime) = (SELECT ROW_NUMBER() OVERQ)
,acl.emptime / 2
FROM emp_act_copy ac2
WHERE ac2.empno LIKE "60%"
AND SUBSTR(ac2.empno,3) = SUBSTR(acl.empno,3))

WHERE EMPNO LIKE "800%";

Figure 175, Update with correlated query

In the next example, the ACTNO will be updated to be values 1, 2, 3, etc, in order that the
rows are updated. In this example, the sub-query that calculates the row-number is uncorre-
lated, so all of the matching rows are first resolved, and then referred to in the next, corre-
lated, step:

UPDATE emp_act_copy acl

SET (actno
,emptime) = (SELECT cl

,C2
FROM (SELECT ROW_NUMBER() OVER() AS cl
,actno / 100 AS c2
,empno
FROM emp_act_copy
WHERE empno LIKE "60%"
)AS ac2
WHERE SUBSTR(ac2.empno,3) = SUBSTR(acl.empno,3))
WHERE empno LIKE ®"900%";

Figure 176, Update with uncorrelated query

|
Delete

The DELETE statement is used to remove rows from a table, view, or fullselect. The set of
rows deleted depends on the scope of the predicates used. The following example would de-
lete a single row from the EMP_ACT sample table:

DELETE

FROM emp_act_copy

WHERE empno = "000010"
AND projno = "MA2100°
AND actno = 10;

Figure 177, Single-row delete

Delete Syntax

V DELETE FROM — table-name or view-name or (full-select) }

’ L corr-name ! }

} t INCLUDE —— (i column-name —— data-type 7‘ J {
[WHERE ___ predicatesJ

Figure 178, DELETE statement syntax

Usage Notes

e One can delete rows from a table, view, or fullselect. If the object is not a table, then it
must be deletable (i.e. refer to a single table, not have any column functions, etc).

e The correlation name is optional, and is only needed if there is a predicate that references
another table.

68 Delete

DB2 V9.7 Cookbook ©

e The columns in the INCLUDE list are not updated. They are intended to be referenced in
a SELECT statement that encompasses the DELETE (see page 70).

o Predicates are optional. If none are provided, all rows are deleted.

e Usually, all matching rows are deleted. To delete some fraction of the matching rows, use
a fullselect (see page: 69).

Basic Delete

This statement would delete all rows in the EMP_ACT table:

DELETE
FROM emp_act_copy;

Figure 179, Mass delete

This statement would delete all the matching rows in the EMP_ACT:

DELETE
FROM emp_act_copy
WHERE empno LIKE "00%"
AND projno >= "MAT;
Figure 180, Selective delete

Correlated Delete

The next example deletes all the rows in the STAFF table - except those that have the highest
ID in their respective department:

DELETE
FROM staff sl
WHERE id NOT IN
(SELECT MAX(id)
FROM staff s2
WHERE sl.dept = s2.dept);

Figure 181, Correlated delete (1 of 2)

Here is another way to write the same:

DELETE
FROM staff sl
WHERE EXISTS
(SELECT *
FROM staff s2
WHERE s2.dept = sl.dept
AND s2.id > sl.id);

Figure 182, Correlated delete (2 of 2)

The next query is logically equivalent to the prior two, but it works quite differently. It uses a
fullselect and an OLAP function to get, for each row, the ID, and also the highest ID value in
the current department. All rows where these two values do not match are then deleted:
DELETE FROM
(SELECT id
,MAX(id) OVER(PARTITION BY dept) AS max_id
FROM staff

)AS ss
WHERE id <> max_id;

Figure 183, Delete using fullselect and OLAP function

Delete First "n" Rows

A delete removes all encompassing rows. Sometimes this is not desirable - usually because an
unknown, and possibly undesirably large, number rows is deleted. One can write a delete that
stops after "n" rows using the following logic:

Data Manipulation Language 69

Graeme Birchall ©

o Inafullselect, retrieve the first "n" rows that you want to delete.
o Delete all rows returned by the fullselect.

In the following example, those five employees with the highest salary are deleted:

DELETE

FROM (SELECT *
FROM staff
ORDER BY salary DESC
FETCH FIRST 5 ROWS ONLY
)AS xXxx;

Figure 184, Delete first "'n" rows

WARNING: The above statement may delete five random rows — if there is more than
one row with the same salary. To prevent this, ensure that the list of columns provided in
the ORDER BY identify each matching row uniquely.

Select DML Changes

One often needs to know what data a particular insert, update, or delete statement changed.
For example, one may need to get the key (e.g. invoice number) that was generated on the fly
(using an identity column - see page 277) during an insert, or get the set of rows that were
removed by a delete. All of this can be done by coding a special kind of select.

Select DML Syntax

D SELECT - column-list —— FROM <EOLD TABLE —(—DMLstmt —) —

NEW
FINAL

} LWHERE __ predicates] LORDER BY T sort-columns I 4
INPUT SEQUENCE J

Figure 185, Select DML statement syntax
Table Types

o OLD: Returns the state of the data prior to the statement being run. This is allowed for an
update and a delete.

o NEW: Returns the state of the data prior to the application of any AFTER triggers or ref-
erential constraints. Data in the table will not equal what is returned if it is subsequently
changed by AFTER triggers or R.I. This is allowed for an insert and an update.

o FINAL: Returns the final state of the data. If there AFTER triggers that alter the target
table after running of the statement, an error is returned. Ditto for a view that is defined
with an INSTEAD OF trigger. This is allowed for an insert and an update.

Usage Notes
e Only one of the above tables can be listed in the FROM statement.
e The table listed in the FROM statement cannot be given a correlation name.

e No other table can be listed (i.e. joined to) in the FROM statement. One can reference
another table in the SELECT list (see example page 73), or by using a sub-query in the
predicate section of the statement.

70 Select DML Changes

DB2 V9.7 Cookbook ©

o The SELECT statement cannot be embedded in a nested-table expression.
e The SELECT statement cannot be embedded in an insert statement.

e To retrieve (generated) columns that are not in the target table, list them in an INCLUDE
phrase in the DML statement. This technique can be used to, for example, assign row
numbers to the set of rows entered during an insert.

o Predicates (on the select) are optional. They have no impact on the underlying DML.

e The INPUT SEQUENCE phrase can be used in the ORDER BY to retrieve the rows in
the same sequence as they were inserted. It is not valid in an update or delete.

e The usual scalar functions, OLAP functions, and column functions, plus the GROUP BY
phrase, can be applied to the output - as desired.

Insert Examples

The example below selects from the final result of the insert:

ANSWER
SELECT empno EMPNO PRJ ACT
,projno AS prgy mmmm—— ———
,actno AS act 200000 ABC 10
FROM FINAL TABLE 200000 DEF 10

(INSERT INTO emp_act_copy
VALUES ("200000%,"ABC",10 ,1,"2003-10-22","2003-11-24")
,("200000", "DEF*,10 ,1,"2003-10-22","2003-11-24"))
ORDER BY 1,2,3;
Figure 186, Select rows inserted

One way to retrieve the new rows in the order that they were inserted is to include a column
in the insert statement that is a sequence number:

SELECT empno ANSWER
,projno AS prj
,actno AS act EMPNO PRJ ACT R#
,2yrow# ASr#¥ mmmmmm —mm e
FROM FINAL TABLE 300000 77z 999 1

(INSERT INTO emp_act_copy (empno, projno, actno) 300000 VW 111 2
INCLUDE (row# SMALLINT)
VALUES (*300000%,"ZZZ",999,1)
,("300000", "VW*",111,2))
ORDER BY row#;

Figure 187, Include column to get insert sequence

The next example uses the INPUT SEQUENCE phrase to select the new rows in the order
that they were inserted. Row numbers are assigned to the output:

SELECT empno ANSWER
,projno AS prj
,actno AS act EMPNO PRJ ACT R#
,ROW_NUMBER() OVERQ AS r# ——mmmm o —m -
FROM FINAL TABLE 400000 77z 999 1

(INSERT INTO emp_act_copy (empno, projno, actno) 400000 VvV 111 2
VALUES ("400000%,"ZZZ",999)
, (74000007, "VVWW*",111))
ORDER BY INPUT SEQUENCE;

Figure 188, Select rows in insert order

NOTE: The INPUT SEQUENCE phrase only works in an insert statement. It can be listed
in the ORDER BY part of the statement, but not in the SELECT part. The only way to dis-
play the row number of each row inserted is to explicitly assign row numbers.

Data Manipulation Language 71

Graeme Birchall ©

In the next example, the only way to know for sure what the insert has done is to select from
the result. This is because the select statement (in the insert) has the following unknowns:

e We do not, or may not, know what ID values were selected, and thus inserted.
e The project-number is derived from the current-time special register.
e The action-number is generated using the RAND function.

Now for the insert:

SELECT empno ANSWER
,projno AS prj
,actno AS act EMPNO PRJ ACT R#
,ROW_NUMBER() OVERQ) AS r# —————— ——— -— -
FROM NEW TABLE 600010 1 59 1
(INSERT INTO emp_act _copy (empno, actno, projno) 600020 563 59 2
SELECT LTRIM(CHAR(id + 600000)) 600030 193 59 3

,SECOND(CURRENT TIME)
,CHAR(SMALLINT(RAND(1) * 1000))
FROM staff
WHERE id < 40)
ORDER BY INPUT SEQUENCE;

Figure 189, Select from an insert that has unknown values
Update Examples

The statement below updates the matching rows by a fixed amount. The select statement gets
the old EMPTIME values:

SELECT empno ANSWER
,projno AS prj
,emptime AS etime EMPNO PRJ ETIME
FROM oLb TABLE ~ mmmmme e e
(UPDATE emp_act_copy 200000 ABC 1.00
SET emptime = emptime * 2 200000 DEF 1.00
WHERE empno = "200000%)

ORDER BY projno;
Figure 190, Select values - from before update

The next statement updates the matching EMPTIME values by random amount. To find out
exactly what the update did, we need to get both the old and new values. The new values are
obtained by selecting from the NEW table, while the old values are obtained by including a

column in the update which is set to them, and then subsequently selected:

SELECT projno AS prj ANSWER
,old_t AS old_t
,emptime AS new_t PRJ OLD_T NEW_T

FROM NEW TABLE e e

(UPDATE emp_act_copy ABC 2.00 0.02
INCLUDE (old_t DECIMAL(5,2)) DEF 2.00 11.27
SET emptime = emptime * RAND(1) * 10
,old t emptime
WHERE empno "200000")
ORDER BY 1;

Figure 191, Select values - before and after update

Delete Examples

The following example lists the rows that were deleted:

72 Select DML Changes

DB2 V9.7 Cookbook ©

SELECT projno AS prj ANSWER
,actno AS act =======
FROM OLD TABLE PRJ ACT
(DELETE e e
FROM emp_act_copy VW 111
WHERE empno = "300000%) ZZZ 999

ORDER BY 1,2;
Figure 192, List deleted rows

The next query deletes a set of rows, and assigns row-numbers (to the included field) as the
rows are deleted. The subsequent query selects every second row:

SELECT empno ANSWER
,projno
,actno AS act EMPNO PROJNO ACT R#
, Fow# ASr# e mmmeee e =
FROM OLD TABLE 000260 AD3113 70 2
(DELETE 000260 AD3113 80 4
FROM emp_act_copy 000260 AD3113 180 6
INCLUDE (row# SMALLINT)
SET row# = ROW_NUMBER() OVERQ

WHERE empno = "000260")
WHERE row# = row#t / 2 * 2
ORDER BY 1,2,3;

Figure 193, Assign row numbers to deleted rows

NOTE: Predicates (in the select result phrase) have no impact on the range of rows
changed by the underlying DML, which is determined by its own predicates.

One cannot join the table generated by a DML statement to another table, nor include it in a
nested table expression, but one can join in the SELECT phrase. The following delete illus-
trates this concept by joining to the EMPLOYEE table:

SELECT empno ANSWER
,(SELECT [lastname
FROM (SELECT empno AS e# EMPNO LASTNAME PROJNO ACT
,lastname = = —————— ———————
FROM employee 000010 HAAS AD3100 10
)AS xxx 000010 HAAS MA2100 10
WHERE empno = e#) 000010 HAAS MA2110 10
,projno AS projno 000020 THOMPSON PL2100 30
,actno AS act 000030 KWAN 1F1000 10
FROM OLD TABLE
(DELETE

FROM emp_act_copy
WHERE empno < "0001%)
ORDER BY 1,2,3
FETCH FIRST 5 ROWS ONLY;

Figure 194, Join result to another table

Observe above that the EMPNO field in the EMPLOYEE table was be renamed (before doing
the join) using a nested table expression. This was necessary because one cannot join on two
fields that have the same name, without using correlation names. A correlation name cannot
be used on the OLD TABLE, so we had to rename the field to get around this problem.

|
Merge

The MERGE statement is a combination insert and update, or delete, statement on steroids. It
can be used to take the data from a source table, and combine it with the data in a target table.

Data Manipulation Language 73

Graeme Birchall ©

The qualifying rows in the source and target tables are first matched by unique key value, and
then evaluated:

o If the source row is already in the target, the latter can be either updated or deleted.
o If the source row is not in the target, it can be inserted.
o If desired, a SQL error can also be generated.

Below is the basic syntax diagram:

V MERGE INTO —— table-name or view-name or (full-select) B 7] }
corr-name

V USING ——— table-name or view-name or (full-select) L] }
corr-name

V ON ———— search-conditions }

}i WHEN MATCHED THEN —— UPDATE SET... | }
LAND— search-cJ t

DELETE
SIGNAL...
WHEN NOT MATCHED THEN —— INSERT... ————
LAND* search-c J L SIGNAL... —
} r ELSE IGNORET {
Figure 195, MERGE statement syntax
Usage Rules

The following rules apply to the merge statement:
o Correlation names are optional, but are required if the field names are not unique.

o If the target of the merge is a fullselect or a view, it must allow updates, inserts, and de-
letes - as if it were an ordinary table.

e At least one ON condition must be provided.
e The ON conditions must uniquely identify the matching rows in the target table.
e Each individual WHEN check can only invoke a single modification statement.

e When a MATCHED search condition is true, the matching target row can be updated,
deleted, or an error can be flagged.

e Whena NOT MATCHED search condition is true, the source row can be inserted into
the target table, or an error can be flagged.

e When more than one MATCHED or NOT MATCHED search condition is true, the first
one that matches (for each type) is applied. This prevents any target row from being up-
dated or deleted more than once. Ditto for any source row being inserted.

o The ELSE IGNORE phrase specifies that no action be taken if no WHEN check evalu-
ates to true.

e If anerror is encountered, all changes are rolled back.

74 Merge

DB2 V9.7 Cookbook ©

o Row-level triggers are activated for each row merged, depending on the type of modifica-
tion that is made. So if the merge initiates an insert, all insert triggers are invoked. If the
same input initiates an update, all update triggers are invoked.

e Statement-level triggers are activated, even if no rows are processed. So if a merge does
either an insert, or an update, both types of statement triggers are invoked, even if all of

the input is inserted.

Sample Tables

To illustrate the merge statement, the following test tables were created and populated:

CREATE TABLE old_staff AS
(SELECT 1id, job, salary
FROM staff)

WITH NO DATA;

CREATE TABLE new_staff AS
(SELECT 1id, salary
FROM staff)

WITH NO DATA;

INSERT INTO old_staff
SELECT id, job, salary

FROM staff

WHERE id BETWEEN 20 and 40;

Figure 196, Sample tables for merge

Update or Insert Merge

WHERE

OLD_STAFF

|20]Sales]|78171.25]
[30[Mgr [|77506.75]
40]Sales|78006.00

| |
o +

NEW_STAFF

130]7750.67]
[40[7800.60]

[50]8065.98]
S +

INSERT INTO new_staff
SELECT id, salary / 10

FROM staff

id BETWEEN 30 and 50;

The next statement merges the new staff table into the old, using the following rules:

e The two tables are matched on common ID columns.

o If arow matches, the salary is updated with the new value.

o If there is no matching row, a new row is inserted.

Now for the code:

MERGE INTO old_staff oo
USING new_staff nn
ON oo.id = nn.id
WHEN MATCHED THEN
UPDATE
SET oo.salary = nn.salary
WHEN NOT MATCHED THEN
INSERT
VALUES (nn.id,"?",nn_salary);

OLD_STAFF

|20]Sales]|78171.25]
[30[Mgr [|77506.75]
|40]|Sales|78006.00]

NEW_STAFF

130]7750.67]
[40[7800.60]

[50]8065.98]
S +

AFTER-MERGE

ID JOB SALARY

20 Sales 78171.25
30 Mgr 7750.67
40 Sales 7800.60
50 ? 8065.98

Figure 197, Merge - do update or insert
Delete-only Merge

The next statement deletes all matching rows:

Data Manipulation Language 75

Graeme Birchall ©

MERGE INTO old_staff oo AFTER-MERGE

USING new_staff nn

ON oo.id = nn.id 1D JOB SALARY

WHEN MATCHED THEN e e
DELETE; 20 Sales 78171.25

Figure 198, Merge - delete if match

Complex Merge

The next statement has the following options:

e The two tables are matched on common ID columns.

o If arow matches, and the old salary is < 18,000, it is updated.

e If arow matches, and the old salary is > 18,000, it is deleted.

e If no row matches, and the new ID is > 10, the new row is inserted.

e If no row matches, and (by implication) the new ID is <= 10, an error is flagged.

Now for the code:

MERGE INTO old_staff oo OLD_STAFF NEW_STAFF
USING new_staff nn Fom + +
ON oo.id = nn.id |ID]JJOB |SALARY | |ID|SALARY |
WHEN MATCHED |l--1-——- |-———-—-—- | 1I--1--——-- |
AND oo.salary < 78000 THEN |20]Sales|78171.25] |30]7750.67]
UPDATE |30|Mgr |77506.75] |40]7800.60]
SET oo.salary = nn.salary |40|Sales]78006.00] |50]8065.98]
WHEN MATCHED Fom - + +
AND oo.salary > 78000 THEN
DELETE AFTER-MERGE
WHEN NOT MATCHED
AND nn.id > 10 THEN ID JOB SALARY
INSERT e e
VALUES (nn.id,"?",nn_.salary) 20 Sales 78171.25
WHEN NOT MATCHED THEN 30 Mgr 7750.67
SIGNAL SQLSTATE "70001* 50 ? 8065.98

SET MESSAGE_TEXT = "New ID <= 10";
Figure 199, Merge with multiple options

The merge statement is like the case statement (see page 50) in that the sequence in which
one writes the WHEN checks determines the processing logic. In the above example, if the
last check was written before the prior, any non-match would generate an error.

Using a Fullselect

The following merge generates an input table (i.e. fullselect) that has a single row containing
the MAX value of every field in the relevant table. This row is then inserted into the table:

MERGE INTO old_staff AFTER-MERGE
USING
(SELECT MAX(id) + 1 AS max_id ID JOB SALARY
,MAX(job) AS max_job —m e e
,MAX(salary) AS max_sal 20 Sales 78171.25
FROM old_staff 30 Mgr 77506.75
)AS mx 40 Sales 78006.00
ON id = max_id 41 Sales 78171.25
WHEN NOT MATCHED THEN
INSERT

VALUES (max_id, max_job, max_sal);
Figure 200, Merge MAX row into table

Here is the same thing written as a plain on insert:

76 Merge

DB2 V9.7 Cookbook ©

INSERT INTO old_staff

SELECT MAX(id) + 1 AS max_id
,MAX(job) AS max_job
,MAX(salary) AS max_sal

FROM old_staff;

Figure 201, Merge logic - done using insert

Use a fullselect on the target and/or source table to limit the set of rows that are processed
during the merge:

MERGE INTO OLD_STAFF NEW_STAFF
(SELECT * B it + e +
FROM old_staff |ID]JJOB |SALARY | |JID]SALARY |
WHERE id < 40 |--1--—- |-------—- I 1--1------- |
)AS oo |20]Sales]|78171.25] |30]7750.67]

USING [30[Mgr |77506.75] |40]7800.60]
(SELECT * |40]Sales]78006.00] |]50]8065.98]
FROM new_staff e et I +
WHERE id < 50
)AS nn AFTER-MERGE

ON oo.id = nn.id

WHEN MATCHED THEN ID JOB SALARY
DELETE e e e

WHEN NOT MATCHED THEN 20 Sales 78171.25
INSERT 40 ? 7800.60
VALUES (nn.id,"?",nn.salary); 40 Sales 78006.00

Figure 202, Merge using two fullselects
Observe that the above merge did the following:
e The target row with an ID of 30 was deleted - because it matched.

e The target row with an ID of 40 was not deleted, because it was excluded in the fullselect
that was done before the merge.

e The source row with an ID of 40 was inserted, because it was not found in the target full-
select. This is why the base table now has two rows with an 1D of 40.

e The source row with an ID of 50 was not inserted, because it was excluded in the fullse-
lect that was done before the merge.
Listing Columns

The next example explicitly lists the target fields in the insert statement - so they correspond
to those listed in the following values phrase:

MERGE INTO old_staff oo AFTER-MERGE

USING new_staff nn

ON oo.id = nn.id 1D JOB SALARY

WHEN MATCHED THEN e e
UPDATE 20 Sales 78171.25
SET (salary,job) = (1234,"?") 30 ? 1234.00

WHEN NOT MATCHED THEN 40 ? 1234.00
INSERT (id,salary, job) 50 ? 5678.90

VALUES (id,5678.9,7?");
Figure 203, Listing columns and values in insert

Data Manipulation Language 77

78

Graeme Birchall ©

Merge

DB2 V9.7 Cookbook ©

Compound SQL

A compound statement groups multiple independent SQL statements into a single executable.
In addition, simple processing logic can be included to create what is, in effect, a very basic
program. Such statements can be embedded in triggers, SQL functions, SQL methods, and
dynamic SQL statements.

Introduction

A compound SQL statement begins with an (optional) name, followed by the variable decla-
rations, followed by the procedural logic:

» Tiapa BEGIN ATOMIC >

) J)
ECLARE | varname datatype [~ DEFAULTNULL — |

__DEFAULT default value —

VALUE
—SQLSTATE QW
DECLARE ———cond-name string constant

< o]
FSQL procedure statement; ——END L label: ! N

Figure 204, Compound SQL Statement syntax

Below is a compound statement that reads a set of rows from the STAFF table and, for each
row fetched, updates the COMM field to equal the current fetch number.

BEGIN ATOMIC
DECLARE cntr SMALLINT DEFAULT 1;

FOR V1 AS
SELECT id as idval
FROM staff
WHERE id < 80
ORDER BY id

DO
UPDATE staff
SET comm = cntr
WHERE id = idval;
SET cntr = cntr + 1;

END FOR;

END

Figure 205, Sample Compound SQL statement

Statement Delimiter

DB2 SQL does not come with a designated statement delimiter (terminator), though a semi-
colon is typically used. However, a semi-colon cannot be used in a compound SQL statement
because that character is used to differentiate the sub-components of the statement.

In DB2BATCH, one can run the SET DELIMITER command (intelligent comment) to use
something other than a semi-colon. The following script illustrates this usage:

Compound SQL 79

Graeme Birchall ©

--#SET DELIMITER !
SELECT NAME FROM STAFF WHERE id = 10!
--#SET DELIMITER ;

SELECT NAME FROM STAFF WHERE id = 20;
Figure 206, Set Delimiter example

In the DB2 command processor one can do the same thing using the terminator keyword:
—-—#SET TERMINATOR !

SELECT NAME FROM STAFF WHERE id = 10!
--#SET TERMINATOR ;

SELECT NAME FROM STAFF WHERE id = 20;
Figure 207, Set Terminator example

SQL Statement Usage

When used in dynamic SQL, the following control statements can be used:
e FOR statement

e GET DIAGNOSTICS statement

e |F statement

e ITERATE statement

e LEAVE statement

e SIGNAL statement

e WHILE statement

NOTE: There are many more PSM control statements than what is shown above. But only
these ones can be used in Compound SQL statements.

The following SQL statements can be issued:

o fullselect
e UPDATE
e DELETE
e INSERT

e SET variable statement

DECLARE Variables

All variables have to be declared at the start of the compound statement. Each variable must
be given a name and a type and, optionally, a default (start) value.

80 SQL Statement Usage

DB2 V9.7 Cookbook ©

BEGIN ATOMIC
DECLARE aaa, bbb, ccc SMALLINT DEFAULT 1;
DECLARE ddd CHAR(10) DEFAULT NULL;
DECLARE eee INTEGER;
SET eee = aaa +
UPDATE staff

[

SET comm = aaa

,salary = bbb

,years = eee

WHERE id = 10;
END

Figure 208, DECLARE examples

FOR Statement
The FOR statement executes a group of statements for each row fetched from a query.

’Fﬁ, FOR ~for-loop-name — AS

label: P Lt:ursor-name —DEFAULT — }

Hselect-stmt — DO iSQL-procedure-stmt; 1 END FOR Iﬁbl—N
abel:

Figure 209, FOR statement syntax

In the next example one row is fetched per year of service (for selected years) in the STAFF
table. That row is then used to do two independent updates to the three matching rows:

BEGIN ATOMIC BEFORE
FOR V1 AS
SELECT years AS yr_num 1D SALARY COMM
,max(id) AS max_id 0@ e
FROM staff 180 37009.75 236.50
WHERE years < 4 230 83369.80 189.65
GROUP BY years 330 49988.00 55.50
ORDER BY years
DO
UPDATE staff AFTER
SET salary = salary /7 10
WHERE id = max_id; 1D SALARY COMM
UPDATE staff e e
set comm =0 180 37009.75 0.00
WHERE years = yr_num; 230 8336.98 0.00
END FOR; 330 4998.80 0.00

END
Figure 210, FOR statement example
GET DIAGNOSTICS Statement

The GET DIAGNOSTICS statement returns information about the most recently run SQL
statement. One can either get the number of rows processed (i.e. inserted, updated, or de-
leted), or the return status (for an external procedure call).

PP GET DIAGNOSTICS — SQL-var-name — =] ROW_counT TN
RETURN_COUNT

Figure 211, GET DIAGNOSTICS statement syntax

In the example below, some number of rows are updated in the STAFF table. Then the count
of rows updated is obtained, and used to update a row in the STAFF table:

Compound SQL 81

Graeme Birchall ©

BEGIN ATOMIC
DECLARE numrows INT DEFAULT O;
UPDATE staff
SET salary = 12345
WHERE id < 100;
GET DIAGNOSTICS numrows = ROW_COUNT;
UPDATE staff
SET salary = numrows
WHERE id = 10;

END

Figure 212, GET DIAGNOSTICS statement example

IF Statement

The IF statement is used to do standard if-then-else branching logic. It always begins with an
IF THEN statement and ends with and END IF statement.

»* IF — seach conditon — THEN iSQL procedure statement ; ‘4’

iELSEIF — seach condition ——THEN iSQL procedure statement ; ‘

} s J END IF N

~ ELSE SQL procedure statement ;
Figure 213, IF statement syntax

The next example uses if-then-else logic to update one of three rows in the STAFF table, de-
pending on the current timestamp value:

BEGIN ATOMIC
DECLARE cur INT;
SET cur = MICROSECOND(CURRENT TIMESTAMP);
IF cur > 600000 THEN
UPDATE staff
SET name = CHAR(cur)
WHERE id = 10;
ELSEIF cur > 300000 THEN
UPDATE staff
SET name
WHERE id
ELSE
UPDATE staff
SET name
WHERE id
END IF;
END

Figure 214, IF statement example

CHAR(cur)
20;

CHAR(cur)
30;

ITERATE Statement
The ITERATE statement causes the program to return to the beginning of the labeled loop.

}F ITERATE label N

Figure 215, ITERATE statement syntax

In next example, the second update statement will never get performed because the ITERATE
will always return the program to the start of the loop:

82 SQL Statement Usage

DB2 V9.7 Cookbook ©

BEGIN ATOMIC

DECLARE cntr INT DEFAULT O;

whileloop:

WHILE cntr < 60 DO
SET cntr = cntr + 10;
UPDATE staff
SET salary = cntr
WHERE id = cntr;
ITERATE whileloop;
UPDATE staff

SET comm =cntr + 1
WHERE id = cntr;
END WHILE;

END
Figure 216, ITERATE statement example

LEAVE Statement
The LEAVE statement exits the labeled loop.

PP— LEAVE — lavel X

Figure 217, LEAVE statement syntax

In the next example, the WHILE loop would continue forever, if left to its own devices. But
after some random number of iterations, the LEAVE statement will exit the loop:

BEGIN ATOMIC
DECLARE cntr INT DEFAULT 1;
whileloop:
WHILE 1 <> 2 DO
SET cntr = cntr + 1;
IF RANDQ) > 0.99 THEN
LEAVE whileloop;
END IF;
END WHILE;
UPDATE staff
SET salary = cntr
WHERE id = 10;
END

Figure 218, LEAVE statement example

SIGNAL Statement

The SIGNAL statement is used to issue an error or warning message.

VALUE
}F SIGNAL ‘ESQLSTATE [1 sqlstate string

condition-name

LSET — MESSAGE_TEXT __ = _[van'able-name j—‘ N

diagnostic-string

v

Figure 219, SIGNAL statement syntax

The next example loops a random number of times, and then generates an error message us-
ing the SIGNAL command, saying how many loops were done:

Compound SQL

Graeme Birchall ©

BEGIN ATOMIC

DECLARE cntr INT DEFAULT 1;

DECLARE emsg CHAR(20);

whilleloop:

WHILE RAND() < .99 DO

SET cntr = cntr + 1;

END WHILE;

SET emsg = "#loops: " || CHAR(cntr);

SIGNAL SQLSTATE "75001° SET MESSAGE_TEXT = emsg;
END

Figure 220, SIGNAL statement example

WHILE Statement

The WHILE statement repeats one or more statements while some condition is true.

}}—mWHILE —seach-condition —DO SQL-procedure-stmt ; J_}
P ENDWHILE v v

Figure 221, WHILE statement syntax

The next statement has two nested WHILE loops, and then updates the STAFF table:

BEGIN ATOMIC
DECLARE c1, C2 INT DEFAULT 1;
WHILE cl1 < 10 DO
WHILE c2 < 20 DO
SET c2 = c2 + 1;

END WHILE;
SET ¢cl1 = cl1 + 1;
END WHILE;

UPDATE staff

SET salary = cl
,comm = c2
WHERE id = 10;

END
Figure 222, WHILE statement example

Other Usage

The following DB2 objects also support the language elements described above:
e Triggers.

e Stored procedures.

e User-defined functions.

e Embedded compound SQL (in programs).

Some of the above support many more language elements. For example stored procedures
that are written in SQL also allow the following: ASSOCIATE, CASE, GOTO, LOOP, RE-
PEAT, RESIGNAL, and RETURN.

Test Query

To illustrate some of the above uses of compound SQL, we are going to get from the STAFF
table a complete list of departments, and the number of rows in each department. Here is the
basic query, with the related answer:

84 Other Usage

DB2 V9.7 Cookbook ©

SELECT dept ANSWER
,count(*) as #rows ==========
FROM staff DEPT #ROWS
GROUP BY dept e e
ORDER BY dept; 10 4
15 4
20 4
38 5
42 4
51 5
66 5
84 4

Figure 223, List departments in STAFF table

If all you want to get is this list, the above query is the way to go. But we will get the same
answer using various other methods, just to show how it can be done using compound SQL
statements.

Trigger

One cannot get an answer using a trigger. All one can do is alter what happens during an in-
sert, update, or delete. With this in mind, the following example does the following:

e Sets the statement delimiter to an "!". Because we are using compound SQL inside the
trigger definition, we cannot use the usual semi-colon.

e Creates a new table (note: triggers are not allowed on temporary tables).

o Creates an INSERT trigger on the new table. This trigger gets the number of rows per
department in the STAFF table - for each row (department) inserted.

o Inserts a list of departments into the new table.
e Selects from the new table.

Now for the code:

Compound SQL

85

Graeme Birchall ©

--#SET DELIMITER ! IMPORTANT
CREATE TABLE dpt This example
(dept SMALLINT NOT NULL uses an "I
,#names SMALLINT as the stmt
,PRIMARY KEY(dept))! delimiter.
COMMIT!

CREATE TRIGGER dptl AFTER INSERT ON dpt
REFERENCING NEW AS NNN
FOR EACH ROW
MODE DB2SQL
BEGIN ATOMIC
DECLARE namecnt SMALLINT DEFAULT O;
FOR getnames AS
SELECT COUNT(*) AS #n

FROM staff
WHERE dept = nnn.dept
DO
SET namecnt = #n;
END FOR;
UPDATE dpt
SET #names = namecnt
WHERE dept = nnn.dept; ANSWER
END! —————————=—=
COMMIT! DEPT #NAMES
INSERT INTO dpt (dept) 10 4
SELECT DISTINCT dept 15 4
FROM staff! 20 4
COMMIT! 38 5
42 4
SELECT * 51 5
FROM dpt 66 5
ORDER BY dept! 84 4

Figure 224, Trigger with compound SQL

NOTE: The above code was designed to be run in DB2BATCH. The "set delimiter" nota-
tion will probably not work in other environments.

Scalar Function

One can do something very similar to the above that is almost as stupid using a user-defined
scalar function, that calculates the number of rows in a given department. The basic logic will
go as follows:

e Set the statement delimiter to an "1".
e Create the scalar function.
e Runaquery that first gets a list of distinct departments, then calls the function.

Here is the code:

86 Other Usage

DB2 V9.7 Cookbook ©

--#SET DELIMITER !

CREATE FUNCTION dptl (deptin SMALLINT)
RETURNS SMALLINT
BEGIN ATOMIC
DECLARE num_names SMALLINT;
FOR getnames AS
SELECT COUNT(*) AS #n

FROM staff
WHERE dept = deptin
DO
SET num_names = #n;
END FOR;
RETURN num_names;
END!
COMMIT!

SELECT XXX_*
,dptl(dept) as #names
FROM (SELECT = dept

FROM staff
GROUP BY dept
)AS XXX

ORDER BY dept!
Figure 225, Scalar Function with compound SQL

IMPORTANT

This example
uses an "I
as the stmt
delimiter.

ANSWER

w
¢4}
rOrhOrR~D

Because the query used in the above function will only ever return one row, we can greatly

simplify the function definition thus:
--#SET DELIMITER !

CREATE FUNCTION dptl (deptin SMALLINT)
RETURNS SMALLINT
BEGIN ATOMIC
RETURN
SELECT COUNT(*)
FROM staff
WHERE dept = deptin;
END!
COMMIT!

SELECT XXX .*
,dptl(dept) as #names
FROM (SELECT = dept

FROM staff
GROUP BY dept
)AS XXX

ORDER BY dept!
Figure 226, Scalar Function with compound SQL

IMPORTANT

This example
uses an "I
as the stmt
delimiter.

In the above example, the RETURN statement is directly finding the one matching row, and

then returning it to the calling statement.

Table Function

Below is almost exactly the same logic, this time using a table function:

Compound SQL

87

Graeme Birchall ©

-—#SET DELIMITER ! IMPORTANT
CREATE FUNCTION dpt2 O This example
RETURNS TABLE (dept SMALLINT uses an """
,#names SMALLINT) as the stmt
BEGIN ATOMIC delimiter.
RETURN
SELECT dept
,count(™®) ANSWER
FROM staff ————————=—=—=
GROUP BY dept DEPT #NAMES
ORDER BY dept; e e
END! 10 4
COMMIT! 15 4
20 4
-—#SET DELIMITER ; 38 5
42 4
SELECT * 51 5
FROM TABLE(dpt2()) T1 66 5
ORDER BY dept; 84 4

Figure 227, Table Function with compound SQL

88 Other Usage

DB2 V9.7 Cookbook ©

Column Functions

Introduction

By themselves, column functions work on the complete set of matching rows. One can use a
GROUP BY expression to limit them to a subset of matching rows. One can also use them in
an OLAP function to treat individual rows differently.

WARNING: Be very careful when using either a column function, or the DISTINCT clause,
in a join. If the join is incorrectly coded, and does some form of Cartesian Product, the col-
umn function may get rid of the all the extra (wrong) rows so that it becomes very hard to
confirm that the answer is incorrect. Likewise, be appropriately suspicious whenever you
see that someone (else) has used a DISTINCT statement in a join. Sometimes, users add
the DISTINCT clause to get rid of duplicate rows that they didn't anticipate and don't un-
derstand.

Column Functions, Definitions

ARRAY_AGG

Aggregate the set of elements in an array. If an ORDER BY is provided, it determines the
order in which the elements are entered into the array.
e

F ARRAY_AGG(—expression

’ ASC
L ORDER BY £sort-key e~
DESC

Figure 228, ARRAY_AGG function syntax

AVG

Get the average (mean) value of a set of non-null rows. The columns(s) must be numeric.
ALL is the default. If DISTINCT is used duplicate values are ignored. If no rows match, the
null value is returned.

ALL
F AVG [expression
(L DISTINCT ! P) }
Figure 229, AVG function syntax
SELECT AVG(dept) AS al ANSWER
LAVG(ALL dept) AS a2
LAVG(DISTINCT dept) AS a3 Al A2 A3 A4 A5
,AVG(dept/10) AS a4 —em —m -
LAVG(dept)/10 AS a5 41 41 40 3 4

FROM staff
HAVING AVG(dept) > 40;

Figure 230, AVG function examples

WARNING: Observe columns A4 and A5 above. Column A4 has the average of each
value divided by 10. Column A5 has the average of all of the values divided by 10. In the
former case, precision has been lost due to rounding of the original integer value and the
result is arguably incorrect. This problem also occurs when using the SUM function.

Column Functions 89

Graeme Birchall ©

Averaging Null and Not-Null Values

Some database designers have an intense and irrational dislike of using nullable fields. What
they do instead is define all columns as not-null and then set the individual fields to zero (for
numbers) or blank (for characters) when the value is unknown. This solution is reasonable in
some situations, but it can cause the AVG function to give what is arguably the wrong an-
swer.

One solution to this problem is some form of counseling or group therapy to overcome the
phobia. Alternatively, one can use the CASE expression to put null values back into the an-
swer-set being processed by the AVG function. The following SQL statement uses a modified
version of the IBM sample STAFF table (all null COMM values were changed to zero) to
illustrate the technique:

UPDATE staff

SET comm = 0
WHERE comm 1S NULL;

SELECT AVG(salary) AS salary ANSWER
,AVG(comm) AS comml
,AVG(CASE comm SALARY COMM1 COMM2
WHEN O THEN NULL —mmmmmmm
ELSE comm 67932.78 351.98 513.31

END) AS comm2
FROM staff;

UPDATE staff
SET comm = NULL
WHERE comm = O;

Figure 231, Convert zero to null before doing AVG

The COMMZ2 field above is the correct average. The COMML field is incorrect because it has
factored in the zero rows with really represent null values. Note that, in this particular query,
one cannot use a WHERE to exclude the "zero" COMM rows because it would affect the av-
erage salary value.

Dealing with Null Output

The AVG, MIN, MAX, and SUM functions almost always return a null value when there are
no matching rows (see page 428 for exceptions). One can use the COALESCE function, or a
CASE expression, to convert the null value into a suitable substitute. Both methodologies are
illustrated below:

SELECT COUNT(*) AS cl ANSWER
,AVG(salary) AS al ===========
,COALESCE(AVG(salary),0) AS a2 Cl1 Al A2 A3
,CASE N —

WHEN AVG(salary) 1S NULL THEN O 0 - 00
ELSE AVG(salary)
END AS a3

FROM staff
WHERE id < 10;

Figure 232, Convert null output (from AVG) to zero
AVG Date/Time Values

The AVG function only accepts numeric input. However, one can, with a bit of trickery, also
use the AVG function on a date field. First convert the date to the number of days since the
start of the Current Era, then get the average, then convert the result back to a date. Please be
aware that, in many cases, the average of a date does not really make good business sense.
Having said that, the following SQL gets the average birth-date of all employees:

90 Column Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT AVG(DAYS(birthdate)) ANSWER
,DATE(AVG(DAYS(birthdate)))
FROM employee; 1 2

721092 1975-04-14
Figure 233, AVG of date column

Time data can be manipulated in a similar manner using the MIDNIGHT_SECONDS func-
tion. If one is really desperate (or silly), the average of a character field can also be obtained
using the ASCII and CHR functions.

Average of an Average

In some cases, getting the average of an average gives an overflow error. Inasmuch as you
shouldn't do this anyway, it is no big deal:

SELECT AVG(avg_sal) AS avg_avg ANSWER
FROM (SELECT dept
,AVG(salary) AS avg_sal <Overflow error>
FROM staff
GROUP BY dept
)AS XxX;

Figure 234, Select average of average

CORRELATION

I don't know a thing about statistics, so | haven't a clue what this function does. But | do know
that the SQL Reference is wrong - because it says the value returned will be between 0 and 1.
| found that it is between -1 and +1 (see below). The output type is float.

}—[CORRELATION (expression , expression) }
CORR
Figure 235, CORRELATION function syntax

WITH templ(coll, col2, col3, col4) AS ANSWER
(VALUES (O , 0 , 0 , RAND(1))
UNION ALL COR11 COR12 COR23 COR34
SELECT coll +1 e e e e
,col2 - 1 1.000 -1.000 -0.017 -0.005
,RANDQ)
,RANDO

FROM templ

WHERE coll <= 1000

)

SELECT DEC(CORRELATION(coll,col1),5,3) AS corll
,DEC(CORRELATION(col1,col2),5,3) AS corl2
,DEC(CORRELATION(col2,col3),5,3) AS cor23
,DEC(CORRELATION(col3,col4),5,3) AS cor34

FROM templ;

Figure 236, CORRELATION function examples

COUNT

Get the number of values in a set of rows. The result is an integer. The value returned depends
upon the options used:

e COUNT(*) gets a count of matching rows.
o COUNT((expression) gets a count of rows with a non-null expression value.

e COUNT(ALL expression) is the same as the COUNT (expression) statement.

Column Functions 91

Graeme Birchall ©

o COUNT(DISTINCT expression) gets a count of distinct non-null expression values.

ALL

) 4

>447 COUNT [expression
(L DISTINCT ! P
*
Figure 237, COUNT function syntax
SELECT COUNT(*) AS cil
,COUNT(INT(comm/10)) AS c2
,COUNT(ALL INT(comm/10)) AS c3
,COUNT(DISTINCT INT(comm/10)) AS c4
,COUNT(DISTINCT INT(comm)) AS c5
,COUNT(DISTINCT INT(comm))/10 AS c6

FROM staff;
Figure 238, COUNT function examples

ANSWER

Cl1 C2 C3 C4 C5 C6

3524 24 19 24 2

There are 35 rows in the STAFF table (see C1 above), but only 24 of them have non-null

commission values (see C2 above).

If no rows match, the COUNT returns zero - except when the SQL statement also contains a

GROUP BY. In this latter case, the result is no row.

SELECT "NO GP-BY®"™ AS cl
,COUNT (™) AS c2

FROM staff

WHERE id = -1

UNION

SELECT "GROUP-BY®" AS ci1
,COUNT(*) AS c2

FROM staff

WHERE id = -1

GROUP BY dept;

Figure 239, COUNT function with and without GROUP BY

COUNT_BIG

ANSWER
ca c2
NO GP-BY O

Get the number of rows or distinct values in a set of rows. Use this function if the result is too
large for the COUNT function. The result is of type decimal 31. If the DISTINCT option is
used both duplicate and null values are eliminated. If no rows match, the result is zero.

) >

ALL
F COUNT _BIG [expression
Bl L DISTINCT — P
*
Figure 240, COUNT_BIG function syntax
SELECT COUNT_BIG(*) AS c1
,COUNT_BIG(dept) AS c2
,COUNT_BIG(DISTINCT dept) AS c3
,COUNT_BIG(DISTINCT dept/10) AS c4
,COUNT_BIG(DISTINCT dept)/10 AS c5
FROM STAFF;

Figure 241, COUNT_BIG function examples

COVARIANCE

ANSWER

Cl C2 C3 C4 C5

Returns the covariance of a set of number pairs. The output type is float.

92

Column Functions, Definitions

DB2 V9.7 Cookbook ©

}—[COVARIANCE (expression , expression) }
COVAR —

Figure 242, COVARIANCE function syntax

WITH templ(cl, c2, c3, c4) AS ANSWER
(VALUES = (0 , 0 , 0 , RAND(1))
UNION ALL Covili COvi2 COv23 COov34
SELECT c2 +1 e e e
,c2 - 1 83666. -83666. -1.4689 -0.0004
L,RANDQ
,RANDO

FROM templ
WHERE c1 <= 1000

)

SELECT DEC(COVARIANCE(c1,c1),6,0) AS covll
,DEC(COVARIANCE(c1,c2),6,0) AS covl2
,DEC(COVARIANCE(c2,c3),6,4) AS cov23
,DEC(COVARIANCE(c3,c4),6,4) AS cov34

FROM templ;

Figure 243, COVARIANCE function examples

GROUPING
The GROUPING function is used in CUBE, ROLLUP, and GROUPING SETS statements t

0

identify what rows come from which particular GROUPING SET. A value of 1 indicates that

the corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

F GROUPING (

Figure 244, GROUPING function syntax

expression) }

SELECT dept ANSWER
,AVG(salary) AS salary
,GROUPING(dept) AS df DEPT SALARY DF
FROM staft¢ e
GROUP BY ROLLUP(dept) 10 83365.86
ORDER BY dept; 15 60482.33
20 63571.52
38 60457.11

A

N

A

©

a1

©

N

N

(o]
RPOOOOOOO0OO

Figure 245, GROUPING function example

NOTE: See the section titled "Group By and Having" for more information on this function.

MAX

Get the maximum value of a set of rows. The use of the DISTINCT option has no affect. If no

rows match, the null value is returned.

ALL
F MAX expression
(L__pisTINCT P) }

Figure 246, MAX function syntax

Column Functions

93

Graeme Birchall ©

SELECT MAX(dept) ANSWER
,MAX(ALL dept)
.MAX(DISTINCT dept) 1 2 3 4
.MAX(DISTINCT dept/10) -
FROM staff; 84 84 84 8

Figure 247, MAX function examples

MAX and MIN usage with Scalar Functions

Several DB2 scalar functions convert a value from one format to another, for example from
numeric to character. The function output format will not always shave the same ordering
sequence as the input. This difference can affect MIN, MAX, and ORDER BY processing.

SELECT MAX(hiredate) ANSWER
,CHAR(MAX(hiredate) ,USA)
,MAX(CHAR(hiredate,USA)) 1 2 3

FROM employee; e
2006-12-15 12/15/2006 12/15/2006

Figure 248, MAX function with dates

In the above the SQL, the second field gets the MAX before doing the conversion to character
whereas the third field works the other way round. In most cases, the later is wrong.

In the next example, the MAX function is used on a small integer value that has been con-
verted to character. If the CHAR function is used for the conversion, the output is left justi-
fied, which results in an incorrect answer. The DIGITS output is correct (in this example).

SELECT MAX(id) AS id ANSWER
LMAX(CHAR(id)) AS chr
LMAX(DIGITS(id)) AS dig ID CHR DIG

FROM stafFF; e e e
350 90 00350

Figure 249, MAX function with numbers, 1 of 2

The DIGITS function can also give the wrong answer - if the input data is part positive and
part negative. This is because this function does not put a sign indicator in the output.

SELECT MAX(id - 250) AS id ANSWER
,MAX(CCHAR(id = 250)) AS chr
MAX(DIGITS(id - 250)) AS dig ID CHR DIG

FROM staff;
100 90 0000000240

Figure 250, MAX function with numbers, 2 of 2

WARNING: Be careful when using a column function on a field that has been converted
from number to character, or from date/time to character. The result may not be what you
intended.

MIN

Get the minimum value of a set of rows. The use of the DISTINCT option has no affect. If no
rows match, the null value is returned.

ALL
F MIN [expression
(L DISTINCT ! P) }
Figure 251, MIN function syntax
SELECT MIN(dept) ANSWER
L,MINCALL dept)
.MIN(DISTINCT dept) 1 2 3 4
L,MIN(DISTINCT dept/10) ——— e e o
FROM staff; 10 10 10 1

Figure 252, MIN function examples

94 Column Functions, Definitions

DB2 V9.7 Cookbook ©

Regression Functions

The various regression functions support the fitting of an ordinary-least-squares regression
line of the formy =a * x + b to a set of number pairs.

V— REGR_AVGX — — (—— expression, expression —) —}
—— REGR_AVGY
—— REGR_COUNT
REGR_INTERCEPT
AI:: REGR_ICPT 4444;:]7
I REGR_R2
—— REGR_SLOPE
—— REGR_SXX
—— REGR_SXY
L REGR_SYY
Figure 253, REGRESSION functions syntax

Functions

e REGR_AVGX returns a quantity that than can be used to compute the validity of the re-
gression model. The output is of type float.

e REGR_AVGY (see REGR_AVGX).

e REGR_COUNT returns the number of matching non-null pairs. The output is integer.
o REGR_INTERCEPT returns the y-intercept of the regression line.

o REGR_R?2 returns the coefficient of determination for the regression.

o REGR_SLOPE returns the slope of the line.

e REGR_SXX (see REGR_AVGX).

e REGR_SXY (see REGR_AVGX).

e REGR_SYY (see REGR_AVGX).

See the IBM SQL Reference for more details on the above functions.

ANSWERS
SELECT DEC(REGR_SLOPE(bonus,salary) ,7,5) AS r_slope 0.00247
,DEC(REGR_INTERCEPT(bonus,salary),7,3) AS r_icpt 644 .862
, INT(REGR_COUNT (bonus,salary)) AS r_count 5
, INT(REGR_AVGX(bonus,salary)) AS r_avgx 70850
» INT(REGR_AVGY (bonus,salary)) AS r_avgy 820
,DEC(REGR_SXX(bonus,salary) ,b10) AS r_sxx 8784575000
» INT(REGR_SXY (bonus, salary)) AS r_sxy 21715000
, INT(REGR_SYY(bonus,salary)) AS r_syy 168000

FROM employee
WHERE workdept = "A00";

Figure 254, REGRESSION functions examples

STDDEV

Get the standard deviation of a set of numeric values. If DISTINCT is used, duplicate values
are ignored. If no rows match, the result is null. The output format is double.

Column Functions 95

Graeme Birchall ©

ALL

F STDDEV (EDISTINCT—J expression) }
Figure 255, STDDEV function syntax
ANSWER
Al S1 S2 S3 S4
SELECT AVG(dept) AS al 41 +2.3522355E+1 23.5 23.5 24.1

,STDDEV(dept) AS sl

,DEC(STDDEV(dept),3,1) AS s2

,DEC(STDDEV(ALL dept),3,1) AS s3

,DEC(STDDEV(DISTINCT dept),3,1) AS s4
FROM staff;

Figure 256, STDDEV function examples

SUM

Get the sum of a set of numeric values. If DISTINCT is used, duplicate values are ignored.
Null values are always ignored. If no rows match, the result is null.

ALL
F SUM [expression
(L DISTINCT ! P) }
Figure 257, SUM function syntax
SELECT SUM(dept) AS sl ANSWER
,SUMCALL dept) AS s2
,SUM(DISTINCT dept) AS s3 S1 S2 S3 S4 S5
,SUM(dept/10) AS s4 mmmm mmmm e —m o
,SUM(dept)/10 AS s5 1459 1459 326 134 145

FROM staff;
Figure 258, SUM function examples

WARNING: The answers S4 and S5 above are different. This is because the division is
done before the SUM in column S4, and after in column S5. In the former case, precision
has been lost due to rounding of the original integer value and the result is arguably incor-
rect. When in doubt, use the S5 notation.

VAR or VARIANCE

Get the variance of a set of numeric values. If DISTINCT is used, duplicate values are ig-
nored. If no rows match, the result is null. The output format is double.

ALL
VARIANCE (expression) }
’ L DISTINCT —
VAR Q

Figure 259, VARIANCE function syntax

ANSWER
Al V1 V2 V3 V4
SELECT AVG(dept) AS al 41 +5.533012244E+2 553 553 582

,VARITANCE(dept) AS si1

,DEC(VARIANCE(dept),4,1) AS s2

,DEC(VARIANCE(ALL dept),4,1) AS s3

,DEC(VARIANCE(DISTINCT dept),4,1) AS s4
FROM staff;

Figure 260, VARIANCE function examples

96 Column Functions, Definitions

DB2 V9.7 Cookbook ©

OLAP Functions

Introduction

Online Analytical Processing (OLAP) functions enable one to sequence and rank query rows.
They are especially useful when the calling program is very simple.

The Bad Old Days

To really appreciate the value of the OLAP functions, one should try to do some seemingly
trivial task without them. To illustrate this point, consider the following query:

SELECT sl1.job, sl.id, sl.salary ANSWER
FROM staff sl
WHERE sl_name LIKE "%s%" JOB ID SALARY
AND sl.id < %0 mmmmm e e
ORDER BY sl1.job Clerk 80 43504.60
,sl.1d; Mgr 10 98357.50

Mgr 50 80659.80
Figure 261, Select rows from STAFF table

Let us now add two fields to this query:
e Arunning sum of the salaries selected.
e A running count of the rows retrieved.

Adding these fields is easy - when using OLAP functions:

SELECT sl1l.job, sl.id, sl.salary
,SUM(salary) OVER(ORDER BY job, id) AS sumsal

,ROW_NUMBER() OVER(ORDER BY job, id) AS r ANSWER

FROM staff sl ======
WHERE sl.name LIKE "%s%" JOB ID SALARY SUMSAL R
AND sl.id < 90 mmmem e e -
ORDER BY sl.job Clerk 80 43504.60 43504.60 1
,sl.1d; Mgr 10 98357.50 141862.10 2

Mgr 50 80659.80 222521.90 3
Figure 262, Using OLAP functions to get additional fields

Write Query without OLAP Functions

If one does not have OLAP functions, one can still get the required answer, but the code is
quite tricky. The problem is that this seemingly simple query contains two nasty tricks:

¢ Not all of the rows in the table are selected.
e The output is ordered on two fields, the first of which is not unique.

Below is the arguably the most elegant way to write the above query without using OLAP
functions. There query has the following basic characteristics:

o Define a common-table-expression with the set of matching rows.
e Query from this common-table-expression.

e For each row fetched, do two nested select statements. The first gets a running sum of the
salaries, and the second gets a running count of the rows retrieved.

OLAP Functions 97

Graeme Birchall ©

Now for the code:

WITH templ AS ANSWER

(SELECT *
FROM staff sl JOB ID SALARY SUMSAL R
WHERE sl.name LIKE "%s%* = —-——-= = ———————— o ———— -
AND sl.id < 90 Clerk 80 43504.60 43504.60 1
) Mgr 10 98357.50 141862.10 2
SELECT sl1.job, sl.id, sl.salary Mgr 50 80659.80 222521.90 3

,(SELECT SUM(s2.salary)
FROM templ s2

WHERE (s2.job < sl.job)
OR (s2.job = s1_.job AND s2.id <= sl.id)) AS sumsal
, (SELECT COUNT(*)
FROM templ s2
WHERE (s2.job < sl.job)
OR (s2.job = s1_job AND s2.id <= sl1.id)) AS r
FROM templ sl
ORDER BY s1.job
,sl.1d;

Figure 263, Running counts without OLAP functions

. __|
Concepts

Below are some of the basic characteristics of OLAP functions:

e OLAP functions are column functions that work (only) on the set of rows that match the
predicates of the query.

o Unlike ordinarily column functions, (e.g. SUM), OLAP functions do not require that the
whole answer-set be summarized. In fact, OLAP functions never change the number of
rows returned by the query.

e OLAP functions work on sets of values, but the result is always a single value.

e OLAP functions are used to return individual rows from a table (e.g. about each staff
member), along with related summary data (e.g. average salary in department).

e OLAP functions are often applied on some set (i.e. of a moving window) of rows that is
defined relative to the current row being processed. These matching rows are classified
using an ORDER BY as being one of three types:

e Preceding rows are those that have already been processed.
o Following rows are those that have yet to be processed.
e Current row is the one currently being processed.

e The ORDER BY used in an OLAP function is not related to the ORDER BY expression
used to define the output order of the final answer set.

e OLAP functions can summarize the matching rows by a subset (i.e. partition). When this
is done, it is similar to the use of a GROUP BY in an ordinary column function.

Below is a query that illustrates these concepts. It gets some individual rows from the STAFF
table, while using an OLAP function to calculate a running average salary within the DEPT of
the current row. The average is calculated using one preceding row (in ID order), the current
row, and two following rows:

98 Concepts

DB2 V9.7 Cookbook ©

SELECT dept Table > pepT 1D SALARY
,id Ordering COl. ————m—p —~ _________
,salary Matching rows 15 110 42508.20
,DEC(AVG(salary) 15 170 42258.50
OVER(PARTITION BY dept
ORDER BY id 5
ROWS BETWEEN 1 PRECEDING 3%8 %8 ?gigz gg
AND 2 FOLLOWING) % 80 4350460
-8,2) AS avg_sal 20 190 34252.75
FROM staff /////)W ,,
OFER BY depe | 09 Partitons 383077506, 75
,id; Preceding rows 38 40 78006.00
Current row 38 60 66808.30
QQE\LVEE::::::::::::::::::: Following rows -»133 158 ‘3‘3883 ;g
DEPT ID SALARY AVG_SAL b R T
"3 1o o635y 50 7334445 2 %0 3800175
20 20 78171.25 63571.52 2% %gg Zgggé 88
20 80 43504.60 51976.20 otc
20 190 34252.75 38878.67 T
38 30 77506.75 74107.01
38 40 78006.00 66318.95
38 60 66808.30 56194.70
38 120 42954.75 48924.26
38 180 37009.75 39982.25
Figure 264, Sample OLAP query
Below is another query that calculates various running averages:
SELECT dept ,id
,salary
,DEC(AVG(salary) OVERQ) ,8,2) AS avgl
,DEC(AVG(salary) OVER(PARTITION BY dept) ,8.,2) AS avg2
,DEC(AVG(salary) OVER(PARTITION BY dept
ORDER BY id
ROWS UNBOUNDED PRECEDING) ,8,2) AS avg3
,DEC(AVG(salary) OVER(PARTITION BY dept
ORDER BY id
ROWS BETWEEN 1 PRECEDING
AND 2 FOLLOWING) ,8,2) AS avg4
FROM staff
WHERE dept IN (15,20)
AND id > 20
ORDER BY dept ,id;
ANSWER
DEPT ID SALARY AVG1 AVG2 AVG3 AVG4
15 50 80659.80 53281.11 60482.33 80659.80 66556.94
15 70 76502.83 53281.11 60482.33 78581.31 60482.33
15 110 42508.20 53281.11 60482.33 66556.94 53756.51
15 170 42258.50 53281.11 60482.33 60482.33 42383.35
20 80 43504.60 53281.11 38878.67 43504.60 38878.67
20 190 34252.75 53281.11 38878.67 38878.67 38878.67

Figure 265, Sample OLAP query

e AVGI1: An average of all matching rows

o AVG2: An average of all matching rows within a department.

e AVGS3: An average of matching rows within a department, from the first matching row
(ordered by ID), up to and including the current row.

e AVGA4: An average of matching rows within a department, starting with one preceding
row (i.e. the highest, ordered by ID), the current row, and the next two following rows.

OLAP Functions

99

Graeme Birchall ©

PARTITION Expression

The PARTITION BY expression, which is optional, defines the set of rows that are used in
each OLAP function calculation.

L PARTITION BY ipartitioning expression JJ

Figure 266, PARTITION BY syntax

Below is a query that uses different partitions to average sets of rows:

SELECT id ,dept ,job ,years ,salary

,DEC(AVG(salary) OVER(PARTITION BY dept)) AS dpt_avg

27,2

,DEC(AVG(salary) OVER(PARTITION BY job) ,7,2) AS job_avg
,DEC(AVG(salary) OVER(PARTITION BY years/2) ,7,2) AS yr2_avg
,DEC(AVG(salary) OVER(PARTITION BY dept, job) ,7,2) AS d_j_avg

FROM staff

WHERE dept IN (15,20)

AND id > 20
ORDER BY id;
ANSWER

ID DEPT JOB YEARS SALARY DPT_AVG JOB_AVG YR2_AVG D_J_AVG

50 15 Mgr 10 80659.80 60482.33 80659.80 80659.80 80659.80
70 15 Sales 7 76502.83 60482.33 76502.83 76502.83 76502.83
80 20 Clerk - 43504.60 38878.67 40631.01 43504.60 38878.67
110 15 Clerk 5 42508.20 60482.33 40631.01 42383.35 42383.35
170 15 Clerk 4 42258.50 60482.33 40631.01 42383.35 42383.35
190 20 Clerk 8 34252.75 38878.67 40631.01 34252.75 38878.67

Figure 267, PARTITION BY examples
PARTITION vs. GROUP BY
The PARTITION clause, when used by itself, returns a very similar result to a GROUP BY,

except that like all OLAP functions, it does not remove the duplicate rows. To illustrate, be-
low is a simple query that does a GROUP BY:

SELECT dept ANSWER
,SUM(years) AS sum
,AVG(years) AS avg DEPT SUM AVG ROW
,COUNT(*) ASrow e o e —m
FROM staff 15 22 7 3
WHERE id BETWEEN 40 AND 120 38 6 6 1
AND years IS NOT NULL 42 13 6 2

GROUP BY dept;
Figure 268, Sample query using GROUP BY

Below is a similar query that uses a PARTITION phrase. Observe that each value calculated
is the same, but duplicate rows have not been removed:

SELECT dept ANSWER
,SUM(years) OVER(PARTITION BY dept) AS sum
,AVG(years) OVER(PARTITION BY dept) AS avg DEPT SUM AVG ROW
,COUNT(*) OVER(PARTITION BY dept) AS row ---—-—— ——— ——— ———

FROM staff 15 22 7 3
WHERE id BETWEEN 40 AND 120 15 22 7 3
AND years IS NOT NULL 15 22 7 3
ORDER BY dept; 38 6 6 1
42 13 6 2

42 13 6 2

Figure 269, Sample query using PARTITION

100 Concepts

DB2 V9.7 Cookbook ©

Below is a similar query that uses the PARTITION phrase, and then uses a DISTINCT clause
to remove the duplicate rows:

SELECT DISTINCT ANSWER
dept
,SUM(years) OVER(PARTITION BY dept) AS sum DEPT SUM AVG ROW
,AVG(years) OVER(PARTITION BY dept) AS avg ----- -——— ——— —-—-

,COUNT (™) OVER(PARTITION BY dept) AS row 15 22 7 3
FROM staff 38 6 6 1
WHERE id BETWEEN 40 AND 120 42 13 6 2

AND years IS NOT NULL
ORDER BY dept;

Figure 270, Sample query using PARTITION and DISTINCT

NOTE: Even though the above statement gives the same answer as the prior GROUP BY
example, it is not the same internally. Nor is it (probably) as efficient, and it is certainly not
as easy to understand. Therefore, when in doubt, use the GROUP BY syntax.

Window Definition

An OLAP function works on a "window" of matching rows. This window can be defined as:
e All matching rows.

e All matching rows within a partition.

e Some moving subset of the matching rows (within a partition, if defined).

A moving window has to have an ORDER BY clause so that the set of matching rows can be
determined. The syntax is goes as follows:
)4

F OVER — (
LORDER BY —ordering expression

}—[ROWS UNBOUNDED PRECEDING L
RANGE J number PRECEDING) 4

CURRENT ROW

number FOLLOWING — —)4
BETWEEN — UNBOUNDED FOLLOWING —
UNBOUNDED PRECEDING ——AND UNBOUNDED FOLLOWING ———) 4
number PRECEDING | number PRECEDING
number FOLLOWING ——| number FOLLOWING ——
CURRENT ROW —_— CURRENT ROW

Figure 271, Moving window definition syntax

Window Size Partitions

o UNBOUNDED PRECEDING: All of the preceding rows.
e Number PRECEDING: The "n" preceding rows.

o UNBOUNDED FOLLOWING: All of the following rows.
e Number FOLLOWING: The "n" following rows.

e CURRENT ROW: Only the current row.

OLAP Functions 101

Graeme Birchall ©

Defaults

e NoORDERBY: UNBOUNDED PRECEDING to UNBOUNDED FOLLOWING.
e ORDER BY only: UNBOUNDED PRECEDING to CURRENT ROW.

e NoBETWEEN: CURRENT ROW to "n" preceding/following row or rank.

e BETWEEN stmt: From "n" to "n" preceding/following row or rank. The end-point
must be greater than or equal to the starting point.

Sample Queries

Below is a query that illustrates some of the above concepts:

SELECT id ,salary
,DEC(AVG(salary) OVERQ) ,7,2) AS avg_all
,DEC(AVG(salary) OVER(ORDER BY id) ,7,2) AS avg_odr
,DEC(AVG(salary) OVER(ORDER BY id
ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) ,7,2) AS avg_p_F
,DEC(AVG(salary) OVER(ORDER BY id
ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW) ,7,2) AS avg_p_c
,DEC(AVG(salary) OVER(ORDER BY id
ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING) ,7,2) AS avg_c_F
,DEC(AVG(salary) OVER(ORDER BY id
ROWS BETWEEN 2 PRECEDING

AND 1 FOLLOWING) ,7,2) AS avg_2 1
FROM staff
WHERE dept IN (15,20)
AND id > 20
ORDER BY id;
ANSWER

ID SALARY AVG ALL AVG ODR AVG_ P F AVG P C AVG C F AVG 2 1

80 43504.60 53281.11 66889.07 53281.11 66889.07 40631.01 60793.85
110 42508.20 53281.11 60793.85 53281.11 60793.85 39673.15 51193.53
170 42258.50 53281.11 57086.78 53281.11 57086.78 38255.62 40631.01
190 34252.75 53281.11 53281.11 53281.11 53281.11 34252.75 39673.15

Figure 272, Different window sizes

NOTE: When the BETWEEN syntax is used, the start of the range/rows must be less than
or equal to the end of the range/rows.

When no BETWEEN is used, the set of rows to be evaluated goes from the current row up or
down to the end value:

102 Concepts

DB2 V9.7 Cookbook ©

SELECT id
,SUM(iid) OVER(ORDER
,SUM(iid) OVER(ORDER
,SUM(iid) OVER(ORDER
,SUM(iid) OVER(ORDER
,SUM(Ciid) OVER(ORDER
,SUM(iid) OVER(ORDER

FROM staff

WHERE id < 40

ORDER BY id;

Figure 273, Different window sizes

ROWS vs. RANGE

BY id)
BY id ROWS

BY id ROWS CURRENT ROW)

BY id ROWS

1 PRECEDING)
BY id ROWS UNBOUNDED PRECEDING)

2 FOLLOWING)
BY id ROWS UNBOUNDED FOLLOWING)

AS
AS
AS
AS
AS
AS

suml
sum2
sum3
sum4
sumb
sumé

ANSWER

ID SUM1 SUM2 SUM3 SUM4 SUM5 SUM6

A moving window of rows to be evaluated (relative to the current row) can be defined using
either the ROW or RANGE expressions. These differ as follows:

o ROWS: Refers to the "n" rows before and/or after (within the partition), as defined by

the ORDER BY.

o RANGE: Refers to those rows before and/or after (within the partition) that are within an
arithmetic range of the current row, as defined by the ORDER BY.

The next query compares the ROW and RANGE expressions:

SELECT id
,SMALLINT(SUM(id)
RANGE BETWEEN
,SMALLINT(SUM(id)
ROWS BETWEEN
, SMALLINT(SUM(id)
RANGE BETWEEN
,SMALLINT(SUM(id)
ROWS BETWEEN
,SMALLINT(SUM(id)
ROWS BETWEEN
,SMALLINT(SUM(id)
RANGE BETWEEN
AND
FROM staff
WHERE id < 60
ORDER BY 1id;

OVER(ORDER BY id

10 PRECEDING AND 10 FOLLOWING))

OVER(ORDER BY id
1 PRECEDING AND
OVER(ORDER BY id

10 PRECEDING AND CURRENT ROW))

OVER(ORDER BY id

3 PRECEDING AND 1 PRECEDING))

OVER(ORDER BY id

3 PRECEDING AND 1 PRECEDING))

OVER(ORDER BY id

D

1 FOLLOWING))

ESC

UNBOUNDED PRECEDING

20 FOLLOWING)

)

AS
AS
AS
AS
AS

AS

rngl
rowl
rng2
row2

row3

rng3

ANSWER

ID RNG1 ROW1 RNG2 ROW2 ROW3

Figure 274, ROW vs. RANGE example

Usage Notes

e An ORDER BY statement is required when using either expression.

10
30
60
90

o If no RANGE or ROWS expression was provided, the default range (assuming there was
an ORDER BY) is all preceding rows — up to the current row.

OLAP Functions

103

Graeme Birchall ©

e When using the RANGE expression, only one expression can be specified in the ORDER
BY, and that expression must be numeric.

ORDER BY Expression

The ORDER BY phrase has several purposes:

o It defines the set of rows that make up a moving window.

e It provides a set of values to do aggregations on. Each distinct value gets a new result.
e It gives a direction to the aggregation function processing (i.e. ASC or DESC).

An ORDER BY expression is required for the RANK and DENSE_RANK functions. It is
optional for all others (except of using ROWS or RANGE).

asc option -
sort-key expression [— }
F ORDER BY % Yy exp | desc option__| \)

ORDER OF — table designator

asc option 1y 15 asT desc option i s FIRsT
- 7 ~ -

}7 ASC =T NULLSFIRST _| } }7 DESCTNuLLSLAST | }
Figure 275, ORDER BY syntax

Usage Notes

e ASC: Sorts the values in ascending order. This is the default.
e DESC: Sorts the values in descending order.

o NULLS: Determines whether null values are sorted high or low, relative to the non-null
values present. Note that the default option differs for ascending and descending order.

e Sort Expression: The sort-key expression can be any valid column, or any scalar expres-
sion is deterministic, and has no external action.

e ORDER BY ORDER OF table-designator: The table designator refers to a subselect or
fullselect in the query and any ordering defined on columns in that subselect or fullselect
(note: if there is no explicit ordering the results are unpredictable). If the subselect or full-
select ORDER BY is changed, the ordering sequence will automatically change to match.
Note that the final query may have an ordering that differs from that in the subselect or
fullselect.

NOTE: When the table designator refers to a table in the current subselect or fullselect, as
opposed to the results of a nested subselect or fullselect, the values are unpredictable.

Sample Query
In the next query, various aggregations are done on a variety of fields, and on a nested-table-
expression that contains an ORDER BY. Observe that the ascending fields sum or count up,

while the descending fields sum down. Also observe that each aggregation field gets a sepa-
rate result for each new set of rows, as defined in the ORDER BY phrase:

104 Concepts

DB2 V9.7 Cookbook ©

SELECT dept ,name ,salary
,DEC(SUM(salary) OVER(ORDER BY dept) ,8,2) AS suml
,DEC(SUM(salary) OVER(ORDER BY dept DESC) ,8,2) AS sum2
,DEC(SUM(salary) OVER(ORDER BY ORDER OF sl1) ,8,2) AS sum3
,SMALLINT(RANK() OVER(ORDER BY salary, name, dept)) AS rl
,SMALLINT(RANK() OVER(ORDER BY ORDER OF sl1)) AS r2
,ROW_NUMBERQ) OVER(ORDER BY salary) AS wil
,COUNT(*) OVER(ORDER BY salary) AS w2
FROM (SELECT =
FROM staff
WHERE id < 60
ORDER BY dept
,hame
)AS si1
ORDER BY 1, 2;
ANSWER
DEPT NAME SALARY Sum1 SUM2 SUM3 R1 R2 W1 W2
15 Hanes 80659.80 80659.80 412701.30 80659.80 4 1 4 4
20 Pernal 78171.25 257188.55 332041.50 158831.05 3 2 3 3
20 Sanders 98357.50 257188.55 332041.50 257188.55 5 3 5 5
38 Marenghi 77506.75 412701.30 155512.75 334695.30 1 4 1 1
38 0"Brien 78006.00 412701.30 155512.75 412701.30 2 5 2 2

Figure 276, ORDER BY example

NOTE: There is no relationship between the ORDER BY used in an OLAP function, and
the final ordering of the answer. Both are calculated independently.

Table Designator

The next two queries illustrate referencing a table designator in a subselect. Observe that as
the ORDER BY in the subselect changes, the ordering sequence changes. Note that the final
query output order does match that of the subselect:

SELECT id

,hame

,ROW_NUMBER() OVER(

ORDER BY ORDER OF s) od
FROM (SELECT *

FROM staff

WHERE id < 50

ORDER BY name ASC

)AS s

ORDER BY id ASC;

ANSWER

1D NAME
10 Sanders 4
20 Pernal 3
30 Marenghi 1
40 O"Brien 2

SELECT id

,hame

,ROW_NUMBER() OVER(

ORDER BY ORDER OF s) od
FROM (SELECT *

FROM staff

WHERE id < 50

ORDER BY name DESC

)AS s

ORDER BY id ASC;

ANSWER

1D NAME oD
10 Sanders 1
20 Pernal 2
30 Marenghi 4
40 O"Brien 3

Figure 277, ORDER BY table designator examples

Nulls Processing

When writing the ORDER BY, one can optionally specify whether or not null values should
be counted as high or low. The default, for an ascending field is that they are counted as high
(i.e. come last), and for a descending field, that they are counted as low:

OLAP Functions

105

Graeme Birchall ©

SELECT id
,years AS yr
,salary
,DENSE_RANK() OVER(ORDER BY years ASC) AS a

,DENSE_RANK() OVER(ORDER BY years ASC NULLS FIRST) AS af

.DENSE_RANK() OVER(ORDER BY years ASC NULLS LAST) AS al

,DENSE_RANK() OVER(ORDER BY years DESC) AS d

.DENSE_RANK() OVER(ORDER BY years DESC NULLS FIRST) AS df

,DENSE_RANK() OVER(ORDER BY years DESC NULLS LAST) AS dl
FROM staff

WHERE id < 100
ORDER BY years
,salary; ANSWER

30 577506.75 1 2 1 6 6 5
90 6 38001.75 2 3 2 5 5 4
40 6 78006.00 2 3 2 5 5 4
70 7 76502.83 3 4 3 4 4 3
10 7 98357.50 3 4 3 4 4 3
20 8 78171.25 4 5 4 3 3 2
50 10 80659.80 5 6 5 2 2 1
80 -43504.60 6 1 6 1 1 6
60 -66808.30 6 1 6 1 1 6

Figure 278, Overriding the default null ordering sequence

NOTE: In general, one null value does not equal another null value. But, as is illustrated
above, for purposes of assigning rank, all null values are considered equal.

Counting Nulls

The DENSE RANK and RANK functions include null values when calculating rankings. By
contrast the COUNT DISTINCT statement excludes null values when counting values. Thus,
as is illustrated below, the two methods will differ (by one) when they are used get a count of
distinct values - if there are nulls in the target data:
SELECT COUNT(DISTINCT years) AS y#1l
LMAX(y#) AS y#2

FROM (SELECT years
,DENSE_RANK() OVER(ORDER BY years) AS y#

FROM staff
WHERE id < 100
)AS xxx ANSWER
ORDER BY 1; =======
Y#1 Y#2
5 6

Figure 279, Counting distinct values - comparison

OLAP Functions

RANK and DENSE_RANK

The RANK and DENSE_RANK functions enable one to rank the rows returned by a query.
The result is of type BIGINT.

106 OLAP Functions

DB2 V9.7 Cookbook ©

Syntax
RANK() OVER — (}
DENSE_RANK()] L PARTITION BY — expression]
}— ORDERBY — expression) }

Figure 280, Ranking functions syntax

NOTE: The ORDER BY phrase, which is required, is used to both sequence the values,
and to tell DB2 when to generate a new value.

RANK vs. DENSE_RANK
The two functions differ in how they handle multiple rows with the same value:

e The RANK function returns the number of proceeding rows, plus one. If multiple rows
have equal values, they all get the same rank, while subsequent rows get a ranking that
counts all of the prior rows. Thus, there may be gaps in the ranking sequence.

o The DENSE_RANK function returns the number of proceeding distinct values, plus one.
If multiple rows have equal values, they all get the same rank. Each change in data value
causes the ranking number to be incremented by one.

Usage Notes
e The ORDER BY expression is mandatory. See page: 104 for syntax.
e The PARTITION BY expression is optional. See page: 100 for syntax.

Compare Functions
The following query illustrates the use of the two functions:

SELECT id
,years
,salary
,RANKQO) OVER(ORDER BY years) AS rank#
,DENSE_RANK() OVER(ORDER BY years) AS dense#
,ROW_NUMBER() OVER(ORDER BY years) AS row#

FROM staff
WHERE id < 100 ANSWER
AND years < 10

ORDER BY years; ID YEARS SALARY RANK# DENSE# ROW#
30 5 77506.75 1 1 1
40 6 78006.00 2 2 2
90 6 38001.75 2 2 3
10 7 98357.50 4 3 4
70 7 76502.83 4 3 5
20 8 78171.25 6 4 6

Figure 281, Ranking functions example
ORDER BY Usage

The mandatory ORDER BY phrase gives a sequence to the ranking, and also tells DB2 when
to start a new rank value. The following query illustrates both uses:

OLAP Functions 107

Graeme Birchall ©

SELECT job AS job
,years AS yr
,id AS 1d
,hame AS name

LRANK() OVER(ORDER BY job ASC) AS a1l
,RANK() OVER(ORDER BY job ASC, years ASC) AS a2
,RANK() OVER(ORDER BY job ASC, years ASC ,id ASC) AS a3
,RANK() OVER(ORDER BY job DESC) AS di
,RANK() OVER(ORDER BY job DESC, years DESC) AS d2
,RANK() OVER(ORDER BY job DESC, years DESC, id DESC) AS d3
LRANK() OVER(ORDER BY job ASC, years DESC, id ASC) AS ml
,RANK() OVER(ORDER BY job DESC, years ASC, id DESC) AS m2
FROM staff

WHERE id < 150
AND years IN (6,7) ANSWER
AND job >
ORDER BY job JOoB YR ID NAME Al A2 A3 D1 2 D3 M1 M2
,years i T T R P
,1d; Mgr 6 140 Fraye 1 1 1 46 6 3 4
Mgr 7 10 Sanders 1 2 2 44 5 1 6
Mgr 7 100 Plotz 1 2 3 44 4 2 5
Sales 6 40 O"Brien 4 4 4 12 3 5 2
Sales 6 90 Koonitz 4 4 5 12 2 6 1
Sales 7 70 Rothman 4 6 6 11 1 4 3

Figure 282, ORDER BY usage

Observe above that adding more fields to the ORDER BY phrase resulted in more ranking
values being generated.

PARTITION Usage

The optional PARTITION phrase lets one rank the data by subsets of the rows returned. In
the following example, the rows are ranked by salary within year:

SELECT id ANSWER
,years AS yr

,salary ID YR SALARY R1
,RANK() OVER(PARTITION BY years = —= —— ———————— ——
ORDER BY salary) AS rl 30 5 77506.75 1
FROM staff 40 6 78006.00 1
WHERE id < 80 70 7 76502.83 1
AND years IS NOT NULL 10 7 98357.50 2
ORDER BY years 20 8 78171.25 1
,salary; 50 0 80659.80 1

Figure 283, Values ranked by subset of rows
Multiple Rankings

One can do multiple independent rankings in the same query:

SELECT id
,years
,salary
,SMALLINT(RANK() OVER(ORDER BY years ASC)) AS rank_a
,SMALLINT(RANK() OVER(ORDER BY years DESC)) AS rank_d
,SMALLINT(RANK() OVER(ORDER BY 1id, years)) AS rank_iy

FROM STAFF

WHERE id < 100

AND years IS NOT NULL
ORDER BY years;

Figure 284, Multiple rankings in same query
Dumb Rankings

If one wants to, one can do some really dumb rankings. All of the examples below are fairly
stupid, but arguably the dumbest of the lot is the last. In this case, the "ORDER BY 1" phrase

108 OLAP Functions

DB2 V9.7 Cookbook ©

ranks the rows returned by the constant "one", so every row gets the same rank. By contrast
the "ORDER BY 1" phrase at the bottom of the query sequences the rows, and so has valid
business meaning:

SELECT id
,years
,hame
,salary
LSMALLINT(RANK() OVER(ORDER BY SUBSTR(name,3,2))) AS dumbl
,SMALLINT(RANK() OVER(ORDER BY salary / 1000)) AS dumb2

LSMALLINT(RANK() OVER(ORDER BY years * ID)) AS dumb3
,SMALLINT(RANK() OVER(ORDER BY 1)) AS dumb4

FROM staff

WHERE id < 40

AND years IS NOT NULL
ORDER BY 1;
Figure 285, Dumb rankings, SQL

ID YEARS NAME SALARY DUMB1 DumMB2 DUMB3 DumMB4

10 7 Sanders 98357 .50 1 3 1 1

20 8 Pernal 78171.25 3 2 3 1

30 5 Marenghi 77506.75 2 1 2 1

Figure 286, Dumb ranking, Answer
Subsequent Processing

The ranking function gets the rank of the value as of when the function was applied. Subse-
quent processing may mean that the rank no longer makes sense. To illustrate this point, the
following query ranks the same field twice. Between the two ranking calls, some rows were
removed from the answer set, which has caused the ranking results to differ:

SELECT xxx.* ANSWER
,RANK()OVER(ORDER BY id) AS r2
FROM (SELECT id 1D NAME R1 R2
,hame —m mmmmee e -
,RANK() OVER(ORDER BY 1id) AS rl 40 O"Brien 4 1
FROM staff 50 Hanes 5 2
WHERE id < 100 70 Rothman 6 3
AND years IS NOT NULL 90 Koonitz 7 4
)AS xxx

WHERE id > 30
ORDER BY id;

Figure 287, Subsequent processing of ranked data
Ordering Rows by Rank

One can order the rows based on the output of a ranking function. This can let one sequence
the data in ways that might be quite difficult to do using ordinary SQL. For example, in the
following query the matching rows are ordered so that all those staff with the highest salary in
their respective department come first, followed by those with the second highest salary, and
so on. Within each ranking value, the person with the highest overall salary is listed first:

SELECT id ANSWER
,RANKQO OVER(PARTITION BY dept

ORDER BY salary DESC) AS ri ID R1 SALARY DP
,salary e e e
,dept AS dp 10 1 98357.50 20
FROM staff 50 1 80659.80 15
WHERE id < 80 40 1 78006.00 38
AND years IS NOT NULL 20 2 78171.25 20
ORDER BY rl1 ASC 30 2 77506.75 38
,salary DESC; 70 2 76502.83 15

Figure 288, Ordering rows by rank, using RANK function

OLAP Functions 109

Graeme Birchall ©

Here is the same query, written without the ranking function:

SELECT id ANSWER
, (SELECT COUNT(*)
FROM staff s2 ID R1 SALARY DP
WHERE s2.id <80 = e e -
AND S2_.YEARS 1S NOT NULL 10 1 98357.50 20
AND s2.dept = sl.dept 50 1 80659.80 15
AND s2.salary >= sl._salary) AS R1 40 1 78006.00 38
, SALARY 20 2 78171.25 20
,dept AS dp 30 2 77506.75 38
FROM staff si 70 2 76502.83 15
WHERE id < 80
AND years IS NOT NULL
ORDER BY rl1 ASC

,salary DESC;
Figure 289, Ordering rows by rank, using sub-query

The above query has all of the failings that were discussed at the beginning of this chapter:

e The nested table expression has to repeat all of the predicates in the main query, and have
predicates that define the ordering sequence. Thus it is hard to read.

e The nested table expression will (inefficiently) join every matching row to all prior rows.
Selecting the Highest Value

The ranking functions can also be used to retrieve the row with the highest value in a set of
rows. To do this, one must first generate the ranking in a nested table expression, and then
query the derived field later in the query. The following statement illustrates this concept by
getting the person, or persons, in each department with the highest salary:

SELECT id ANSWER
,salary
,dept AS dp ID SALARY DP
FROM (SELECT s1.* e e o
,RANK() OVER(PARTITION BY dept 50 80659.80 15
ORDER BY salary DESC) AS ri 10 98357.50 20
FROM staff sl 40 78006.00 38
WHERE id < 80
AND years IS NOT NULL
)AS XxXxx
WHERE rl =1
ORDER BY dp;

Figure 290, Get highest salary in each department, use RANK function

Here is the same query, written using a correlated sub-query:

SELECT id ANSWER
,salary
,dept AS dp ID SALARY DP
FROM staff ;2. e e
WHERE id < 80 50 80659.80 15
AND years IS NOT NULL 10 98357.50 20
AND NOT EXISTS 40 78006.00 38
(SELECT *
FROM staff s2
WHERE s2.id < 80
AND s2.years IS NOT NULL
AND s2.dept = sl.dept

AND s2.salary > sl.salary)
ORDER BY DP;

Figure 291, Get highest salary in each department, use correlated sub-query

Here is the same query, written using an uncorrelated sub-query:

110 OLAP Functions

DB2 V9.7 Cookbook ©

SELECT id ANSWER
,salary
,dept AS dp ID SALARY DP
FROM staf¢# =~~~ e —mmm
WHERE id < 80 50 80659.80 15
AND years IS NOT NULL 10 98357.50 20
AND (dept, salary) IN 40 78006.00 38
(SELECT dept, MAX(salary)
FROM staff
WHERE id < 80

AND years IS NOT NULL
GROUP BY dept)
ORDER BY dp;

Figure 292, Get highest salary in each department, use uncorrelated sub-query

Arguably, the first query above (i.e. the one using the RANK function) is the most elegant of
the series because it is the only statement where the basic predicates that define what rows
match are written once. With the two sub-query examples, these predicates have to be re-
peated, which can often lead to errors.

ROW_NUMBER

The ROW_NUMBER function lets one number the rows being returned. The result is of type
BIGINT. A syntax diagram follows. Observe that unlike with the ranking functions, the OR-
DER BY is not required:

Syntax
F ROW_NUMBER() —— OVER(

L PARTITION BY expression | }

>L ORDER BY ——expression] }

Figure 293, Numbering function syntax

ORDER BY Usage

You don't have to provide an ORDER BY when using the ROW_NUMBER function, but not
doing so can be considered to be either brave or foolish, depending on one's outlook on life.
To illustrate this issue, consider the following query:

SELECT id ANSWER
,hame
,ROW_NUMBER() OVERQ AS ri1 ID NAME R1 R2
L,ROW_NUMBER() OVER(ORDER BY id) AS r2 = = - ———mo—om —— ——
FROM staff 10 Sanders 1 1
WHERE id < 50 20 Pernal 2 2
AND years IS NOT NULL 30 Marenghi 3 3
ORDER BY 1id; 40 O"Brien 4 4

Figure 294, ORDER BY example, 1 of 3

In the above example, both ROW_NUMBER functions return the same set of values, which
happen to correspond to the sequence in which the rows are returned. In the next query, the
second ROW_NUMBER function purposely uses another sequence:

SELECT id ANSWER
,hame
,ROW_NUMBER() OVERQ) AS ri ID NAME R1 R2
L,ROW_NUMBER() OVER(ORDER BY name) AS r2 = —— —————o——u —— ——
FROM staff 10 Sanders 4 4
WHERE id < 50 20 Pernal 3 3
AND years IS NOT NULL 30 Marenghi 1 1
ORDER BY 1id; 40 O"Brien 2 2

Figure 295, ORDER BY example, 2 of 3

OLAP Functions 111

Graeme Birchall ©

Observe that changing the second function has had an impact on the first. Now lets see what
happens when we add another ROW_NUMBER function:

SELECT id ANSWER
,name
~ROW_NUMBER() OVERQ) AS r1 ID NAME R1 R2 R3

,ROW_NUMBER() OVER(ORDER BY ID) AS r2 —- ——————oe —— —— -

,ROW_NUMBER() OVER(ORDER BY NAME) AS r3 10 Sanders 1 1 4

FROM staff 20 Pernal 2 2 3
WHERE id < 50 30 Marenghi 3 3 1
AND years IS NOT NULL 40 O"Brien 4 4 2

ORDER BY 1id;
Figure 296, ORDER BY example, 3 of 3

Observe that now the first function has reverted back to the original sequence.

NOTE: When not given an explicit ORDER BY, the ROW_NUMBER function, may create
a value in any odd order. Usually, the sequence will reflect the order in which the rows are
returned - but not always.

PARTITION Usage

The PARTITION phrase lets one number the matching rows by subsets of the rows returned.
In the following example, the rows are both ranked and numbered within each JOB:

SELECT job
,years
,id
,hame
,ROW_NUMBER() OVER(PARTITION BY job ORDER BY years) AS row#
LRANKQO OVER(PARTITION BY job ORDER BY years) AS rnil#
,DENSE_RANK() OVER(PARTITION BY job ORDER BY years) AS rn2#
FROM staff

WHERE id < 150 ANSWER
AND years IN (6,7)

AND job > "L" JOB YEARS 1D NAME ROW# RN1# RN2#

ORDER BY job e e e e e

,years; Mgr 6 140 Fraye 1 1 1

Mgr 7 10 Sanders 2 2 2

Mgr 7 100 Plotz 3 2 2

Sales 6 40 O"Brien 1 1 1

Sales 6 90 Koonitz 2 1 1

Sales 7 70 Rothman 3 3 2

Figure 297, Use of PARTITION phrase

One problem with the above query is that the final ORDER BY that sequences the rows does
not identify a unique field (e.g. ID). Consequently, the rows can be returned in any sequence
within a given JOB and YEAR. Because the ORDER BY in the ROW_NUMBER function
also fails to identify a unique row, this means that there is no guarantee that a particular row
will always give the same row number.

For consistent results, ensure that both the ORDER BY phrase in the function call, and at the
end of the query, identify a unique row. And to always get the rows returned in the desired
row-number sequence, these phrases must be equal.

Selecting "n" Rows

To query the output of the ROW_NUMBER function, one has to make a nested temporary
table that contains the function expression. In the following example, this technique is used to
limit the query to the first three matching rows:

112 OLAP Functions

DB2 V9.7 Cookbook ©

SELECT * ANSWER
FROM (SELECT id —=—=—=—==—=======
,hame 1D NAME R
,ROW_NUMBER() OVER(ORDER BY id) AS r = -- ———————- -
FROM staff 10 Sanders 1
WHERE id < 100 20 Pernal 2
AND years IS NOT NULL 30 Marenghi 3

)AS XxXxx

WHERE r <= 3
ORDER BY id;

Figure 298, Select first 3 rows, using ROW_NUMBER function
In the next query, the FETCH FIRST "n" ROWS notation is used to achieve the same result:

SELECT id ANSWER
> name o e e e e e e e e e e
,ROW_NUMBER() OVER(ORDER BY id) AS r ID NAME R
FROM staf ¢ 0. —m e -
WHERE id < 100 10 Sanders 1
AND years IS NOT NULL 20 Pernal 2
ORDER BY id 30 Marenghi 3

FETCH FIRST 3 ROWS ONLY;
Figure 299, Select first 3 rows, using FETCH FIRST notation

So far, the ROW_NUMBER and the FETCH FIRST notations seem to be about the same. But
the former is much more flexible. To illustrate, the next query gets the 3rd through 6th rows:

SELECT * ANSWER
FROM (SELECT id —————————————
,hame ID NAME R
,ROW_NUMBER() OVER(ORDER BY id) ASr -- ———————- -
FROM staff 30 Marenghi 3
WHERE id < 200 40 O"Brien 4
AND years IS NOT NULL 50 Hanes 5
)AS xxx 70 Rothman 6

WHERE r BETWEEN 3 AND 6
ORDER BY id;

Figure 300, Select 3rd through 6th rows
In the next query we get every 5th matching row - starting with the first:

SELECT * ANSWER
FROM (SELECT id
,hame ID NAME R
,ROW_NUMBER() OVER(ORDER BY id) AS r --- ——————— —-
FROM staff 10 Sanders 1
WHERE id < 200 70 Rothman 6
AND years IS NOT NULL 140 Fraye 11
)AS Xxx 190 Sneider 16

WHERE (r-1)=r-1)7/75)*5
ORDER BY id;
Figure 301, Select every 5th matching row

In the next query we get the last two matching rows:

SELECT *
FROM (SELECT id
,hame
,ROW_NUMBER() OVER(ORDER BY id DESC) AS r
FROM staff ANSWER
WHERE id < 200
AND years IS NOT NULL ID NAME R
JAS xxx e e -
WHERE r <= 2 180 Abrahams 2
ORDER BY 1id; 190 Sneider 1

Figure 302, Select last two rows

OLAP Functions 113

Graeme Birchall ©

Selecting "n" or more Rows

Imagine that one wants to fetch the first "n" rows in a query. This is easy to do, and has been
illustrated above. But imagine that one also wants to keep on fetching if the following rows
have the same value as the "nth".

In the next example, we will get the first three matching rows in the STAFF table, ordered by
years of service. However, if the 4th row, or any of the following rows, has the same YEAR
as the 3rd row, then we also want to fetch them.

The query logic goes as follows:

e Select every matching row in the STAFF table, and give them all both a row-number and
a ranking value. Both values are assigned according to the order of the final output. Do
all of this work in a nested table expression.

e Select from the nested table expression where the rank is three or less.

The query relies on the fact that the RANK function (see page: 106) assigns the lowest com-
mon row number to each row with the same ranking:

SELECT *
FROM (SELECT years
,id
,hame
,RANKQO OVER(ORDER BY years) AS rnk

,ROW_NUMBER() OVER(ORDER BY years, id) AS row
FROM staff

WHERE id < 200 ANSWER
AND years IS NOT NULL

)AS Xxxx YEARS ID NAME RNK ROW

WHERE rnk <=3 mmmme e e e
ORDER BY years 3 180 Abrahams 1 1
,id; 4 170 Kermisch 2 2

5 30 Marenghi 3 3

5 110 Ngan 3 4

Figure 303, Select first "n" rows, or more if needed

The type of query illustrated above can be extremely useful in certain business situations. To
illustrate, imagine that one wants to give a reward to the three employees that have worked
for the company the longest. Stopping the query that lists the lucky winners after three rows
are fetched can get one into a lot of trouble if it happens that there are more than three em-
ployees that have worked for the company for the same number of years.

Selecting "n" Rows - Efficiently
Sometimes, one only wants to fetch the first "n" rows, where "n" is small, but the number of
matching rows is extremely large. In this section, we will discus how to obtain these "n" rows

efficiently, which means that we will try to fetch just them without having to process any of
the many other matching rows.

Below is an invoice table. Observe that we have defined the INV# field as the primary key,
which means that DB2 will build a unique index on this column:

CREATE TABLE invoice

(inv# INTEGER NOT NULL
,customer# INTEGER NOT NULL
,sale_date DATE NOT NULL

,sale_value DECIMAL(9,2) NOT NULL
,CONSTRAINT ctxl PRIMARY KEY (inv#)
,CONSTRAINT ctx2 CHECK(inv# >= 0));

Figure 304, Performance test table - definition

114 OLAP Functions

DB2 V9.7 Cookbook ©

The next SQL statement will insert 1,000,000 rows into the above table. After the rows are
inserted a REORG and RUNSTATS is run, so the optimizer can choose the best access path.

INSERT INTO invoice
WITH temp (n,m) AS
(VALUES (INTEGER(O) ,RAND(1))
UNION ALL
SELECT n+1, RANDQ
FROM temp
WHERE n+1 < 1000000

)

SELECT n AS Inv#
,INT(m * 1000) AS customer#
,DATE("2000-11-01") + (m*40) DAYS AS sale_date
,DECIMAL((m * m * 100),8,2) AS sale_value

FROM temp;

Figure 305, Performance test table - insert 1,000,000 rows

Imagine we want to retrieve the first five rows (only) from the above table. Below are several
queries that get this result. For each query, the elapsed time, as measured by DB2BATCH, is
provided.

Below we use the "FETCH FIRST n ROWS" notation to stop the query at the 5th row. The
query scans the primary index to get first five matching rows, and thus is cheap:

SELECT s.*

FROM invoice s

ORDER BY inv#
FETCH FIRST 5 ROWS ONLY;

Figure 306, Fetch first 5 rows - 0.000 elapsed seconds

The next query is essentially the same as the prior, but this time we tell DB2 to optimize the
query for fetching five rows. Nothing has changed, and all is good:

SELECT s.*

FROM invoice s

ORDER BY inv#

FETCH FIRST 5 ROWS ONLY
OPTIMIZE FOR 5 ROWS;

Figure 307, Fetch first 5 rows - 0.000 elapsed seconds

The next query is the same as the first, except that it invokes the ROW_NUMBER function to
passively sequence the output. This query also uses the primary index to identify the first five
matching rows, and so is cheap:

SELECT s.*
,ROW_NUMBER() OVER() AS rowi#
FROM invoice s

ORDER BY inv#
FETCH FIRST 5 ROWS ONLY;

Figure 308, Fetch first 5 rows+ number rows - 0.000 elapsed seconds

The next query is the same as the previous. It uses a nested-table-expression, but no action is
taken subsequently, so this code is ignored:

SELECT *
FROM (SELECT s.*
,ROW_NUMBER() OVER() AS row#
FROM invoice s
XXX
ORDER BY inv#
FETCH FIRST 5 ROWS ONLY;

Figure 309, Fetch first 5 rows+ number rows - 0.000 elapsed seconds

OLAP Functions 115

Graeme Birchall ©

All of the above queries processed only five matching rows. The next query will process all
one million matching rows in order to calculate the ROW_NUMBER value, which is on no
particular column. It will cost:

SELECT *
FROM (SELECT s.*
,ROW_NUMBER() OVER() AS row#
FROM invoice s
XXX
WHERE row# <=5
ORDER BY inv#;

Figure 310, Process and number all rows - 0.049 elapsed seconds

In the above query the "OVER()" phrase told DB2 to assign row numbers to each row. In the
next query we explicitly provide the ROW_NUMBER with a target column, which happens
to be the same at the ORDER BY sequence, and is also an indexed column. DB2 can use all
this information to confine the query to the first "n™ matching rows:

SELECT *
FROM (SELECT s.*
,ROW_NUMBER() OVER(ORDER BY inv#) AS row#
FROM invoice s
XXX
WHERE row# <= 5
ORDER BY inv#;

Figure 311, Process and number 5 rows only - 0.000 elapsed seconds

WARNING: Changing the above predicate to: "WHERE row# BETWEEN 1 AND 5" will get
the same answer, but use a much less efficient access path.

One can also use recursion to get the first "n" rows. One begins by getting the first matching
row, and then uses that row to get the next, and then the next, and so on (in a recursive join),
until the required number of rows have been obtained.

In the following example, we start by getting the row with the MIN invoice-number. This row
is then joined to the row with the next to lowest invoice-number, which is then joined to the
next, and so on. After five such joins, the cycle is stopped and the result is selected:

WITH temp (inv#, c#, sd, sv, n) AS
(SELECT inv.*
,1
FROM invoice inv
WHERE inv# =
(SELECT MIN(inv#)
FROM invoice)
UNION ALL
SELECT new.*, n + 1
FROM temp old
,invoice new
WHERE old.inv# < new.inv#
AND old.n <5
AND new.inv# =
(SELECT MIN(XXX.inv#)
FROM invoice XXX
WHERE Xxxx.inv# > old.inv#)

)
SELECT *
FROM temp;

Figure 312, Fetch first 5 rows - 0.000 elapsed seconds
The above technique is nice to know, but it has several major disadvantages:

e Itis not exactly easy to understand.

116 OLAP Functions

DB2 V9.7 Cookbook ©

o lItrequires that all primary predicates (e.g. get only those rows where the sale-value is
greater than $10,000) be repeated four times. In the above example there are none, which
is unusual in the real world.

e It quickly becomes both very complicated and quite inefficient when the sequencing
value is made up of multiple fields. In the above example, we sequenced by the INV#
column, but imagine if we had used the sale-date, sale-value, and customer-number.

o Itis extremely vulnerable to inefficient access paths. For example, if instead of joining
from one (indexed) invoice-number to the next, we joined from one (non-indexed) cus-
tomer-number to the next, the query would run forever.

In this section we have illustrated how minor changes to the SQL syntax can cause major
changes in query performance. But to illustrate this phenomenon, we used a set of queries
with 1,000,000 matching rows. In situations where there are far fewer matching rows, one can
reasonably assume that this problem is not an issue.

FIRST_VALUE and LAST_VALUE

The FIRST_VALUE and LAST_VALUE functions get first or last value in the (moving)
window of matching rows:

Syntax

FIRST_VALUE (expression
LAST_VALUE T L

1

— OVER—
L'RESPECT NULLS'ﬂ) (»
'IGNORE NULLS'

} ORDER BY — expression 4}
| PARTITIONBY __ expression |

)
} L moving window definition] }
Figure 313, Function syntax

Usage Notes

e An expression value must be provided in the first set of parenthesis. Usually this will be a
column name, but any valid scalar expression is acceptable.

e The PARTITION BY expression is optional. See page: 100 for syntax.
o The ORDER BY expression is optional. See page: 104 for syntax.
e See page 103 for notes on how to define a moving-window of rows to process.

o If no explicit moving-window definition is provided, the default window size is between
UNBOUNDED PRECEDING (of the partition and/or range) and the CURRENT ROW.
This can sometimes cause logic errors when using the LAST_VALUE function. The last
value is often simply the current row. To get the last matching value within the partition
and/or range, set the upper bound to UNBOUNDED FOLLOWING.

o If IGNORE NULLS is specified, null values are ignored, unless all values are null, in
which case the result is null. The default is RESPECT NULLS.

Examples

The following query illustrates the basics. The first matching name (in ID order) within each
department is obtained:

OLAP Functions 117

Graeme Birchall ©

SELECT dept ,id ,name ANSWER
,FIRST VALUE(name)
OVER(PARTITION BY dept DEPT 1D NAME FRST

ORDER BY id) AS frst = = -—-——- ——— ————me ————————
FROM staff 10 210 Lu Lu
WHERE dept <= 15 10 240 Daniels Lu
AND id > 160 10 260 Jones Lu

ORDER BY dept ,id; 15 170 Kermisch Kermisch

Figure 314, FIRST_NAME function example

The next uses various ordering schemas and moving-window sizes the get a particular first or
last value (within a department):

SELECT dept ,id ,comm
,FIRST VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm) AS firstl
,FIRST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS FIRST) AS first2
,FIRST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS LAST) AS first3
,FIRST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS LAST
ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS first4
,LAST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm) AS lastl
,LAST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS FIRST
ROWS UNBOUNDED FOLLOWING) AS last2
FROM staff
WHERE id < 100
AND dept < 30
ORDER BY dept ,comm;
ANSWER

DEPT ID COMM FIRST1 FIRST2 FIRST3 FIRST4 LAST1 LAST2
15 70 1152.00 1152.00 1152.00 1152.00 1152.00 1152.00
15 50 - 1152.00 1152.00 1152.00 - 1152.00
20 80 128.20 128.20 128.20 128.20 128.20 612.45
20 20 612.45 128.20 128.20 128.20 612.45 612.45
20 10 - 128.20 128.20 612.45 - 612.45

Figure 315, Function examples

The next query illustrates what happens when one, or all, of the matching values are null:

SELECT dept ,id ,comm
,FIRST VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm) AS rn_Ist
,FIRST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS LAST) AS rn_Is2
,FIRST_VALUE(comm)
OVER(PARTITION BY dept ORDER BY comm NULLS FIRST) AS rn_fst
,FIRST_VALUE(comm, " IGNORE NULLS™)
OVER(PARTITION BY dept ORDER BY comm NULLS FIRST) AS in_fst
FROM staff
WHERE id BETWEEN 20 AND 160
AND dept <= 20 ANSWER
ORDER BY dept ,comm;

DEPT ID COMM RN_LST RN_LS2 RN_FST IN_FST

10 160 - - - - -
15 110 206.60 206.60 206.60 - 206.60
15 70 1152.00 206.60 206.60 - 206.60
15 50 - 206.60 206.60 -

20 80 128.20 128.20 128.20 128. 20 128.20
20 20 612.45 128.20 128.20 128.20 128.20

Figure 316, Null value processing

118 OLAP Functions

DB2 V9.7 Cookbook ©

LAG and LEAD

The LAG, and LEAD functions get the previous or next value from the (moving) window of
matching rows:

e LAG: Get previous value. Return null if at first value.

e LEAD: Get next value. Return null if at last value.
Syntax

LAG
LEAD

exp.
T(P L,—oﬁset ‘)*

L _ \
- default — e S P ECT NULLS'

LIGNORE NULLS'
}—OVER —(B 1 ORDER BY— expression —) »
PARTITION BY — expression

Figure 317, Function syntax

Usage Notes

e An expression value must be provided in the first set of parenthesis. Usually this will be a
column name, but any valid scalar expression is acceptable.

e The PARTITION BY expression is optional. See page: 100 for syntax.
e The ORDER BY expression is mandatory. See page: 104 for syntax.

e The default OFFSET value is 1. A value of zero refers to the current row. An offset that
is outside of the moving-window returns null.

o If IGNORE NULLS is specified, a default (override) value must also be provided.
Examples

The next query uses the LAG function to illustrate what happens when one messes around
with the ORDER BY expression:

SELECT dept ,id ,comm
,LAG(comm) OVER(PARTITION BY dept ORDER BY comm) AS lagl
,LAG(comm,0) OVER(PARTITION BY dept ORDER BY comm) AS lag2
,LAG(comm,2) OVER(PARTITION BY dept ORDER BY comm) AS lag3
,LAG(comm,1,-1, " IGNORE NULLS")
OVER(PARTITION BY dept ORDER BY comm) AS lag4
,LEAD(comm) OVER(PARTITION BY dept ORDER BY comm) AS ledl
FROM staff
WHERE id BETWEEN 20 AND 160
AND dept <= 20
ORDER BY dept ,comm;
ANSWER

DEPT ID COMM LAG1 LAG2 LAG3 LAG4 LED1

10 160 - - - - -1.00 -
15 110 206.60 - 206.60 - -1.00 1152.00
15 70 1152.00 206.60 1152.00 - 206.60 -
15 50 - 1152.00 - 206.60 1152.00 -
20 80 128.20 - 128.20 - -1.00 612.45
20 20 612.45 128.20 612.45 - 128.20 -

Figure 318, LAG and LEAD function Examples

OLAP Functions 119

Graeme Birchall ©

Aggregation

The various aggregation functions let one do cute things like get cumulative totals or running
averages. In some ways, they can be considered to be extensions of the existing DB2 column
functions. The output type is dependent upon the input type.

}7 column-function TOVERO <

OVER(
L PARTITION BY — expression il

v

) ORDERBY — expression

L moving window definition]
Figure 319, Aggregation function syntax

Syntax Notes
Guess what - this is a complicated function. Be aware of the following:

e Any DB2 column function (e.g. AVG, SUM, COUNT), except ARRAY_AGG, can use
the aggregation function.

e The OVER() usage aggregates all of the matching rows. This is equivalent to getting the
current row, and also applying a column function (e.g. MAX, SUM) against all of the
matching rows (see page 120).

e The PARTITION BY expression is optional. See page: 100 for syntax.

o The ORDER BY expression is mandatory if the aggregation is confined to a set of rows
or range of values. Otherwise it is optional. See page: 104 for syntax. If a RANGE is
specified (see page:103 for definition), then the ORDER BY expression must be a single
value that allows subtraction.

e If an ORDER BY phrase is provided, but neither a RANGE nor ROWS is specified, then
the aggregation is done from the first row to the current row.

e See page 103 for notes on how to define a moving-window of rows to process.
Basic Usage

In its simplest form, with just an "OVER()" phrase, an aggregation function works on all of
the matching rows, running the column function specified. Thus, one gets both the detailed
data, plus the SUM, or AVG, or whatever, of all the matching rows.

In the following example, five rows are selected from the STAFF table. Along with various
detailed fields, the query also gets sum summary data about the matching rows:

120 OLAP Functions

DB2 V9.7 Cookbook ©

SELECT id ,name ,salary
,SUM(salary) OVER() AS sum_sal
,AVG(salary) OVER() AS avg_sal
,MIN(salary) OVER() AS min_sal
,MAX(salary) OVER() AS max_sal
,COUNT(*) OVER() AS #rows
FROM staff
WHERE id < 30
ORDER BY id;
ANSWER

1D NAME SALARY SUM_SAL AVG_SAL MIN_SAL MAX_SAL #ROWS

10 Sanders 98357.50 254035.50 84678.50 77506.75 98357.50 3
20 Pernal 78171.25 254035.50 84678.50 77506.75 98357.50 3
30 Marenghi 77506.75 254035.50 84678.50 77506.75 98357.50 3

Figure 320, Aggregation function, basic usage

An aggregation function with just an "OVER()" phrase is logically equivalent to one that has
an ORDER BY on a field that has the same value for all matching rows. To illustrate, in the
following query, the four aggregation functions are all logically equivalent:

SELECT id
,name
,salary
,SUM(salary) OVERQ) AS suml
,SUM(salary) OVER(ORDER BY id * 0) AS sum2
,SUM(salary) OVER(ORDER BY "ABC") AS sum3

,SUM(salary) OVER(ORDER BY "ABC"
RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS sum4
FROM staff
WHERE id < 60
ORDER BY id;

ANSWER

10 Sanders 98357.50 412701.30 412701.30 412701.30 412701.30
20 Pernal 78171.25 412701.30 412701.30 412701.30 412701.30
30 Marenghi 77506.75 412701.30 412701.30 412701.30 412701.30
40 O"Brien 78006.00 412701.30 412701.30 412701.30 412701.30
50 Hanes 80659.80 412701.30 412701.30 412701.30 412701.30

Figure 321, Logically equivalent aggregation functions

ORDER BY Usage

The ORDER BY phrase (see page: 104 for syntax) has two main purposes:

e It provides a set of values to do aggregations on. Each distinct value gets a new result.
e It gives adirection to the aggregation function processing (i.e. ASC or DESC).

In the next query, various aggregations are run on the DEPT field, which is not unique, and
on the DEPT and NAME fields combined, which are unique (for these rows). Both ascending
and descending aggregations are illustrated. Observe that the ascending fields sum or count
up, while the descending fields sum down. Also observe that each aggregation field gets a
separate result for each new set of rows, as defined in the ORDER BY phrase:

OLAP Functions 121

Graeme Birchall ©

SELECT dept
,hame
,salary
,SUM(salary) OVER(ORDER BY dept) AS suml
,SUM(salary) OVER(ORDER BY dept DESC) AS sum2
,SUM(salary) OVER(ORDER BY dept, NAME) AS sum3
,SUM(salary) OVER(ORDER BY dept DESC, name DESC) AS sum4
,COUNT(*) OVER(ORDER BY dept) AS rwl
,COUNT (*) OVER(ORDER BY dept, NAME) AS rw2
FROM staff
WHERE id < 60
ORDER BY dept
,hame;
ANSWER
DEPT NAME SALARY Sum1 Sum2 SUM3 SUM4 RW1 Rw2
15 Hanes 80659.80 80659.80 412701.30 80659.80 412701.30 1 1
20 Pernal 78171.25 257188.55 332041.50 158831.05 332041.50 3 2
20 Sanders 98357.50 257188.55 332041.50 257188.55 253870.25 3 3
38 Marenghi 77506.75 412701.30 155512.75 334695.30 155512.75 5 4
38 O"Brien 78006.00 412701.30 155512.75 412701.30 78006.00 5 5

Figure 322, Aggregation function, ORDER BY usage

ROWS Usage

The ROWS phrase (see page 103 for syntax) is used to limit the aggregation function to a
subset of the matching rows. The set of rows to process are defined thus:

e No ORDERBY:
ORDER BY only:
No BETWEEN:

BETWEEN stmt:

From

greater than or equal to the starting point.

The following query illustrates these concepts:

122

UNBOUNDED PRECEDING to UNBOUNDED FOLLOWING.
UNBOUNDED PRECEDING to CURRENT ROW.
CURRENT ROW to "n" preceding/following row.

n" to "n" preceding/following row. The end-point must be

OLAP Functions

DB2 V9.7 Cookbook ©

SELECT id ,years
,AVG(years) OVERQ AS "p_f"
,AVG(years) OVER(ORDER BY id
ROWS BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING) AS "'p_f"
,AVG(years) OVER(ORDER BY id) AS "p_c"
,AVG(years) OVER(ORDER BY id
ROWS BETWEEN UNBOUNDED PRECEDING

AND CURRENT ROW) AS "p_c"

,AVG(years) OVER(ORDER BY id
ROWS UNBOUNDED PRECEDING) AS "p_c"

,AVG(years) OVER(ORDER BY id
ROWS UNBOUNDED FOLLOWING) AS "'c_f"

,AVG(years) OVER(ORDER BY id
ROWS 2 FOLLOWING) AS *'c_2"

,AVG(years) OVER(ORDER BY id
ROWS 1 PRECEDING) AS "1_c"

,AVG(years) OVER(ORDER BY id
ROWS BETWEEN 1 FOLLOWING

AND 2 FOLLOWING) AS "1 2™
FROM staff
WHERE dept IN (15,20)
AND id > 20 ANSWER
AND years > 1
ORDER BY id; ID YEARS p f pfpcpcpccfFc21lcil?
50 10 6 6 10 10 10 6 7 10 6
70 7 6 6 8 8 8 6 5 8 4
110 5 6 6 7 7 7 5 5 6 6
170 4 6 6 6 6 6 6 6 4 8
190 8 6 6 6 6 6 8 8 6 -

Figure 323, ROWS usage examples
RANGE Usage

The RANGE phrase limits the aggregation result to a range of numeric values - defined rela-
tive to the value of the current row being processed (see page 103 for syntax). The range is
obtained by taking the value in the current row (defined by the ORDER BY expression) and
adding to and/or subtracting from it, then seeing what other matching rows are in the range.

NOTE: When using a RANGE, only one expression can be specified in the ORDER BY,
and that expression must be numeric.

In the following example, the RANGE function adds to and/or subtracts from the DEPT field.
For example, in the function that is used to populate the RG10 field, the current DEPT value
is checked against the preceding DEPT values. If their value is within 10 digits of the current
value, the related YEARS field is added to the SUM:

OLAP Functions 123

SELECT

FROM
WHERE

AND

ORDER BY dept

Graeme Birchall ©

dept
,hame
,years
,SMALLINT(SUM(years) OVER(ORDER BY dept
ROWS BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS rowl
,SMALLINT(SUM(years) OVER(ORDER BY dept
ROWS BETWEEN 2 PRECEDING
AND CURRENT ROW)) AS row2
,SMALLINT(SUM(years) OVER(ORDER BY dept
RANGE BETWEEN 1 PRECEDING
AND CURRENT ROW)) AS rgo1
,SMALLINT(SUM(years) OVER(ORDER BY dept
RANGE BETWEEN 10 PRECEDING
AND CURRENT ROW)) AS rgl0
,SMALLINT(SUM(years) OVER(ORDER BY dept
RANGE BETWEEN 20 PRECEDING
AND CURRENT ROW)) AS rg20
,SMALLINT(SUM(years) OVER(ORDER BY dept
RANGE BETWEEN 10 PRECEDING
AND 20 FOLLOWING)) AS rgll
,SMALLINT(SUM(years) OVER(ORDER BY dept
RANGE BETWEEN CURRENT ROW
AND 20 FOLLOWING)) AS rg99
staff
id < 100
years IS NOT NULL
,hame;
ANSWER
DEPT NAME YEARS ROW1 ROW2 RGOl RG10 RG20 RG11l RG99
15 Hanes 0 10 10 17 17 17 32 32
15 Rothman 7 17 17 17 17 17 32 32
20 Pernal 8 15 25 15 32 32 43 26
20 Sanders 7 15 22 15 32 32 43 26
38 Marengh 5 12 20 11 11 26 17 17
38 0"Brien 6 11 18 11 11 26 17 17
42 Koonitz 6 12 17 6 17 17 17 6

Figure 324, RANGE usage
Note the difference between the ROWS as RANGE expressions:

The ROWS expression refers to the "n" rows before and/or after (within the partition), as
defined by the ORDER BY.

The RANGE expression refers to those before and/or after rows (within the partition) that
are within an arithmetic range of the current row.

BETWEEN vs. ORDER BY

The BETWEEN predicate in an ordinary SQL statement is used to get those rows that have a
value between the specified low-value (given first) and the high value (given last). Thus the

predicate "BETWEEN 5 AND 10" may find rows, but the predicate "BETWEEN 10 AND 5"
will never find any.

The BETWEEN phrase in an aggregation function has a similar usage in that it defines the set
of rows to be aggregated. But it differs in that the answer depends upon the related ORDER
BY sequence, and a non-match returns a null value, not no-rows.

Below is some sample SQL. Observe that the first two aggregations are ascending, while the
last two are descending:

124

OLAP Functions

DB2 V9.7 Cookbook ©

SELECT id
,hame

,SMALLINT(SUM(id) OVER(ORDER BY id ASC

ROWS BETWEEN 1 PRECEDING

ROWS BETWEEN CURRENT ROW

ROWS BETWEEN 1 PRECEDING

ROWS BETWEEN CURRENT ROW

FROM staff

WHERE id < 50
AND years IS NOT NULL

ORDER BY 1id;

AND CURRENT ROW)) AS apc
,SMALLINT(SUM(id) OVER(ORDER BY id ASC

AND 1 FOLLOWING)) AS acf
,SMALLINT(SUM(id) OVER(ORDER BY id DESC

AND CURRENT ROW)) AS dpc
,SMALLINT(SUM(id) OVER(ORDER BY id DESC

AND 1 FOLLOWING)) AS dcf

Figure 325,BETWEEN and ORDER BY usage

The following table illustrates the processing sequence in the above query. Each BETWEEN
is applied from left to right, while the rows are read either from left to right (ORDER BY ID
ASC) or right to left (ORDER BY ID DESC):

ASC id (10,20,30,40)

ANSWER

1D NAME APC ACF DPC DCF
10 Sanders 10 30 30 10
20 Pernal 30 50 50 30
30 Marenghi 50 70 70 50
40 O"Brien 70 40 40 70

READ ROWS, LEFT to RIGHT 1ST-ROW ~ 2ND-ROW 3RD-ROW 4TH-ROW
1 PRECEDING to CURRENT ROW 10=10 10+20=30 20+30=40 30+40=70
CURRENT ROW to 1 FOLLOWING 10+20=30 20+30=50 30+40=70 40 =40
DESC id (40,30,20,10)

READ ROWS, RIGHT to LEFT 1ST-ROW ~ 2ND-ROW 3RD-ROW 4TH-ROW
1 PRECEDING to CURRENT ROW 20+10=30 30+20=50 40+30=70 40 =40
CURRENT ROW to 1 FOLLOWING 10 =10 20+10=30 30+20=50 40+30=70

NOTE: Preceding row is always on LEFT of current row.
Following row is always on RIGHT of current row.

Figure 326, Explanation of query

IMPORTANT: The BETWEEN predicate, when used in an ordinary SQL statement, is not
affected by the sequence of the input rows. But the BETWEEN phrase, when used in an
aggregation function, is affected by the input sequence.

OLAP Functions

125

Graeme Birchall ©

126 OLAP Functions

DB2 V9.7 Cookbook ©

Scalar Functions

Introduction

Scalar functions act on a single row at a time. In this section we shall list all of the ones that
come with DB2 and look in detail at some of the more interesting ones. Refer to the SQL
Reference for information on those functions not fully described here.

Sample Data

The following self-defined view will be used throughout this section to illustrate how some of
the following functions work. Observe that the view has a VALUES expression that defines
the contents- three rows and nine columns.

CREATE VIEW scalar (di,f1,sl,cl,vl,tsl,dtl,tml,tcl) AS
WITH templ (nl1, cl1, tl1l) AS
(VALUES (-2.4,"ABCDEF*", "1996-04-22-23.58.58.123456")
,(+0.0,"ABCD *,"1996-08-15-15.15.15.151515%)
,(+1.8,"AB *,"0001-01-01-00.00.00.000000"))
SELECT DECIMAL(n1,3,1)
,DOUBLE(Nn1)
,SMALLINT(n1)
,CHAR(c1,6)
,VARCHAR(RTRIM(c1),6)
, TIMESTAMP(t1)
,DATE(t1)
,TIME(t1)
,CHAR(t1)
FROM templ;

Figure 327, Sample View DDL - Scalar functions

Below are the view contents:

D1 F1 S1 C1 V1 TS1
-2.4 -2.4e+000 -2 ABCDEF ABCDEF 1996-04-22-23.58.58.123456
0.0 0.0e+000 0 ABCD ABCD 1996-08-15-15.15.15.151515
1.8 1.8e+000 1 AB AB 0001-01-01-00.00.00.000000
DT1 ™1 TC1

1996-04-22 23:58:58 1996-04-22-23.58.58.123456
1996-08-15 15:15:15 1996-08-15-15.15.15.151515
0001-01-01 00:00:00 0001-01-01-00.00.00.000000

Figure 328, SCALAR view, contents (3 rows)

Scalar Functions, Definitions

ABS or ABSVAL

Returns the absolute value of a number (e.g. -0.4 returns + 0.4). The output field type will
equal the input field type (i.e. double input returns double output).

Scalar Functions 127

Graeme Birchall ©

SELECT di AS di1 ANSWER (float output shortened)
,ABS(D1) AS d2
,F1 AS f1 D1 D2 F1 F2
,ABS(F1l) AS f2 ——— —— e e
FROM scalar; -2.4 -2.400e+0 2.400e+00

2.4
0.0 0.0 0.000e+0 0.000e+00
1.8 1.8 1.800e+0 1.800e+00

Figure 329, ABS function examples

ACOS

Returns the arccosine of the argument as an angle expressed in radians. The output format is
double.

ASCII

Returns the ASCII code value of the leftmost input character. Valid input types are any valid
character type up to 1 MEG. The output type is integer.

SELECT c1 ANSWER
,ASCI11(cl) AS acl
,ASCII (SUBSTR(c1,2)) AS ac2 (0%} AC1 AC2
FROM scalar ———— -— =
WHERE <c¢1 = "ABCDEF"; ABCDEF 65 66

Figure 330, ASCII function examples
The CHR function is the inverse of the ASCII function.

ASIN

Returns the arcsine of the argument as an angle expressed in radians. The output format is
double.

ATAN

Returns the arctangent of the argument as an angle expressed in radians. The output format is
double.

ATANZ2

Returns the arctangent of x and y coordinates, specified by the first and second arguments, as
an angle, expressed in radians. The output format is double.

ATANH

Returns the hyperbolic acrctangent of the argument, where the argument is and an angle ex-
pressed in radians. The output format is double.

BIGINT

Converts the input value to bigint (big integer) format. The input can be either numeric or
character. If character, it must be a valid representation of a number.

128 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

WITH temp (big) AS ANSWER
(VALUES BIGINT(1)

UNION ALL BIG

SELECT big * 256 e

FROM temp 1

WHERE big < 1E16 256

65536

SELECT big 16777216

FROM temp; 4294967296

1099511627776

281474976710656

72057594037927936

Figure 331, BIGINT function example

Converting certain float values to both BIGINT and decimal will result in different values
being returned (see below). Both results are arguably correct, it is simply that the two func-
tions use different rounding methods:

WITH temp (f1) AS

(VALUES FLOAT(1-23456789)
UNION ALL

SELECT f1 * 100

FROM temp

WHERE f1 < 1E18

)

SELECT f1 AS floatl
,DEC(f1,19) AS decimall
,BIGINT(f1) AS bigintl

FROM temp;

Figure 332, Convert FLOAT to DECIMAL and BIGINT, SQL

FLOAT1 DECIMAL1 BIGINT1

+1.23456789000000E+000 1. 1
+1.23456789000000E+002 123. 123
+1.23456789000000E+004 12345. 12345
+1.23456789000000E+006 1234567 . 1234567
+1.23456789000000E+008 123456789. 123456788
+1.23456789000000E+010 12345678900. 12345678899
+1.23456789000000E+012 1234567890000. 1234567889999
+1.23456789000000E+014 123456789000000. 123456788999999
+1.23456789000000E+016 12345678900000000 - 12345678899999996

+1.23456789000000E+018 1234567890000000000. 1234567889999999488
Figure 333, Convert FLOAT to DECIMAL and BIGINT, answer

See page 442 for a discussion on floating-point number manipulation.

BIT Functions

There are five BIT functions:

e BITAND 1 if both arguments are 1.

e BITANDNOT Zero if bit in second argument is 1, otherwise bit in first argument.
e BITOR 1 if either argument is 1.

e BITXOR 1 if both arguments differ.

e BITNOT Returns opposite of the single argument.

The arguments can be SMALLINT (16 bits), INTEGER (32 bits), BIGINT (64 bits), or
DECFLOAT (113 bits). The result is the same as the argument with the largest data type.

Scalar Functions 129

Graeme Birchall ©

Negative numbers can be used in bit manipulation. For example the SMALLINT value -1 will
have all 16 bits set to "1" (see example on page: 131).

F BITAND

BITANDNOT —
BITOR

BITXOR
BITNOT — (

Figure 334, BIT functions syntax

expressionl —)

—— (— expressionl —, — expression2 —) ‘—}

As their name implies, the BIT functions can be used to do bit-by-bit comparisons between

two numbers:

WITH
templ (bl, b2) AS
(VALUES (1, 0) ,(0, D
,(0,0) ,C1, 1)
1(21 1) 1(151_7)
1(151 7) 1(_11 1)
.(15,63) ,(63,31)
.(99,64) ,(0,-2)),
temp2 (bl, b2) AS
(SELECT SMALLINT(b1)
»SMALLINT (b2)
FROM templ)
SELECT bl ,b2
,HEX(b1) AS
,HEX(b2) AS
,BITAND(b1,b2) AS ™
,BITANDNOT(b1,b2) AS
,BITOR(b1,b2) AS ™
,BITXOR(b1,b2) AS "
FROM temp2;

Figure 335, BIT functions examples
Displaying BIT Values

"hex1""
"hex2"

and"

‘ano™

or
xor"*

ANSWER

NFROOR |

15

-1
15
63
99

w
N

R~N~NRROROI

(9]
w

31

1o
N B

hex1
0100
0000
0000
0100
0200
OF00
OF00
FFFF
OF00
3F00
6300
0000

hex2 and ano or xor

ooroo 0 1 1 1
0100 0 O 1 1
ooporo 0 O O ©
0100 1 O 1 O
oio0 0 2 3 3
FOFF 9 6 -1 -10
o700 7 8 15 8
0100 1 -2 -1 -2
3F0O0 15 0 63 48
1IFOO 31 32 63 32
4000 64 35 99 35
FEFF 0 0 -2 -2

It can sometimes be hard to comprehend what a given BASE 10 value is in BIT format. To
help, the following user-defined-function converts SMALLINT numbers to BIT values:

CREATE FUNCTION bitdisplay(inparm SMALLINT)

RETURNS CHAR(16)
BEGIN ATOMIC

DECLARE outstr VARCHAR(16);

DECLARE inval INT;
IF inparm >= 0 THEN
SET inval = inparm;
ELSE
SET inval
END IF;
SET outstr = *7;
WHILE inval > O DO

INT(65536) + inparm;

SET outstr = STRIP(CHAR(MOD(inval,2))) || outstr;

SET inval ; inval /7 2;
END WHILE;

RETURN RIGHT(REPEAT("0",16) || outstr,16);

END!

Figure 336, Function to display SMALLINT bits

Below is an example of the above function in use:

130

Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

WITH
templ (bl) AS
(VALUES (32767) ,(16383)
,(4096) ,(118)
,(63) ,(16)
¢ 2) (1)
> (0 ,(-1)
(. -2 ,(-3)
,(-64) ,(-32768)
),
temp2 (bl) AS
(SELECT SMALLINT(b1)
FROM templ
)
SELECT b1l
,HEX(b1) AS "hex1"
,BITDISPLAY(b1) AS "bit_display"
FROM temp2;

ANSWER

-32768

Figure 337, BIT_DISPLAY function example

Updating BIT Values

bit_display

0111111111111111
0011111111111111
0001000000000000
0000000001110110
0000000000111111
0000000000010000
0000000000000010
0000000000000001
0000000000000000
1111111111111111
1111111111111110
11112111111111101
1111111111000000
1000000000000000

Use the BITXOR function to toggle targeted bits in a value. Use the BITANDNOT function
to clear the same targeted bits. To illustrate, the next query uses these two functions to toggle
and clear the last four bits, because the second parameter is 15, which is b"1111":

WITH

templ (bl) AS

(VALUES (32767),(21845),(4096), (

),
temp2 (bl, s15) AS

(SELECT
FROM

0).(

_1)’(

-64)

SMALLINT(b1)

,SMALLINT(15)

templ

)
SELECT b1

FROM

,BITDISPLAY(b1)
.BITXOR(b1,s15)

,BITDISPLAY(BITXOR(b1,s15))

AS "bl_display”
AS "'xor"
AS "'xor_display"

,BITANDNOT(b1,s15)

AS "andnot"

.BITDISPLAY(BITANDNOT(b1,s15)) AS "andnot_display"

temp2;

Figure 338, Update bits #1, query

Below is the answer:

B1 bl _display Xor
32767 0111111111111111 32752
21845 0101010101010101 21850
4096 0001000000000000 4111
0 0000000000000000 15
-1 11111121111211211211 -16
-64 1111111111000000 -49

Figure 339, Update bits #1, answer

xor_display andnot andnot_display

011121212222110000 32752 0111111111110000
0101010101011010 21840 0101010101010000
0001000000001111 4096 0001000000000000
0000000000001111 0 0000000000000000
1111111111110000 -16 1111111111110000
1111111111001111 -64 1111111111000000

The next query illustrate the use of the BITAND function to return those bits that match both
parameters, and the BITNOT function to toggle all bits:

Scalar Functions

131

Graeme Birchall ©

WITH
templ (bl) AS

(VALUES (32767),(21845),(4096), (0),(-1),(-64)
),
temp2 (bl, s15) AS
(SELECT SMALLINT(b1)
,SMALLINT(15)
FROM templ
)
SELECT bl
,BITDISPLAY(b1) AS "bl _display”
,BITAND(b1,s15) AS "and"
,BITDISPLAY(BITAND(b1,s15)) AS "and_display"
,BITNOT(b1) AS "not"
,BITDISPLAY(BITNOT(b1)) AS "not_display”
FROM temp2;

Figure 340, Update bits #2, query
Below is the answer:

B1 bl _display and and_display not not_display
32767 0111111111111111 15 0000000000001111 -32768 1000000000000000
21845 0101010101010101 5 0000000000000101 -21846 1010101010101010
4096 0001000000000000 0 0000000000000000 -4097 1110111111111111
0 0000000000000000 0 0000000000000000 -1 111111211111211211
-1 111111121111111211 15 0000000000001111 0 0000000000000000
-64 1111111111000000 0 0000000000000000 63 0000000000111111

Figure 341, Update bits #2, answer

BLOB

Converts the input (1st argument) to a blob. The output length (2nd argument) is optional.

BLOB (— string-expression)
>])

, length

Figure 342, BLOB function syntax

CARDINALITY

Returns a value of type BIGINT that is the number of elements in an array.

CEIL or CEILING

Returns the next smallest integer value that is greater than or equal to the input (e.g. 5.045
returns 6.000). The output field type will equal the input field type.

F CEIL or CEILING (—— numeric-expression ——) }
Figure 343, CEILING function syntax
SELECT di ANSWER (Ffloat output shortened)

,CEIL(d1) AS d2
f1

, D1 D2 F1 F2
,CEIL(Ff1) AS T2 e e e
FROM scalar; -2.4 -2. -2.400E+0 -2 .000E+0
0.0 0. +0.000E+0 +0.000E+0
1.8 2. +1.800E+0 +2_.000E+0

Figure 344, CEIL function examples

NOTE: Usually, when DB2 converts a number from one format to another, any extra digits
on the right are truncated, not rounded. For example, the output of INTEGER(123.9) is
123. Use the CEIL or ROUND functions to avoid truncation.

132 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

CHAR

The CHAR function has a multiplicity of uses. The result is always a fixed-length character
value, but what happens to the input along the way depends upon the input type:

e For character input, the CHAR function acts a bit like the SUBSTR function, except that
it can only truncate starting from the left-most character. The optional length parameter,
if provided, must be a constant or keyword.

o Date-time input is converted into an equivalent character string. Optionally, the external
format can be explicitly specified (i.e. ISO, USA, EUR, JIS, or LOCAL).

o Integer and double input is converted into a left-justified character string.

o Decimal input is converted into a right-justified character string with leading zeros. The
format of the decimal point can optionally be provided. The default decimal point is a
dot. The '+'and '-' symbols are not allowed as they are used as sign indicators.

Below is a syntax diagram:

F CHAR (——— character value L | hJ) }
, lengt

I date-time value
\— , format J

— integer value

I double value

L decimal value [dec.pt]
Figure 345, CHAR function syntax
Below are some examples of the CHAR function in action:

SELECT name ANSWER

,CHAR(name, 3)

,comm NAME 2 COMM 4 5

,CHAR(comm) = e e e

,CHAR(comm, "@") James Jam 128.20 00128.20 00128@20
FROM staff Koonitz Koo 1386.70 01386.70 01386@70
WHERE id BETWEEN 80 Plotz Plo - - -

AND 100

ORDER BY id;
Figure 346, CHAR function examples - characters and numbers

The CHAR function treats decimal numbers quite differently from integer and real numbers.
In particular, it right-justifies the former (with leading zeros), while it left-justifies the latter
(with trailing blanks). The next example illustrates this point:

Scalar Functions 133

Graeme Birchall ©

ANSWER
INT CHAR_INT CHAR_FLT CHAR_DEC
WITH templ (n) AS 33 3.0EO 00000000003.
(VALUES (3) 99 9.0EO 00000000009.
UNION ALL 81 81 8.1E1 00000000081.
SELECT n * n 6561 6561 6.561E3 00000006561.
FROM templ 43046721 43046721 4.3046721E7 00043046721.
WHERE n < 9000
)
SELECT n AS int

,CHAR(CINT(Nn)) AS char_int

,CHAR(FLOAT(n)) AS char_fIt

,CHAR(DEC(n)) AS char_dec
FROM templ;

Figure 347, CHAR function examples - positive numbers

Negative numeric input is given a leading minus sign. This messes up the alignment of digits
in the column (relative to any positive values). In the following query, a leading blank is put
in front of all positive numbers in order to realign everything:

WITH templ (nl, n2) AS ANSWER
(VALUES (SMALLINT(+3)
,SMALLINTC-7)) N1 11 12 D1 D2
UNION ALL 77 e
SELECT nl * n2 33 +3 00003. +00003.
,n2 -21 -21 -21 -00021. -00021.
FROM templ 147 147 +147 00147. +00147.
WHERE n1 < 300 -1029 -1029 -1029 -01029. -01029.
) 7203 7203 +7203 07203. +07203.
SELECT n1l
,CHAR(N1) AS il
,CASE

WHEN nl1 < O THEN CHAR(nl)
ELSE "+ CONCAT CHAR(nl)
END AS i2
,CHAR(DEC(n1)) AS di
,CASE
WHEN nl1 < O THEN CHAR(DEC(nl))
ELSE "+" CONCAT CHAR(DEC(nl))
END AS d2
FROM templ;

Figure 348, Align CHAR function output - numbers

Both the 12 and D2 fields above will have a trailing blank on all negative values - that was
added during the concatenation operation. The RTRIM function can be used to remove it.

DATE-TIME Conversion

The CHAR function can be used to convert a date-time value to character. If the input is not a
timestamp, the output layout can be controlled using the format option:

e ISO: International Standards Organization.

e USA: American.

e EUR: European, which is usually the same as ISO.

o JIS: Japanese Industrial Standard, which is usually the same as ISO.
e LOCAL: Whatever your computer is set to.

Below are some DATE examples:

134 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

ANSWER
SELECT CHAR(CURRENT DATE,ISO) AS iso ==> 2005-11-30
,CHAR(CURRENT DATE,EUR) AS eur => 30.11.2005
,CHAR(CURRENT DATE,JIS) AS jis ==> 2005-11-30
,CHAR(CURRENT DATE,USA) AS usa ==> 11/30/2005
FROM sysibm.sysdummy1l;
Figure 349, CHAR function examples - date value
Below are some TIME examples:
ANSWER
SELECT CHAR(CURRENT TIME,ISO) AS iso ==> 19.42.21
,CHAR(CURRENT TIME,EUR) AS eur => 19.42.21
,CHAR(CURRENT TIME,JIS) AS jis ==> 19:42:21
,CHAR(CURRENT TIME,USA) AS usa => 07:42 PM
FROM sysibm.sysdummy1l;
Figure 350, CHAR function examples - time value
A timestamp cannot be formatted to anything other than 1SO output:
SELECT CHAR(CURRENT TIMESTAMP) ANSWER

FROM sysibm.sysdummyl;

2005-11-30-19.42.21.873002
Figure 351, CHAR function example - timestamp value

WARNING: Converting a date or time value to character, and then ordering the set of
matching rows can result in unexpected orders. See page 435 for details.

CHAR vs. DIGITS - A Comparison

Numeric input can be converted to character using either the DIGITS or the CHAR function,
though the former does not support float. Both functions work differently, and neither gives
perfect output. The CHAR function doesn't properly align up positive and negative numbers,
while the DIGITS function looses both the decimal point and sign indicator:

SELECT d2 ANSWER
,CHAR(d2) AS cd2
.DIGITS(d2) AS dd2 D2 CD2 DD2
FROM (SELECT DEC(d1,4,1) AS d2 —omo oo o
FROM scalar -2.4 -002.4 0024
)AS XXX 0.0 000.0 0000
ORDER BY 1; 1.8 001.8 0018

Figure 352, DIGITS vs. CHAR

NOTE: Neither the DIGITS nor the CHAR function do a great job of converting numbers to
characters. See page 401 for some user-defined functions that can be used instead.

CHARACTER_LENGTH

This function is similar to the LENGTH function, except that it works with different encoding
schemas. The result is an integer value that is the length of the input string.

};EFHARACTERJENGTH (— exprsn — USING CODEUNITS16)44}
CHAR_LENGTH 444414’ ECODEUNWSBZJ

OCTETS

Figure 353, CHARACTER_LENGTH function syntax

Scalar Functions 135

Graeme Birchall ©

WITH templ (c1) AS (VALUES (CAST("AET" AS VARCHAR(10))))
SELECT cl As C1

,LENGTH(c1) AS LEN
LOCTET_LENGTH(c1) AS OCT ANSWER
,CHAR_TENGTH(c1,0CTETS) AS LO8

,CHAR_LENGTH(c1,CODEUNITS16) AS L16 Cl LEN OCT LO8 L16 L32
,CHAR_LENGTH(c1,CODEUNITS32) AS L32 ——o mmm mmm —mm —em -
FROM templ; AEI 6 6 6 3 3

Figure 354,CHARACTER_LENGTH function example

CHR

Converts integer input in the range 0 through 255 to the equivalent ASCII character value. An
input value above 255 returns 255. The ASCII function (see above) is the inverse of the CHR
function.

SELECT *"A* AS "'c" ANSWER
LASCIHI(TA™) AS "'c>n"
,CHR(ASCII("A")) AS "c>n>c" C C>N C>N>C N
,CHR(333) AS "nl" o oo ——
FROM staff A 65 A \Y

WHERE id = 10;
Figure 355, CHR function examples

NOTE: At present, the CHR function has a bug that results in it not returning a null value
when the input value is greater than 255.

CLOB

Converts the input (1st argument) to a CLOB. The output length (2nd argument) is optional.
If the input is truncated during conversion, a warning message is issued. For example, in the
following example the second CLOB statement will induce a warning for the first two lines of
input because they have non-blank data after the third byte:

SELECT c1 ANSWER
,CLOB(cl) AS ccl
,CLOB(c1,3) AS cc2 c1 ccl cc2

FROM scalar; e ___
ABCDEF ABCDEF ABC
ABCD ABCD ABC
AB AB AB

Figure 356, CLOB function examples
NOTE: The DB2BATCH command processor dies a nasty death whenever it encounters a
CLOB field in the output. If possible, convert to VARCHAR first to avoid this problem.
COALESCE

Returns the first non-null value in a list of input expressions (reading from left to right). Each
expression is separated from the prior by a comma. All input expressions must be compatible.
VALUE is a synonym for COALESCE.

SELECT id ANSWER

,comm

,COALESCE(comm,0) ID COMM 3
FROM staff —_— ————— ————
WHERE id < 30 10 - 0.00
ORDER BY id; 20 612.45 612.45

Figure 357, COALESCE function example

A CASE expression can be written to do exactly the same thing as the COALESCE function.
The following SQL statement shows two logically equivalent ways to replace nulls:

136 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

WITH templ(cl,c2,c3) AS ANSWER

(VALUES (CAST(NULL AS SMALLINT) ========

,CAST(NULL AS SMALLINT) ccl CcC2

LCAST(10 AS SMALLINT))) —— o

SELECT COALESCE(c1,c2,c3) AS ccl 10 10
,CASE

WHEN c1 IS NOT NULL THEN cl1
WHEN c2 IS NOT NULL THEN c2
WHEN c3 IS NOT NULL THEN c3
END AS cc2
FROM TEMP1;

Figure 358, COALESCE and equivalent CASE expression

Be aware that a field can return a null value, even when it is defined as not null. This occurs if
a column function is applied against the field, and no row is returned:

SELECT COUNT(*) AS #rows ANSWER

,MIN(id) AS min_id

,COALESCE(MIN(id),-1) AS ccc_id #ROWS MIN_ID CCC_ID
FROM staf’ ¢~ e e
WHERE id < 5; 0 - -1

Figure 359, NOT NULL field returning null value

COLLATION_KEY_BIT

Returns a VARCHAR FOR BIT DATA string that is the collation sequence of the first argu-
ment in the function. There three parameters:

e String to be evaluated.

e Collation sequence to use (must be valid).

e Length of output (optional).

The following query displays three collation sequences:

e All flavors of a given character as the same (i.e. "a" = "A" = "A").

e Upper and lower case characters are equal, but sort lower than accented characters.
e All variations of a character have a different collation value.

Now for the query:

WITH templ (cl) As) .

(VALUES ("a™),("A™),("A™),(FA™).("b"))

SELECT cl o
,COLLATION_KEY_BIT(c1,"UCA400R1_S1",9) AS "a=A=A=A"
,COLLATION_KEY_BIT(c1,"UCA400R1_S2",9) AS "a=A<A<A"
,COLLATION_KEY_BIT(cl, "UCA400R1_S3",9) AS "a<A<A<A"

FROM templ

ORDER BY COLLATION_KEY_BIT(c1, "UCA400R1_S3%);

Figure 360, COLLATION_KEY_BIT function example

Below is the answer:

Cl a=A=A=A a=A<A<A a<A<A<A

a x"2600" X"26010500" X"260105010500"

A X"2600" xX"26010500" X"260105018F00"

A X"2600" x"2601868D00* X"2601868D018F0500*
A xX"2600" xX"2601869D00" X"2601869D018F0500*
b x"2800" x"28010500" x"280105010500"

Figure 361, COLLATION_KEY_BIT function answer

Scalar Functions 137

Graeme Birchall ©

COMPARE_DECFLOAT

Compares two DECFLOAT expressions and returns a SMALLINT number:
e 0if both values exactly equal (i.e. no trailing-zero differences)

o 1 if the first value is less than the second value.

e 2ifthe first value is greater than the second value.

o 3ifthe result is unordered (i.e. either argument is NaN or sNaN).

WITH templ (d1, d2) AS ======
(VALUES (DECFLOAT(+1.0), DECFLOAT(+1.0))
, (DECFLOAT(+1.0), DECFLOAT(+1.00))
, (DECFLOAT(-1.0), DECFLOAT(-1.00))
, (DECFLOAT(+0.0), DECFLOAT(+0.00))
, (DECFLOAT(-0.0), DECFLOAT(-0.00))
, (DECFLOAT(1234), +infinity)
,(+infinity, +infinity)
,(+infinity, -infinity)
, (DECFLOAT(1234), -NaN)

WNOFRLNNEFENO

)
SELECT COMPARE_DECFLOAT(d1,d2)
FROM templ;

Figure 362, COMPARE_DECFLOAT function example

NOTE: Several values that compare as "less than" or "greater than" above are equal in
the usual sense. See the section on DECFLOAT arithmetic for details (see page: 25).

CONCAT

Joins two strings together. The CONCAT function has both "infix" and "prefix" notations. In
the former case, the verb is placed between the two strings to be acted upon. In the latter case,
the two strings come after the verb. Both syntax flavours are illustrated below:
SELECT A" || "B* ANSWER
,"A" CONCAT "B"
,CONCAT("A","B") 1 2 3 4 5

“pw “B" c-

:CONCAT(CONCAT('A','B'),'C') AB AB AB ABC ABC
FROM staff
WHERE id = 10;

Figure 363, CONCAT function examples

Note that the "||" keyword can not be used with the prefix notation. This means that "||(‘a’,'b")"
is not valid while "CONCAT(a','b")" is.

Using CONCAT with ORDER BY

When ordinary character fields are concatenated, any blanks at the end of the first field are
left in place. By contrast, concatenating varchar fields removes any (implied) trailing blanks.

If the result of the second type of concatenation is then used in an ORDER BY, the resulting
row sequence will probably be not what the user intended. To illustrate:

138 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

WITH templ (coll, col2) AS ANSWER
(VALUES CA" L, TYYYT)
,("AE", "000%) COL1 coL2 coL3

,(TAE", "Yyy® —=m= —m—= o

) AE 000 AEO000

SELECT coll AE YYY AEYYY
,col2 A YYY AYYY
,coll CONCAT col2 AS col3

FROM templ

ORDER BY col3;
Figure 364, CONCAT used with ORDER BY - wrong output sequence

Converting the fields being concatenated to character gets around this problem:

WITH templ (coll, col2) AS ANSWER
(VALUES CA" L, TYYY®)
,("AE", "000%) COL1 CcOL2 cOoL3

,(TAE", "YYYS) —mm= —m—= oo

) A YYY A YYY
SELECT coll AE 000 AEOOO
,col2 AE YYY AEYYY

,CHAR(col1,2) CONCAT
CHAR(col2,3) AS col3
FROM templ
ORDER BY col3;

Figure 365, CONCAT used with ORDER BY - correct output sequence

WARNING: Never do an ORDER BY on a concatenated set of variable length fields. The
resulting row sequence is probably not what the user intended (see above).

COos

Returns the cosine of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH templ(nl) AS ANSWER
(VALUES (0)
UNION ALL NI RAN COS SIN
SELECT nl1 + 10 m o o o
FROM templ 0 0.000 1.000 0.000
WHERE nl1 < 90) 10 0.174 0.984 0.173
SELECT n1 20 0.349 0.939 0.342
,DEC(RADIANS(n1),4,3) AS ran 30 0.523 0.866 0.500
,DEC(COS(RADIANS(n1)).4,3) AS cos 40 0.698 0.766 0.642
,DEC(SINCRADIANS(n1)).4.3) AS sin 50 0.872 0.642 0.766
FROM templ; 60 1.047 0.500 0.866
70 1.221 0.342 0.939
80 1.396 0.173 0.984
90 1.570 0.000 1.000

Figure 366, RADIAN, COS, and SIN functions example

COSH

Returns the hyperbolic cosine for the argument, where the argument is an angle expressed in
radians. The output format is double.

CoT

Returns the cotangent of the argument where the argument is an angle expressed in radians.
The output format is double.

DATAPARTITIONNUM

Returns the sequence number of the partition in which the row resides.

Scalar Functions 139

Graeme Birchall ©

DATE

Converts the input into a date value. The nature of the conversion process depends upon the
input type and length:

e Timestamp and date input have the date part extracted.

e Char or varchar input that is a valid string representation of a date or a timestamp (e.g.
"1997-12-23") is converted as is.

e Char or varchar input that is seven bytes long is assumed to be a Julian date value in the
format yyyynnn where yyyy is the year and nnn is the number of days since the start of
the year (in the range 001 to 366).

e Numeric input is assumed to have a value which represents the number of days since the
date "0001-01-01" inclusive. All numeric types are supported, but the fractional part of a
value is ignored (e.g. 12.55 becomes 12 which converts to "0001-01-12").

F DATE (—— expression ——) ’

Figure 367, DATE function syntax

If the input can be null, the output will also support null. Null values convert to null output.

SELECT tsl1 ANSWER
,DATE(tsl) AS dtl
FROM scalar; TS1 DT1

1996-04-22-23.58.58.123456 1996-04-22
1996-08-15-15.15.15.151515 1996-08-15
0001-01-01-00.00.00.000000 0001-01-01

Figure 368, DATE function example - timestamp input

WITH templ(nl) AS ANSWER
(VALUES = (000001)
,(728000) N1 D1
(730120 e o
SELECT n1 1 0001-01-01
,DATE(n1) AS d1 728000 1994-03-13
FROM templ; 730120 2000-01-01

Figure 369, DATE function example - numeric input

DAY

Returns the day (as in day of the month) part of a date (or equivalent) value. The output for-
mat is integer.

SELECT dt1 ANSWER
,DAY(dtl) AS dayl
FROM scalar DT1 DAY1

WHERE DAY(dt1) > 10; mmmmm————— _——
1996-04-22 22
1996-08-15 15

Figure 370, DAY function examples

If the input is a date or timestamp, the day value must be between 1 and 31. If the input is a
date or timestamp duration, the day value can ran from -99 to +99, though only -31 to +31
actually make any sense:

140 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT dtl ANSWER

,DAY(dt1) AS dayl

,dtl -*1996-04-30" AS dur2 DT1 DAY1 DUR2 DAY2

JDAY(dtl -"1996-04-30") AS day2 ————————-m —mm— —mmm
FROM scalar 1996-04-22 22 -8. -8
WHERE DAY(dtl) > 10 1996-08-15 15 315. 15

ORDER BY dt1;
Figure 371, DAY function, using date-duration input

NOTE: A date-duration is what one gets when one subtracts one date from another. The
field is of type decimal(8), but the value is not really a number. It has digits in the format:
YYYYMMDD, so in the above query the value "315" represents 3 months, 15 days.

DAYNAME

Returns the name of the day (e.g. Friday) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT dtl ANSWER

,DAYNAME(dt1) AS dyl

,LENGTH(DAYNAME(dt1)) AS dy2 DT1 DY1 DY2
FROM scalar e e -—
WHERE DAYNAME(dtl) LIKE "%a%y " 0001-01-01 Monday 6
ORDER BY dt1; 1996-04-22 Monday 6

1996-08-15 Thursday 8
Figure 372, DAYNAME function example

DAYOFWEEK

Returns a number that represents the day of the week (where Sunday is 1 and Saturday is 7)
from a date (or equivalent) value. The output format is integer.

SELECT dtl ANSWER

,DAYOFWEEK(dtl) AS dwk

,DAYNAME(dt1) AS dnm DT1 DWK DNM
FROM scalar e _—— —————
ORDER BY dwk 1996-04-22 2 Monday

,dnm; 0001-01-01 2 Saturday

1996-08-15 5 Thursday
Figure 373, DAYOFWEEK function example

DAYOFWEEK_ISO

Returns an integer value that represents the day of the "ISO" week. An ISO week differs from
an ordinary week in that it begins on a Monday (i.e. day-number = 1) and it neither ends nor
begins at the exact end of the year. Instead, the final 1ISO week of the prior year will continue
into the new year. This often means that the first days of the year have an 1ISO week number
of 52, and that one gets more than seven days in a week for ISO week 52.

Scalar Functions 141

Graeme Birchall ©

2001-01-01 Mon 1
2001-01-02 Tue 1

WITH ANSWER
templ (n) AS

(VALUES (0) DATE DAY W D Wl 1
UNION ALL e —mm - o= -
SELECT n+1 1999-12-25 Sat 52 7 51 6
FROM templ 1999-12-26 Sun 53 1 51 7
WHERE n < 9), 1999-12-27 Mon 53 2 52 1
temp2 (dtl) AS 1999-12-28 Tue 53 3 52 2
(VALUES(DATE("1999-12-25")) 1999-12-29 Wed 53 4 52 3
, (DATE("2000-12-24%))), 1999-12-30 Thu 53 5 52 4
temp3 (dt2) AS 1999-12-31 Fri 53 6 52 5
(SELECT dt1 + n DAYS 2000-01-01 Sat 1 7 52 6
FROM templ 2000-01-02 Sun 2 152 7
,temp2) 2000-01-03 Mon 2 2 11
SELECT CHAR(dt2, 1SO) AS date 2000-12-24 Sun 53 1 51 7
,SUBSTR(DAYNAME(dt2),1,3) AS day 2000-12-25 Mon 53 2 52 1
,WEEK(dt2) AS w 2000-12-26 Tue 53 3 52 2
,DAYOFWEEK (dt2) AS d 2000-12-27 Wed 53 4 52 3
,WEEK_1S0(dt2) AS wi 2000-12-28 Thu 53 5 52 4
,DAYOFWEEK_1S0(dt2) AS 1 2000-12-29 Fri 53 6 52 5
FROM temp3 2000-12-30 Sat 53 7 52 6
ORDER BY 1; 2000-12-31 Sun 54 1 52 7
2 1
3 2

Figure 374, DAYOFWEEK _ISO function example

DAYOFYEAR

Returns a number that is the day of the year (from 1 to 366) from a date (or equivalent) value.
The output format is integer.

SELECT dtl ANSWER
,DAYOFYEAR(dAt1) AS dyr
FROM scalar DT1 DYR

ORDER BY dyr; e -
0001-01-01 1
1996-04-22 113
1996-08-15 228

Figure 375, DAYOFYEAR function example

DAYS

Converts a date (or equivalent) value into a number that represents the number of days since
the date "0001-01-01" inclusive. The output format is INTEGER.

SELECT dtl ANSWER
,DAYS(dtl) AS dyil
FROM scalar DT1 DY1
ORDER BY dy1 e o
,dtl; 0001-01-01 1

1996-04-22 728771
1996-08-15 728886

Figure 376, DAYS function example

The DATE function can act as the inverse of the DAYS function. It can convert the DAYS
output back into a valid date.

DBCLOB
Converts the input (1st argument) to a dbclob. The output length (2nd argument) is optional.

142 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

DBPARTITIONNUM

Returns the partition number of the row. The result is zero if the table is not partitioned. The
output is of type integer, and is never null.

H DBPARTITIONNUM — (—— column-name ——) }

Figure 377, DBPARTITIONNUM function syntax
SELECT DBPARTITIONNUM(id) AS dbnum ANSWER
FROM staff ——====
WHERE id = 10; DBNUM
0

Figure 378, DBPARTITIONNUM function example

The DBPARTITIONNUM function will generate a SQL error if the column/row used can not
be related directly back to specific row in a real table. Therefore, one can not use this function
on fields in GROUP BY statements, nor in some views. It can also cause an error when used
in an outer join, and the target row failed to match in the join.

DECFLOAT
Converts a character or numeric expression to DECFLOAT.
34
' i [
F DECFLOAT — (Lnumenc expression L, 6]) }
, 34
string expression [n

.16 ' L decchar
Figure 379, DECFLOAT function syntax

The first parameter is the input expression. The second is the number of digits of precision
(default = 34). And the third is the decimal character value (default =".").

ANSWER
SELECT DECFLOAT(+123.4) 123.4
,DECFLOAT(1.0 ,16) 1.0
.DECFLOAT(1.0000 ,16) 1.0000
.DECFLOAT(1.2e-3 ,34) 0.0011999999999999999
.DECFLOAT("1.2e-3" ,34) 0.0012
.DECFLOAT(-1E3 .34) -1000
.DECFLOAT("-1E3" ,34) ~1E+3
.DECFLOAT("12.5" .,16) 12.5
.DECFLOAT("12#5" .16, "#%) 12.5

FROM sysibm.sysdummy1l;
Figure 380, DECFLOAT function example

WARNING: The function does not always precisely convert floating-point numeric values
to their DECFLOAT equivalent (see example above). Use character conversion instead.

DEC or DECIMAL

Converts either character or numeric input to decimal. When the input is of type character, the
decimal point format can be specified.

Scalar Functions 143

Graeme Birchall ©

}—[DECIMAL (— number r |) }
DEC , precision
L,sca]e J
(—char)
L,precision ‘
~sesle]
dec

Figure 381, DECIMAL function syntax

WITH templ(nl,n2,cl,c2) AS ANSWER
(VALUES (123
,1E2 DEC1 DEC2 DEC3 DEC4
,"123.4% e e e
,"567$8%)) 123. 100.0 123.4 567.8
SELECT DEC(n1,3) AS decl
,DEC(n2,4,1) AS dec?2
,DEC(cl1,4,1) AS dec3

,DEC(c2,4,1,"$") AS dec4
FROM templ;

Figure 382, DECIMAL function examples
WARNING: Converting a floating-point number to decimal may get different results from
converting the same number to integer. See page 442 for a discussion of this issue.
DECODE

The DECODE function is a simplified form of the CASE expression. The first parameter is
the expression to be evaluated. This is followed by pairs of "before™ and "after" expressions.
At the end is the "else™ result:

SELECT firstnme ANSWER
,Sex
,CASE sex FIRSTNME SEX SEX2 SEX3
WHEN *"F® THEN *"FEMALE®" = ————— o
WHEN *M® THEN *"MALE* BRUCE M MALE MALE
ELSE "?¢ CHRISTINE F FEMALE FEMALE
END AS sex2
,DECODE(sex, "F", "FEMALE", "M", "MALE", "?") AS sex3
FROM employee

WHERE firstnme < *D*
ORDER BY firstnme;

Figure 383, DECODE function example

DECRYPT_BIN and DECRYPT_CHAR

Decrypts data that has been encrypted using the ENCRYPT function. Use the BIN function to
decrypt binary data (e.g. BLOBS, CLOBS) and the CHAR function to do character data. Nu-
meric data cannot be encrypted.

}—[DECRYPT_BIN (— encrypted data)
T L , password Q }

DECRYPT_CHAR
Figure 384, DECRYPT function syntax

If the password is null or not supplied, the value of the encryption password special register
will be used. If it is incorrect, a SQL error will be generated.

144 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT id
,hame
,DECRYPT_CHAR(name2, "CLUELESS™) AS name3
,GETHINT (name2) AS hint
,hame2

FROM (SELECT id

,hame
,ENCRYPT(name, "CLUELESS*, "MY BOSS") AS name2
FROM staff
WHERE id < 30
)AS xxx
ORDER BY id;

Figure 385, DECRYPT_CHAR function example

DEGREES

Returns the number of degrees converted from the argument as expressed in radians. The out-
put format is double.

DEREF
Returns an instance of the target type of the argument.

DIFFERENCE

Returns the difference between the sounds of two strings as determined using the SOUNDEX
function. The output (of type integer) ranges from 4 (good match) to zero (poor match).

SELECT a.name AS nl ANSWER
,SOUNDEX(a-name) AS sl
,b.name AS n2 N1 S1 N2 S2 DF
,SOUNDEX(b.name) AS s2 @~ = ————mmm —mmm o -
,DIFFERENCE Sanders S536 Sneider S536 4
(a-name,b.name) AS df Sanders S536 Smith S530 3
FROM staff a Sanders S536 Lundquist L532 2
,staff b Sanders S536 Daniels D542 1
WHERE a.id = 10 Sanders S536 Molinare M456 1
AND b.id > 150 Sanders S536 Scoutten S350 1
AND b.id < 250 Sanders S536 Abrahams Al165 O
ORDER BY df DESC Sanders S536 Kermisch K652 0
,nh2 ASC; Sanders S536 Lu LOOO O

Figure 386, DIFFERENCE function example

NOTE: The difference function returns one of five possible values. In many situations, it
would be imprudent to use a value with such low granularity to rank values.

DIGITS

Converts an integer or decimal value into a character string with leading zeros. Both the sign
indicator and the decimal point are lost in the translation.

SELECT s1 ANSWER
,DIGITS(s1) AS dsl
d1

. S1 DS1 D1 DD1
,DIGITS(d1) AS dd1 mmmem mmem oo -—

FROM scalar; -2 00002 -2.4 024
0 00000 0.0 000

1 00001 1.8 018

Figure 387, DIGITS function examples

The CHAR function can sometimes be used as alternative to the DIGITS function. Their out-
put differs slightly - see page 401 for a comparison.

Scalar Functions 145

Graeme Birchall ©

NOTE: Neither the DIGITS nor the CHAR function do a great job of converting numbers to
characters. See page 401 for some user-defined functions that can be used instead.

DOUBLE or DOUBLE_PRECISION

Converts numeric or valid character input to type double. This function is actually two with
the same name. The one that converts numeric input is a SYSIBM function, while the other
that handles character input is a SYSFUN function. The keyword DOUBLE_PRECISION has
not been defined for the latter.

WITH templ(cl,dl) AS ANSWER (output shortened)
(VALUES ("123457,12.4)
,(7-23.57,1234) CiD D1D
L(T1E+457 ,-234) e
,("-2e05",+2.4)) +1.23450000E+004 +1.24000000E+001
SELECT DOUBLE(c1) AS cld -2.35000000E+001 +1.23400000E+003
,DOUBLE(d1) AS did +1.00000000E+045 -2.34000000E+002
FROM templ; -2.00000000E+005 +2.40000000E+000

Figure 388, DOUBLE function examples

See page 442 for a discussion on floating-point number manipulation.

ENCRYPT

Returns a encrypted rendition of the input string. The input must be char or varchar. The out-
put is varchar for bit data.

FENCRYPT — (—— encrypted data
P L, password]) }
L hint

Figure 389, DECRYPT function syntax
The input values are defined as follows:

e ENCRYPTED DATA: A char or varchar string 32633 bytes that is to be encrypted. Nu-
meric data must be converted to character before encryption.

e PASSWORD: A char or varchar string of at least six bytes and no more than 127 bytes. If
the value is null or not provided, the current value of the encryption password special reg-
ister will be used. Be aware that a password that is padded with blanks is not the same as
one that lacks the blanks.

e HINT: A char or varchar string of up to 32 bytes that can be referred to if one forgets
what the password is. It is included with the encrypted string and can be retrieved using
the GETHINT function.

The length of the output string can be calculated thus:

e When the hint is provided, the length of the input data, plus eight bytes, plus the distance
to the next eight-byte boundary, plus thirty-two bytes for the hint.

e When the hint is not provided, the length of the input data, plus eight bytes, plus the dis-
tance to the next eight-byte boundary.

146 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT id
,hame
,ENCRYPT(name, "THAT IDIOT","MY BROTHER") AS name2
FROM staff
WHERE ID < 30
ORDER BY id;

Figure 390, ENCRYPT function example

EVENT_MON_STATE

Returns an operational state of a particular event monitor.

EXP
Returns the exponential function of the argument. The output format is double.
WITH templ(nl) AS ANSWER
(VALUES (0)
UNION ALL N1 E1 E2

SELECT nl +1 e e
FROM templ +1.00000000000000E+0 1
WHERE nl < 10) +2_71828182845904E+0 2
SELECT n1 +7.38905609893065E+0 7

,EXP(n1) AS el +2.00855369231876E+1 20

,SMALLINT(EXP(n1)) AS e2 +5.45981500331442E+1 54
FROM templ; .48413159102576E+2 148
+4.03428793492735E+2 403
+1.09663315842845E+3 1096
+2.98095798704172E+3 2980
+8.10308392757538E+3 8103
+2.20264657948067E+4 22026

QUOWONOUAWNELO
+
=

(=Y

Figure 391, EXP function examples

FLOAT
Same as DOUBLE.

FLOOR
Returns the next largest integer value that is smaller than or equal to the input (e.g. 5.945 re-
turns 5.000). The output field type will equal the input field type.

SELECT di ANSWER (Ffloat output shortened)
,FLOOR(d1) AS d2
fl

) D1 D2 F1 F2

JFLOOR(F1) AS f2 ————- e e o
FROM scalar; -2.4 -3. -2.400E+0 -3.000E+0
0.0 +0. +0.000E+0 +0.000E+0
1.8 +1. +1.800E+0 +1.000E+0

Figure 392, FLOOR function examples

GENERATE_UNIQUE

Uses the system clock and node number to generate a value that is guaranteed unique (as long
as one does not reset the clock). The output is of type CHAR(13) FOR BIT DATA. There are
no arguments. The result is essentially a timestamp (set to universal time, not local time), with
the node number appended to the back.

Scalar Functions 147

Graeme Birchall ©

SELECT id
,GENERATE_UNIQUEQ AS unique_val#l
,DEC(HEX(GENERATE_UNIQUE()),26) AS unique_val#2
FROM staff
WHERE id < 50
ORDER BY 1id; ANSWER
ID UNIQUE_VAL#1 UNIQUE_VAL#2
NOTE: 2ND FIELD => 10 20011017191648990521000000.
IS UNPRINTABLE. => 20 20011017191648990615000000.
30 20011017191648990642000000.
40 20011017191648990669000000.

Figure 393, GENERATE_UNIQUE function examples

Observe that in the above example, each row gets a higher value. This is to be expected, and
is in contrast to a CURRENT TIMESTAMP call, where every row returned by the cursor will
have the same timestamp value. Also notice that the second invocation of the function on the
same row got a lower value (than the first).

In the prior query, the HEX and DEC functions were used to convert the output value into a
number. Alternatively, the TIMESTAMP function can be used to convert the date component
of the data into a valid timestamp. In a system with multiple nodes, there is no guarantee that
this timestamp (alone) is unique.

Generate Unique Timestamps

The GENERATE_UNIQUE output can be processed using the TIMESTAMP function to
obtain a unique timestamp value. Adding the CURRENT TIMEZONE special register to the
TIMESTAMP output will convert it to local time:

SELECT CURRENT TIMESTAMP AS tsl
, TIMESTAMP (GENERATE_UNIQUEQ)) AS ts2
, TIMESTAMP(GENERATE_UNIQUE()) + CURRENT TIMEZONE AS ts3
FROM sysibm.sysdummyl;
ANSWER

TS1: 2007-01-19-18.12.33.587000
TS2: 2007-01-19-22.12.28.434960
TS3: 2007-01-19-18.12.28.434953

Figure 394, Covert GENERATE_UNIQUE output to timestamp

This code can be useful if one is doing a multi-row insert, and one wants each row inserted to
have a distinct timestamp value. However, there are a few qualifications:

e The timestamp values generated will be unique in themselves. But concurrent users may
also generate the same values. There is no guarantee of absolute uniqueness.

e Converting the universal-time value to local-time does not always return a value is equal
to the CURRENT TIMESTAMP special register. As is illustrated above, the result can
differ by a few seconds. This may cause business problems if one is relying on the value
to be the "true time" when something happened.

Making Random

One thing that DB2 lacks is a random number generator that makes unique values. However,
if we flip the characters returned in the GENERATE_UNIQUE output, we have something
fairly close to what is needed. Unfortunately, DB2 also lacks a REVERSE function, so the
data flipping has to be done the hard way.

148 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT ul
,SUBSTR(u1,20,1) CONCAT SUBSTR(u1,19,1) CONCAT
SUBSTR(u1,18,1) CONCAT SUBSTR(ul,17.1) CONCAT
SUBSTR(u1,16,1) CONCAT SUBSTR(ul,15,1) CONCAT
SUBSTR(u1,14,1) CONCAT SUBSTR(ul,13,1) CONCAT
SUBSTR(ul1,12,1) CONCAT SUBSTR(ul,11,1) CONCAT
SUBSTR(u1,10,1) CONCAT SUBSTR(ul,09,1) CONCAT
SUBSTR(u1,08,1) CONCAT SUBSTR(ul,07.1) CONCAT
SUBSTR(u1,06,1) CONCAT SUBSTR(ul,05,1) CONCAT
SUBSTR(u1,04,1) CONCAT SUBSTR(ul,03.1) CONCAT
SUBSTR(u1,02,1) CONCAT SUBSTR(ul1,01,1) AS U2

FROM (SELECT HEX(GENERATE_UNIQUE(Q)) AS ul

FROM staff
WHERE 1d < 50) AS xxX
ORDER BY u2; ANSWER

20000901131649119940000000 04991194613110900002
20000901131649119793000000 39791194613110900002
20000901131649119907000000 70991194613110900002
20000901131649119969000000 96991194613110900002

Figure 395, GENERATE_UNIQUE output, characters reversed to make pseudo-random

Observe above that we used a nested table expression to temporarily store the results of the
GENERATE_UNIQUE calls. Alternatively, we could have put a GENERATE_UNIQUE call
inside each SUBSTR, but these would have amounted to separate function calls, and there is a
very small chance that the net result would not always be unique.

Using REVERSE Function

One can refer to a user-defined reverse function (see page 416 for the definition code) to flip
the U1 value, and thus greatly simplify the query:
SELECT ul

,SUBSTR(reverse(CHAR(u1)),7,20) AS u2
FROM (SELECT HEX(GENERATE_UNIQUEQ) AS ul

FROM STAFF
WHERE ID < 50) AS Xxxx
ORDER BY U2;

Figure 396, GENERATE_UNIQUE output, characters reversed using function

GETHINT

Returns the password hint, if one is found in the encrypted data.

SELECT id
,name
,GETHINT(name2) AS hint
FROM (SELECT id
,hame
,ENCRYPT(name, "THAT IDIOT","MY BROTHER") AS name2
FROM staff
WHERE id < 30 ANSWER
)AS XXX
ORDER BY id; ID NAME HINT
10 Sanders MY BROTHER
20 Pernal MY BROTHER

Figure 397, GETHINT function example

Scalar Functions 149

Graeme Birchall ©

GRAPHIC

Converts the input (1st argument) to a graphic data type. The output length (2nd argument) is
optional.

GREATEST
See MAX scalar function on page 156.

HASHEDVALUE

Returns the partition number of the row. The result is zero if the table is not partitioned. The
output is of type integer, and is never null.

SELECT HASHEDVALUE(id) AS hvalue ANSWER
FROM staff =—=====
WHERE id = 10; HVALUE

0

Figure 398, HASHEDVALUE function example

The DBPARTITIONNUM function will generate a SQL error if the column/row used can not
be related directly back to specific row in a real table. Therefore, one can not use this function
on fields in GROUP BY statements, nor in some views. It can also cause an error when used
in an outer join, and the target row failed to match in the join.

HEX
Returns the hexadecimal representation of a value. All input types are supported.
WITH templ(nl) AS ANSWER
(VALUES (-3)
UNION ALL S SHX DHX FHX
SELECT nl + 1 e e e e
FROM templ -3 FDFF 00003D 00000000000008C0
WHERE nl < 3) -2 FEFF 00002D 00000000000000C0
SELECT SMALLINT(n1) AS s -1 FFFF 00001D 000O00000000OFOBF
,HEX(SMALLINT(n1)) AS shx 0 0000 00000C 0000000000000000
,HEX(DEC(n1,4,0)) AS dhx 1 0100 00001C OOOOOOOOOOOOFO3F
,HEX(DOUBLE(n1)) AS fThx 2 0200 00002C 0000000000000040
FROM templ; 3 0300 00003C 0000000000000840

Figure 399, HEX function examples, numeric data

SELECT cl1 ANSWER
,HEX(cl1l) AS chx
1

Y c1 CHX Yl VHX
,HEX(v1) AS vhx = e e
FROM scalar; ABCDEF 414243444546 ABCDEF 414243444546
ABCD 414243442020 ABCD 41424344
AB 414220202020 AB 4142
Figure 400, HEX function examples, character & varchar
SELECT dt1l ANSWER
LHEX(dt1) AS dthx
,tml DT1 DTHX ™1 TMHX
JHEX(tm1) AS tmhx = mmmmmm e e
FROM scalar; 1996-04-22 19960422 23:58:58 235858

1996-08-15 19960815 15:15:15 151515
0001-01-01 00010101 00:00:00 000000

Figure 401, HEX function examples, date & time

150 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

HOUR
Returns the hour (as in hour of day) part of a time value. The output format is integer.
SELECT tml ANSWER
> HOUR(tml) AS hr ———=—=——=—=—=—=—==
FROM scalar ™1 HR
ORDER BY tml; —
00:00:00 0
15:15:15 15
23:58:58 23

Figure 402, HOUR function example

IDENTITY_VAL_LOCAL

Returns the most recently assigned value (by the current user) to an identity column. The re-
sult type is decimal (31,0), regardless of the field type of the identity column. See page 284
for detailed notes on using this function.

CREATE TABLE seq#

(ident_val INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY

,cur_ts TIMESTAMP NOT NULL

.PRINARY KEY (ident_val));
COMMIT;

INSERT INTO seq# VALUES(DEFAULT,CURRENT TIMESTAMP);

ANSWER
WITH temp (idval) AS ======
(VALUES (IDENTITY_VAL_LOCALQ)) IDVAL
SELECT * e
FROM temp; 1.

Figure 403, IDENTITY_VAL_LOCAL function usage

INSERT

Insert one string in the middle of another, replacing a portion of what was already there. If the
value to be inserted is either longer or shorter than the piece being replaced, the remainder of
the data (on the right) is shifted either left or right accordingly in order to make a good fit.

F INSERT (—— source ——, start-pos ——, del-bytes ——, new-valuef)g}

Figure 404, INSERT function syntax

Usage Notes
e Acceptable input types are varchar, clob(1M), and blob(1M).
e The first and last parameters must always have matching field types.

e Toinsert a new value in the middle of another without removing any of what is already
there, set the third parameter to zero.

e The varchar output is always of length 4K.

SELECT name ANSWER (4K output Fields shortened)

, INSERT(name, 3,2, "A")

, INSERT(name, 3,2, "AB™) NAME 2 3 4

, INSERT(name,3,2,"ABC*") = ———————— —mmmmom e
FROM staff Sanders SaAers SaABers SaABCers
WHERE id < 40; Pernal PeAal PeABal PeABCal

Marenghi MaAnghi MaABnghi MaABCnghi
Figure 405, INSERT function examples

Scalar Functions 151

Graeme Birchall ©

INT or INTEGER

The INTEGER or INT function converts either a number or a valid character value into an
integer. The character input can have leading and/or trailing blanks, and a sign indictor, but it
can not contain a decimal point. Numeric decimal input works just fine.

SELECT d1 ANSWER
, INTEGER(d1)
JINT(T+123%) D1 2 3 4 5

JNT(T-1237) mmmee e oo oo s

,INT(" 123 %) -2.4 -2 123 -123 123
FROM scalar; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 406, INTEGER function examples

JULIAN_DAY

Converts a date value into a number that represents the number of days since January the 1st,
4,713 BC. The output format is integer.

WITH templ(dtl) AS ANSWER
(VALUES (*0001-01-01-00.00.00")
,("1752-09-10-00.00.00") DT DY DJ
.(72007-06-03-00.00.00") —mmmmmmmm o o
.("2007-06-03-23.59.59")) 0001-01-01 1 1721426
SELECT DATE(dtl) AS dt 1752-09-10 639793 2361218
,DAYS(dt1) AS dy 2007-06-03 732830 2454255
.JULIAN_DAY(dtl) AS dj 2007-06-03 732830 2454255

FROM templ;
Figure 407, JULIAN_DAY function example

Julian Days, A History

I happen to be a bit of an Astronomy nut, so what follows is a rather extended description of
Julian Days - their purpose, and history (taken from the web).

The Julian Day calendar is used in Astronomy to relate ancient and modern astronomical ob-
servations. The Babylonians, Egyptians, Greeks (in Alexandria), and others, kept very de-
tailed records of astronomical events, but they all used different calendars. By converting all
such observations to Julian Days, we can compare and correlate them.

For example, a solar eclipse is said to have been seen at Ninevah on Julian day 1,442,454 and
a lunar eclipse is said to have been observed at Babylon on Julian day number 1,566,839.
These numbers correspond to the Julian Calendar dates -763-03-23 and -423-10-09 respec-
tively). Thus the lunar eclipse occurred 124,384 days after the solar eclipse.

The Julian Day number system was invented by Joseph Justus Scaliger (born 1540-08-05 J in
Agen, France, died 1609-01-21 J in Leiden, Holland) in 1583. Although the term Julian Cal-
endar derives from the name of Julius Caesar, the term Julian day number probably does not.
Evidently, this system was named, not after Julius Caesar, but after its inventor's father, Julius
Caesar Scaliger (1484-1558).

The younger Scaliger combined three traditionally recognized temporal cycles of 28, 19 and
15 years to obtain a great cycle, the Scaliger cycle, or Julian period, of 7980 years (7980 is
the least common multiple of 28, 19 and 15). The length of 7,980 years was chosen as the
product of 28 times 19 times 15; these, respectively, are:

e The number of years when dates recur on the same days of the week.

152 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

e The lunar or Metonic cycle, after which the phases of the Moon recur on a particular day
in the solar year, or year of the seasons.

e The cycle of indiction, originally a schedule of periodic taxes or government requisitions
in ancient Rome.

The first Scaliger cycle began with Year 1 on -4712-01-01 (Julian) and will end after 7980
years on 3267-12-31 (Julian), which is 3268-01-22 (Gregorian). 3268-01-01 (Julian) is the
first day of Year 1 of the next Scaliger cycle.

Astronomers adopted this system and adapted it to their own purposes, and they took noon
GMT -4712-01-01 as their zero point. For astronomers a day begins at noon and runs until the
next noon (so that the nighttime falls conveniently within one "day"). Thus they defined the
Julian day number of a day as the number of days (or part of a day) elapsed since noon GMT
on January 1st, 4713 B.C.E.

This was not to the liking of all scholars using the Julian day number system, in particular,
historians. For chronologists who start "days™ at midnight, the zero point for the Julian day
number system is 00:00 at the start of -4712-01-01 J, and this is day 0. This means that 2000-
01-01 G is 2,451,545 JD.

Since most days within about 150 years of the present have Julian day numbers beginning
with "24", Julian day numbers within this 300-odd-year period can be abbreviated. In 1975
the convention of the modified Julian day number was adopted: Given a Julian day number
JD, the modified Julian day number MJD is defined as MJD = JD - 2,400,000.5. This has two
purposes:

e Days begin at midnight rather than noon.

e For dates in the period from 1859 to about 2130 only five digits need to be used to spec-
ify the date rather than seven.

MJD 0 thus corresponds to JD 2,400,000.5, which is twelve hours after noon on JD 2,400,000
= 1858-11-16. Thus MJD 0 designates the midnight of November 16th/17th, 1858, so day 0
in the system of modified Julian day numbers is the day 1858-11-17.

The following SQL statement uses the JULIAN_DAY function to get the Julian Date for cer-
tain days. The same calculation is also done using hand-coded SQL.

SELECT bd
,JULIAN_DAY (bd)
,(1461 * (YEAR(bd) + 4800 + (MONTH(bd)-14)/12))/4
+(367 * (MONTH(bd)- 2 - 12*((MONTH(bd)-14)/12)))/12
-C 3 * ((YEAR(bd) + 4900 + (MONTH(bd)-14)/12)7100))/4

+DAY(bd) - 32075
FROM (SELECT birthdate AS bd
FROM employee

WHERE midinit = "R" ANSWER
AS XXX
ORDER BY bd; BD 2 3

1926-05-17 2424653 2424653
1936-03-28 2428256 2428256
1946-07-09 2432011 2432011
1955-04-12 2435210 2435210

Figure 408, JULIAN_DAY function examples

Scalar Functions 153

Graeme Birchall ©

Julian Dates

Many computer users think of the "Julian Date" as a date format that has a layout of "yynnn"
or "yyyynnn" where "yy" is the year and "nnn" is the number of days since the start of the
same. A more correct use of the term "Julian Date" refers to the current date according to the
calendar as originally defined by Julius Caesar - which has a leap year on every fourth year.
In the US/UK, this calendar was in effect until "1752-09-14". The days between the 3rd and
13th of September in 1752 were not used in order to put everything back in sync. In the 20th
and 21st centuries, to derive the Julian date one must subtract 13 days from the relevant Gre-
gorian date (e.g.1994-01-22 becomes 1994-01-07).

The following SQL illustrates how to convert a standard DB2 Gregorian Date to an equiva-
lent Julian Date (calendar) and a Julian Date (output format):

ANSWER
DT DJ1 DJ2
WITH templ(dtl) AS e o
(VALUES ("2007-01-01") 2007-01-01 2006-12-19 2007001
,("2007-01-02") 2007-01-02 2006-12-20 2007002
,(72007-12-31")) 2007-12-31 2007-12-18 2007365

SELECT DATE(dtl) AS dt

,DATE(dtl) - 13 DAYS AS dj1l

,YEAR(dt1l) * 1000 + DAYOFYEAR(dt1l) AS dj2
FROM templ;

Figure 409, Julian Date outputs

WARNING: DB2 does not make allowances for the days that were not used when English-
speaking countries converted from the Julian to the Gregorian calendar in 1752

LCASE or LOWER

Converts a mixed or upper-case string to lower case. The output is the same data type and
length as the input.

SELECT name ANSWER

,LCASE(name) AS Iname

,UCASE(name) AS uname NAME LNAME UNAME
FROM staf¢ e e e
WHERE id < 30; Sanders sanders SANDERS

Pernal pernal PERNAL
Figure 410, LCASE function example

LEAST

See MIN scalar function on page 158.

LEFT

The LEFT function has two arguments: The first is an input string of type char, varchar, clob,
or blob. The second is a positive integer value. The output is the left most characters in the
string. Trailing blanks are not removed.

WITH templ(cl) AS ANSWER

(VALUES (" ABC")
,(" ABC *) c1 Cc2 L2
CCABC Y O am —

SELECT c1 ABC AB 4
,LEFT(c1,4) AS c2 ABC ABC 4
,LENGTH(LEFT(c1,4)) AS 12 ABC ABC 4

FROM templ;
Figure 411, LEFT function examples

154 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

If the input is either char or varchar, the output is varchar(4000). A column this long is a nui-
sance to work with. Where possible, use the SUBSTR function to get around this problem.

LENGTH

Returns an integer value with the internal length of the expression (except for double-byte
string types, which return the length in characters). The value will be the same for all fields in
a column, except for columns containing varying-length strings.

SELECT LENGTH(d1) ANSWER
,LENGTH(F1)
,LENGTH(s1) 1 2 3 4 5
,LENGTH(c1) S
,LENGTH(RTRIM(c1)) 2 8 2 6 6
FROM scalar; 2 8 2 6 4

2 8 2 6 2
Figure 412, LENGTH function examples

LN or LOG
Returns the natural logarithm of the argument (same as LOG). The output format is double.
WITH templ(nl) AS ANSWER
(VALUES (1), (123),(1234)
,(12345),(123456)) N1 L1
SELECT n1 e e
,LOG(n1) AS 11 1 +0.00000000000000E+000
FROM templ; 123 +4.81218435537241E+000
1234 +7.11801620446533E+000
12345 +9.42100640177928E+000
123456 +1.17236400962654E+001

Figure 413, LOG function example

LOCATE

Returns an integer value with the absolute starting position of the first occurrence of the first
string within the second string. If there is no match, the result is zero. The optional third pa-

rameter indicates where to start the search.

VLOCATE (—find-string —, look-in-string

Figure 414, LOCATE function syntax

L, start-pos. J t ,OCTETS

)

,CODEUNITS16 —
,CODEUNITS32 -

The result, if there is a match, is always the absolute position (i.e. from the start of the string),

not the relative position (i.e. from the starting position).

WITH templ (cl) As) .
(VALUES ("abcdA®),("Abcd®),("AA"),(TAA™))
SELECT cl

,LOCATE("A",cl) AS "I1”
,LOCATE("A",cl,2) AS lI2"
,LOCATE("A",cl1l,0CTETS) AS "I3"
,LOCATE("A",c1,CODEUNITS16) AS "l14"

,LOCATE("A",c1,2,CODEUNITS16) AS "I5"
FROM templ;

Figure 415, LOCATE function examples

ANSWER

C1 11 12 13 14 15

abcdA 5 5 5 5 5

Abcd 1 0 1 1 O
AA 2 2 2 2 2
AA 3 33 2 2

When a special character like "A" is encountered before the find-string (see last line) the plain
LOCATE returns the number of bytes searched, not the number of characters.

Scalar Functions 155

LOG or LN

See the description of the LN function.

Graeme Birchall ©

+0.00000000000000E+000
+2.08990511143939E+000
+3.09131515969722E+000
+4.09149109426795E+000

LOG10
Returns the base ten logarithm of the argument. The output format is double.
WITH templ(nl) AS ANSWER
(VALUES (1), (123),(1234)
,(12345),(123456)) N1
SELECT n2 ~ ~ —eeee
,LOG10(n1) AS 11 1
FROM templ; 123
1234
12345
123456

Figure 416, LOG10 function example

LONG_VARCHAR

+5.09151220162777E+000

Converts the input (1st argument) to a long_varchar data type. The output length (2nd argu-

ment) is optional.

LONG_VARGRAPHIC

Converts the input (1st argument) to a long_vargraphic data type. The output length (2nd ar-

gument) is optional.

LOWER
See the description for the LCASE function.

LTRIM

Remove leading blanks, but not trailing blanks, from the argument.

WITH templ(cl) AS
(VALUES (* ABCH®)
,(" ABC ")
.("ABC "))
SELECT c1
,LTRIM(cl1) AS c2
,LENGTH(LTRIM(c1l)) AS 12
FROM templ;

Figure 417, LTRIM function example

MAX

ANSWER

C1 c2 L2
ABC ABC 3
ABC ABC 4

ABC ABC 5

Returns the largest item from a list that must be at least two items long:

VALUES MAX(5,8,4)
Figure 418, MAX scalar function

ANSWER => 8

One can combine the MAX scalar and column functions to get the combined MAX value of a

set of rows and columns:

SELECT MAX(MAX(salary,years,comm))
FROM STAFF;

Figure 419, Sample Views used in Join Examples

156

ANSWER => 87654.50

Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

DB2 knows which function is which because the MAX scalar value must have at least two
input values, while the column function can only have one.

Null Processing

The MAX and MIN scalar functions return null if any one of the input list items is null. The
MAX and MIN column functions ignore null values. They do however return null when no
rows match.

MAX_CARDINALITY

Returns a BIGINT value that is the maximum number of values that an array can contain.

MICROSECOND

Returns the microsecond part of a timestamp (or equivalent) value. The output is integer.

SELECT tsl ANSWER
,MICROSECOND(ts1)
FROM scalar TS1 2
ORDER BY tsl1; = e
0001-01-01-00.00.00.000000 0
1996-04-22-23.58.58.123456 123456
1996-08-15-15.15.15.151515 151515

Figure 420, MICROSECOND function example

MIDNIGHT_SECONDS

Returns the number of seconds since midnight from a timestamp, time or equivalent value.
The output format is integer.

SELECT ts1 ANSWER
,MIDNIGHT _SECONDS(ts1)
HOUR(ts1)*3600 + TS1 2 3
MINUTE(ES1)*60 + ———mmmmmmmmmmmmmm
SECOND(ts1) 0001-01-01-00.00.00.000000 0 0
FROM scalar 1996-04-22-23.58.58.123456 86338 86338
ORDER BY tsi; 1996-08-15-15.15.15.151515 54915 54915

Figure 421, MIDNIGHT_SECONDS function example

There is no single function that will convert the MIDNIGHT_SECONDS output back into a
valid time value. However, it can be done using the following SQL.:

ANSWER
MS ™
WITH templ (ms) AS 0 00:00:00
(SELECT MIDNIGHT_SECONDS(ts1) 54915 15:15:15
FROM scalar 86338 23:58:58
)
SELECT ms
,SUBSTR(DIGITS(ms/3600). Il “:=° |
SUBSTR(DIGITS((ms-((MS/3600)*3600))/60),9) || - |
SUBSTR(DIGITS(ms-((MS/60)*60)).9) AS tm
FROM templ
ORDER BY 1;

Figure 422, Convert MIDNIGHT_SECONDS output back to a time value

NOTE: The following two identical timestamp values: "2005-07-15.24.00.00" and "2005-
07-16.00.00.00" will return different MIDNIGHT_SECONDS results. See the chapter titled
"Quirks in SQL" on page 427 for a detailed discussion of this issue.

Scalar Functions 157

Graeme Birchall ©

MIN

Returns the smallest item from a list that must be at least two items long:

VALUES MIN(5,8,4) ANSWER => 4
Figure 423, MIN scalar function

Null is returned if any one of the list items is null.

MINUTE
Returns the minute part of a time or timestamp (or equivalent) value. The output is integer.
SELECT tsl ANSWER
,MINUTE(ts1)
FROM scalar TS1 2
ORDER BY tsl; e
0001-01-01-00.00.00.000000 0
1996-04-22-23.58.58.123456 58
1996-08-15-15.15.15.151515 15

Figure 424, MINUTE function example

MOD

Returns the remainder (modulus) for the first argument divided by the second. In the follow-
ing example the last column uses the MOD function to get the modulus, while the second to
last column obtains the same result using simple arithmetic.

WITH templ(nl,n2) AS ANSWER
(VALUES (-31,+11)
UNION ALL N1 N2 DIV MD1 MD2
SELECT nl1 + 13 e
,n2 - 4 =31 11 -2 -9 -9
FROM templ -18 7 -2 -4 -4
WHERE nl < 60 -5 3 -1 -2 -2
) 8 -1 -8 0 0
SELECT nl 21 -5 -4 1 1
,n2 34 -9 -3 7 7
,n1/n2 AS div 47 -13 -3 8 8
,N1-((n1/n2)*n2) AS mdl 60 -17 -3 9 9
,MOD(n1,n2) AS md2
FROM templ
ORDER BY 1;

Figure 425, MOD function example

MONTH

Returns an integer value in the range 1 to 12 that represents the month part of a date or time-
stamp (or equivalent) value.

MONTHNAME

Returns the name of the month (e.g. October) as contained in a date (or equivalent) value. The
output format is varchar(100).

SELECT dtl ANSWER
,MONTH(dt1)
,MONTHNAME (dt1) DT1 2 3
FROM scalar e e
ORDER BY dt1; 0001-01-01 1 January
1996-04-22 4 April
1996-08-15 8 August

Figure 426, MONTH and MONTHNAME functions example

158 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

MULTIPLY_ALT

Returns the product of two arguments as a decimal value. Use this function instead of the
multiplication operator when you need to avoid an overflow error because DB2 is putting
aside too much space for the scale (i.e. fractional part of number) Valid input is any exact
numeric type: decimal, integer, bigint, or smallint (but not float).

WITH templ (n1,n2) AS

(VALUES (DECIMAL(1234,10) ANSWER
,DECIMAL(1234,10))) ========
SELECT nil >> 1234.
,h2 >> 1234.
,hl * n2 AS p1 >> 1522756.
,*(n1,n2) AS p2 >> 1522756.
,MULTIPLY_ALT(n1,n2) AS p3 >> 1522756.

FROM templ;
Figure 427, Multiplying numbers - examples

When doing ordinary multiplication of decimal values, the output precision and the scale is
the sum of the two input precisions and scales - with both having an upper limit of 31. Thus,
multiplying a DEC(10,5) number and a DEC(4,2) number returns a DEC(14,7) number. DB2
always tries to avoid losing (truncating) fractional digits, so multiplying a DEC(20,15) num-
ber with a DEC(20,13) number returns a DEC(31,28) number, which is probably going to be
too small.

The MULTIPLY_ALT function addresses the multiplication overflow problem by, if need be,
truncating the output scale. If it is used to multiply a DEC(20,15) number and a DEC(20,13)
number, the result is a DEC(31,19) number. The scale has been reduced to accommodate the
required precision. Be aware that when there is a need for a scale in the output, and it is more
than three digits, the function will leave at least three digits.

Below are some examples of the output precisions and scales generated by this function:
<—-MULTIPLY_ALT->

RESULT RESULT SCALE PRECSION

INPUT#1 INPUT#2 ~ "*" OPERATOR MULTIPLY_ALT TRUNCATD TRUNCATD
DEC(05,00) DEC(05,00) DEC(10,00) DEC(10,00) NO NO
DEC(10,05) DEC(11,03) DEC(21,08) DEC(21,08) NO NO
DEC(20,15) DEC(21,13) DEC(31,28) DEC(31,18) YES NO
DEC(26.,23) DEC(10,01) DEC(31,24) DEC(31,19) YES NO
DEC(31,03) DEC(15,08) DEC(31,11) DEC(31,03) YES YES

Figure 428, Decimal multiplication - same output lengths

NORMALIZE_DECFLOAT

Removes any trailing zeros from a DECFLOAT value.

Scalar Functions 159

Graeme Birchall ©

ANSWER
D1 D2
WITH templ (d1) AS e
(VALUES (DECFLOAT(1)) 1 1
, (DECFLOAT(1.0)) 1.0 1
, (DECFLOAT(1.00)) 1.00 1
, (DECFLOAT(1.000)) 1.000 1
, (DECFLOAT("12.3%)) 12.3 12.3
, (DECFLOAT("12.30%)) 12.30 12.3
, (DECFLOAT(1.2€e4)) 12000 1.2E+4
, (DECFLOAT("1.2e4%)) 1.2E+4 1.2E+4
, (DECFLOAT(1.2e-3)) 0.001200000000000000 0.0012
) , (DECFLOAT("1.2e-3%)) 0.0012 0.0012
SELECT di
,NORMALIZE_DECFLOAT(d1) AS d2
FROM templ;

Figure 429, NORMALIZE_DECFLOAT function examples

NULLIF
Returns null if the two values being compared are equal, otherwise returns the first value.
SELECT s1 ANSWER
,NULLIF(s1,0)
,cl S1 2 C1 4
LNULLIF(C1,"AB") e e e
FROM scalar -2 -2 ABCDEF ABCDEF
WHERE NULLIF(0,0) IS NULL; 0 - ABCD ABCD
1 1AB -

Figure 430, NULLIF function examples

NVL
Same as COALESCE.

OCTET_LENGTH

Returns the length of the input expression in octets (bytes).

WITH templ (c1l) AS (VALUES (CAST("AET" AS VARCHAR(10))))
SELECT «cl1 AS C1

,LENGTH(c1) AS LEN
LOCTET_LENGTH(c1) AS OCT ANSWER
,CHAR_TENGTH(c1,0CTETS) AS LO8

,CHAR_LENGTH(c1,CODEUNITS16) AS L16 Cl LEN OCT LO8 L16 L32
,CHAR_LENGTH(c1,CODEUNITS32) AS L32 ——o mmm mmm —mm e -
FROM templ; AEI 6 6 6 3 3

Figure 431, OCTET_LENGTH example

OVERLAY

Overlay (i.e. replace) some part of a string with another string. There are five parameters:
e The source string to be edited.

e The new string to be inserted. This value can be zero length, but must be provided.

e Start position for new string, and also to where start deleting. This value must be between
one and the string length.

e Number of bytes in the source to be overlaid. This value is optional.

160 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

e The code unit to use.

There are two function notations. One uses keywords to separate each parameter. The other
uses commas:

FOVERLAY(—source-string }
F—PLACING —— insert-strin FROM start USING
g LFOR — length }
L, ——————— insert-strin start ;
9 L, length]
}77 CODEUNITS16) }
- CODEUNITS32 —
L OCTETS
Figure 432, OVERLAY function syntax
WITH templ (txt) AS
(VALUES("abcded™), ("addd®),("adq*))
SELECT t~t
,OVERLAY (txt, "XX",3,1,0CTETS) AS "s3f1"
,OVERLAY (txt, "XX",2, OCTETS) AS 's2f0"
,OVERLAY (txt, "XX",1,1,0CTETS) AS "sl1f1"
,OVERLAY (txt, "XX",2,2,0CTETS) AS "s2f2"
FROM templ; ANSWER
TXT s3f1 s2f0 sifl s2f2

abcded abXXded aXXcded XXbcded aXXded
addd adXxXXxd axXdd XXddd axXxd
adq adxX axXq XXdq axx

Figure 433, OVERLAY function example

PARTITION

Returns the partition map index of the row. The result is zero if the table is not partitioned.
The output is of type integer, and is never null.

SELECT PARTITION(id) AS pp ANSWER
FROM staff ======
WHERE id = 10; PP

0

Figure 434, PARTITION function example

POSITION

Returns an integer value with the absolute starting position of the first occurrence of the first
string within the second string. If there is no match, the result is zero. The third parameter
indicates what code-unit to use.

yposmw (—find-string T — look-in-string — , OCTETS)*
T CODEUNITS16 }
IN — look-in-string — USING CODEUNITS32
Figure 435, POSITION function syntax

When a special character like "A" is encountered before the find-string (see last two lines in
next example) the plain OCTETS search returns the number of bytes searched, not the num-
ber of characters:

Scalar Functions 161

WITH templ (cl) As

(VALUES ("A™),("aA"),("AA"),("AAA™))

SELECT «ci1

,POSITION("A",c1,0CTETS)
,POSITION("A",c1,CODEUNITS16)
,POSITION("A",c1l,CODEUNITS32)

AS "p1”
AS "'p2"
AS "'p3"

,POSITION("A" IN cl USING OCTETS) AS '"p4"

FROM templ;

Figure 436, POSITION function syntax

Graeme Birchall ©

ANSWER

Cl pl p2 p3 p4

The LOCATE function (see page 155) is very similar to the POSITION function. It has the
additional capability of being able to start the search at any position in the search string.

POSSTR

Returns the position at which the second string is contained in the first string. If there is no
match the value is zero. The test is case sensitive. The output format is integer.

SELECT «ci

,POSSTR(c1," ") AS pl
,POSSTR(c1,"CD*) AS p2
,POSSTR(c1,"cd") AS p3

FROM scalar
ORDER BY 1;

Figure 437, POSSTR function example

POSSTR vs. LOCATE

ANSWER

P1 P2 P3
3 0 O
ABCD 5 3 O

ABCDEF O 3 O

The LOCATE and POSSTR functions are very similar. Both look for matching strings
searching from the left. The only functional differences are that the input parameters are re-
versed and the LOCATE function enables one to begin the search at somewhere other than
the start. When either is suitable for the task at hand, it is probably better to use the POSSTR

function because it is a SYSIBM function and so should be faster.

SELECT ci

,POSSTR(c1," =)

LLOCATE(" *,c1)

,POSSTR(c1, *CD*")
LLOCATE("CD",c1)
,POSSTR(c1, "cd")
LLOCATE("cd",c1)
,LOCATE("D",c1,2)

FROM scalar
ORDER BY 1;

Figure 438, POSSTR vs. LOCATE functions

POWER

AS
AS
AS
AS
AS
AS
AS

pl
11
p2
12
p3
13
14

ANSWER

P1 L1 P2 L2 P3 L3 L4

Returns the value of the first argument to the power of the second argument

WITH templ(nl) AS

(VALUES (1), (10), (100))

SELECT n1

,POWER(n1,1) AS pl
LPOWER(n1.,2) AS p2
LPOWER(n1,3) AS p3

FROM templ;

Figure 439, POWER function examples

162

ANSWER

100

1 1
100 1000
10000 1000000

Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

QUANTIZE

Convert the first input parameter to DECFLOAT, using the second parameter as a mask. The
specific value of the second parameter is irrelevant. But the precision (i.e. number of digits
after the decimal point) defines the precision of the DECFLOAT result:

ANSWER
WITH templ (d1, d2) AS
(VALUES (+1.23, DECFLOAT(1.0)) 1.2
,(+1.23, DECFLOAT(1.00)) 1.23
,(-1.23, DECFLOAT(1.000)) -1.230
,(+123, DECFLOAT(9.8765)) 123.0000
,(+123, DECFLOAT(1E-3)) 123.000
,(+123, DECFLOAT (1E+3)) 123
,(SQRT(2), DECFLOAT(0.0)) 1.4
,(SQRT(2), DECFLOAT("1E-5%)) 1.41421
,(SQRT(2), DECFLOAT(1E-5)) 1.414213562373095100000
)
SELECT QUANTIZE(d1,d2)
FROM templ;

Figure 440, QUANTIZE function examples

Observe that the function returns a very different result when the second parameter is '1E-5'
vs. 1E-5 (i.e. with no quotes). This is because the number 1E-5 is not precisely converted to
the DECFLOAT value 0.00001, as the following query illustrates:

ANSWER

WITH templ (d1) AS e
(VALUES (DECFLOAT("1E-5")) 0.00001

, (DECFLOAT(1E-5)) 0.000010000000000000001

)
SELECT di
FROM templ;

Figure 441, DECFLOAT conversion example

QUARTER

Returns an integer value in the range 1 to 4 that represents the quarter of the year from a date
or timestamp (or equivalent) value.

RADIANS

Returns the number of radians converted from the input, which is expressed in degrees. The
output format is double.

RAISE_ERROR

Causes the SQL statement to stop and return a user-defined error message when invoked.
There are a lot of usage restrictions involving this function, see the SQL Reference for details.

F RAISE_ERROR-—— (—— sqlstate —— ,error-message——) —>

Figure 442, RAISE_ERROR function syntax

SELECT sl ANSWER
,CASE
WHEN sl < 1 THEN sl s1 s2
ELSE RAISE _ERROR(*80001%,c1) cmmmmm oo
END AS s2 -2 -2

FROM scalar; 0 0
SQLSTATE=80001

Figure 443, RAISE_ERROR function example

Scalar Functions 163

Graeme Birchall ©

The SIGNAL statement (see page 83) is the statement equivalent of this function.

RAND

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 430 for a detailed description of this issue. To randomly sample the rows in a
table reliably and efficiently, use the TABLESAMPLE feature. See page 396 for details.

Returns a pseudo-random floating-point value in the range of zero to one inclusive. An op-
tional seed value can be provided to get reproducible random results. This function is espe-
cially useful when one is trying to create somewhat realistic sample data.

Usage Notes

o The RAND function returns any one of 32K distinct floating-point values in the range of
zero to one inclusive. Note that many equivalent functions in other languages (e.g. SAS)
return many more distinct values over the same range.

e The values generated by the RAND function are evenly distributed over the range of zero
to one inclusive.

e Aseed can be provided to get reproducible results. The seed can be any valid number of
type integer. Note that the use of a seed alone does not give consistent results. Two dif-
ferent SQL statements using the same seed may return different (but internally consistent)
sets of pseudo-random numbers.

o If the seed value is zero, the initial result will also be zero. All other seed values return
initial values that are not the same as the seed. Subsequent calls of the RAND function in
the same statement are not affected.

o If there are multiple references to the RAND function in the same SQL statement, the
seed of the first RAND invocation is the one used for all.

o If the seed value is not provided, the pseudo-random numbers generated will usually be
unpredictable. However, if some prior SQL statement in the same thread has already in-
voked the RAND function, the newly generated pseudo-random numbers "may" continue
where the prior ones left off.

Typical Output Values

The following recursive SQL generates 100,000 random numbers using two as the seed value.
The generated data is then summarized using various DB2 column functions:

164 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

WITH temp (num, ran) AS
(VALUES (INT(1)

,RAND(2))
UNION ALL
SELECT num + 1
,RANDQO
FROM temp
WHERE num < 100000 ANSWER
) o o o e e e e e e e
SELECT COUNT(*) AS #rows ==> 100000
,COUNT(DISTINCT ran) AS #values ==> 31242
,DEC(AVG(ran),7,6) AS avg_ran ==> 0.499838
,DEC(STDDEV(ran),7,6) AS std_dev 0.288706
,DEC(MIN(ran),7,6) AS min_ran 0.000000
,DEC(MAX(ran),7,6) AS max_ran 1.000000
,DEC(MAX(ran),7,6) -
DEC(MIN(ran),7,6) AS range 1.000000
,DEC(VAR(ran),7,6) AS variance 0.083351

FROM temp;
Figure 444, Sample output from RAND function

Observe that less than 32K distinct numbers were generated. Presumably, this is because the
RAND function uses a 2-byte carry. Also observe that the values range from a minimum of
zero to a maximum of one.

WARNING: Unlike most, if not all, other numeric functions in DB2, the RAND function re-
turns different results in different flavors of DB2.

Reproducible Random Numbers

The RAND function creates pseudo-random numbers. This means that the output looks ran-
dom, but it is actually made using a very specific formula. If the first invocation of the func-
tion uses a seed value, all subsequent invocations will return a result that is explicitly derived
from the initial seed. To illustrate this concept, the following statement selects six random
numbers. Because of the use of the seed, the same six values will always be returned when
this SQL statement is invoked (when invoked on my machine):

SELECT deptno AS dno ANSWER
,RAND(0) AS ran
FROM department DNO RAN
WHERE deptno < “E* e e e
ORDER BY 1; AOO0 +1.15970336008789E-003

BO1 +2.35572374645222E-001
CO01 +6.48152104251228E-001
D01 +7.43736075930052E-002
D11 +2.70241401409955E-001
D21 +3.60026856288339E-001

Figure 445, Make reproducible random numbers (use seed)

To get random numbers that are not reproducible, simply leave the seed out of the first invo-
cation of the RAND function. To illustrate, the following statement will give differing results
with each invocation:

SELECT deptno AS dno ANSWER
,RAND() AS ran
FROM department DNO RAN
WHERE deptno < "D* e
ORDER BY 1; AOO +2.55287331766717E-001

BO1 +9.85290078432569E-001
C01 +3.18918424024171E-001

Figure 446, Make non-reproducible random numbers (no seed)

Scalar Functions 165

Graeme Birchall ©

NOTE: Use of the seed value in the RAND function has an impact across multiple SQL
statements. For example, if the above two statements were always run as a pair (with
nothing else run in between), the result from the second would always be the same.

Generating Random Values

Imagine that we need to generate a set of reproducible random numbers that are within a cer-
tain range (e.g. 5 to 15). Recursive SQL can be used to make the rows, and various scalar
functions can be used to get the right range of data.

In the following example we shall make a list of three columns and ten rows. The first field is
a simple ascending sequence. The second is a set of random numbers of type smallint in the
range zero to 350 (by increments of ten). The last is a set of random decimal numbers in the
range of zero to 10,000.

WITH Templ (coll, col2, col3) AS ANSWER
(VALUES (O
, SMALLINT(RAND(2)*35)*10 coLl1 coL2 coL3
,DECIMAL(RAND()*10000,7,2)) ———— mmmm e
UNION ALL 0 0 9342.32
SELECT coll + 1 1 250 8916.28
, SMALLINT(RAND()*35)*10 2 310 5430.76
,DECIMAL(RAND()*10000,7,2) 3 150 5996.88
FROM templ 4 110 8066.34
WHERE coll + 1 < 10 5 50 5589.77
) 6 130 8602.86
SELECT * 7 340 184.94
FROM templ; 8 310 5441.14
9 70 9267.55

Figure 447, Use RAND to make sample data

NOTE: See the section titled "Making Sample Data" for more detailed examples of using
the RAND function and recursion to make test data.

Making Many Distinct Random Values

The RAND function generates 32K distinct random values. To get a larger set of (evenly dis-
tributed) random values, combine the result of two RAND calls in the manner shown below
for the RAN2 column:

WITH templ (coll,ranl,ran2) AS ANSWER
(VALUES (0
,RAND(2) COL#1 RAN#1 RAN#2
,RANDQ+(RAND()/1E5)) e e e
UNION ALL 30000 19698 29998
SELECT coll + 1
,RANDQO
,RAND() +(RAND()/1E5)
FROM templ
WHERE coll + 1 < 30000

)

SELECT COUNT(*) AS col#l
,COUNT(DISTINCT ranl) AS ran#l
,COUNT(DISTINCT ran2) AS ran#2

FROM templ;

Figure 448, Use RAND to make many distinct random values

Observe that we do not multiply the two values that make up the RAN2 column above. If we
did this, it would skew the average (from 0.5 to 0.25), and we would always get a zero when-
ever either one of the two RAND functions returned a zero.

NOTE: The GENERATE_UNIQUE function can also be used to get a list of distinct values,
and actually does a better job that the RAND function. With a bit of simple data manipula-
tion (see page 147), these values can also be made random.

166 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

Selecting Random Rows, Percentage

WARNING: Using the RAND function in a predicate can result in unpredictable results.
See page 430 for a detailed description of this issue.

Imagine that you want to select approximately 10% of the matching rows from some table.
The predicate in the following query will do the job:

SELECT id ANSWER
,nhame ————=—==—=—=—=—==
FROM staff ID NAME
WHERE RANDO) < 0.2 e e
ORDER BY id; 140 Fraye
190 Sneider
290 Quill

Figure 449, Randomly select 10% of matching rows

The RAND function randomly generates values in the range of zero through one, so the above
query should return approximately 10% the matching rows. But it may return anywhere from
zero to all of the matching rows - depending on the specific values that the RAND function
generates. If the number of rows to be processed is large, then the fraction (of rows) that you
get will be pretty close to what you asked for. But for small sets of matching rows, the result
set size is quite often anything but what you wanted.

Selecting Random Rows, Number

The following query will select five random rows from the set of matching rows. It begins (in
the inner-most nested table expression) by using the RAND function to assign random values
to each matching row. Subsequently, the ROW_NUMBER function is used to sequence each
random value. Finally, those rows with the five lowest row numbers are selected:

SELECT id ANSWER
,hame —————————=—=—=—
FROM (SELECT s2.* ID NAME
,ROW_NUMBER() OVER(ORDER BY rl1l) AS r2 . - ———————-
FROM (SELECT s1.* 10 Sanders
,RAND() AS ri1 30 Marenghi
FROM staff sl 40 O"Brien
WHERE id <= 100 70 Rothman
)AS s2 100 Plotz
das s3

WHERE r2 <= 5
ORDER BY id;

Figure 450, Select five random rows
Use in DML

Imagine that in act of inspired unfairness, we decided to update a selected set of employee's
salary to a random number in the range of zero to $10,000. This too is easy:
UPDATE staff

SET salary = RAND()*10000
WHERE id < 50;

Figure 451, Use RAND to assign random salaries

REAL
Returns a single-precision floating-point representation of a number.

Scalar Functions 167

Graeme Birchall ©

ANSWERS
SELECT nl AS dec => 1234567890.123456789012345678901
,DOUBLE(n1) AS dbl => 1.23456789012346e+009
JREAL(n1) =~ AS rel => 1.234568e+009
. INTEGER(n1) AS int => 1234567890
.BIGINT(n1) AS big => 1234567890
FROM (SELECT 1234567890.123456789012345678901 AS nl

FROM staff
WHERE id = 10) AS xxX;

Figure 452, REAL and other numeric function examples

REPEAT

Repeats a character string "n" times.

}*4447 REPEAT —— (— string-to-repeat — , #times ——) >

Figure 453, REPEAT function syntax

SELECT id ANSWER
,CHAR(REPEAT (name, 3) ,40)
FROM staff ID 2
WHERE id <40 e
ORDER BY id; 10 SandersSandersSanders

20 PernalPernalPernal
30 MarenghiMarenghiMarenghi

Figure 454, REPEAT function example

REPLACE
Replaces all occurrences of one string with another. The output is of type varchar(4000).

H REPLACE—— (— string-to-change — , search-for —, replace-with —) —}
Figure 455, REPLACE function syntax

SELECT c1 ANSWER
,REPLACE(c1,"AB","XY") AS rl
,REPLACE(c1, "BA",*XY") AS r2 C1 R1 R2

FROM scalar; o
ABCDEF XYCDEF ABCDEF
ABCD XYCD ABCD
AB XY AB

Figure 456, REPLACE function examples

The REPLACE function is case sensitive. To replace an input value, regardless of the case,
one can nest the REPLACE function calls. Unfortunately, this technique gets to be a little
tedious when the number of characters to replace is large.

SELECT c1 ANSWER

,REPLACE(REPLACE(

REPLACE(REPLACE(c1, (%1 R1
"AB","XY"),"ab"," Xy, e mmee
"Ab","XY"),"aB","XY") ABCDEF XYCDEF

FROM scalar; ABCD XYCD
AB XY

Figure 457, Nested REPLACE functions

RID

Returns the RID (i.e. row identifier - of type BIGINT) for the matching row. The row identi-
fier contains the page number, and the row number within the page. A unique table identifier
must be provided.

168 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT id ANSWER
,salary
.RID(staff) AS staff rid ID SALARY STAFF_RID
FROM staff e e
WHERE id < 40 10 98357.50 100663300
ORDER BY id; 20 78171.25 100663301

30 77506.75 100663302
Figure 458, RID function example

The RID function is similar to the RID_BIT function, but less useful (e.g. does not work in a
DPF environment). All subsequent examples will refer to the RID_BIT function.
RID_BIT

Returns the row identifier, of type VARCHAR(16) FOR BIT DATA, for the row. The row
identifier contains the page number, and the row number within the page.

The only input value, which must be provided, is the (unique) table identifier. The table must
be listed in the subsequent FROM statement.

SELECT id ANSWER
,RID_BIT(staff) AS rid_bit

FROM staff ID RID_BIT

WHERE id < 40 e

ORDER BY id; 10 x"04000006000000000000000000FCE14D"

20 x"05000006000000000000000000FCE14D"
30 x"06000006000000000000000000FCE14D"

Figure 459, RID_BIT function example — single table
When the same table is referenced twice in the FROM, the correlation name must be used:

SELECT sl.id ANSWER
,RID_BIT(s1) AS rid_bit
FROM staff sl ID RID_BIT
,staff s2 e
WHERE sl.id < 40 10 x*04000006000000000000000000FCE14D*"
AND sl.id = s2.id - 10 20 x*05000006000000000000000000FCE14D"
ORDER BY sl.id; 30 x"06000006000000000000000000FCE14D"

Figure 460, RID_BIT function example — multiple tables

The RID function can be used in a predicate to uniquely identify a row: To illustrate, the fol-
lowing query gets the RID and ROW CHANGE TOKEN for a particular row:

ANSWER - VALUES

SELECT id 20
,salary 78171.25
,RID_BIT(staff) X "05000006000000000000000000FCE14D"
,ROW CHANGE TOKEN FOR staff 3999250443959009280

FROM staff

WHERE id = 20;
Figure 461, RID_BIT function example — select row to update

If at some subsequent point in time we want to update this row, we can use the RID value to
locate it directly, and the ROW CHANGE TOKEN to confirm that it has not been changed:

UPDATE staff

SET salary salary * 1.1

WHERE RID_BIT(staff) X*05000006000000000000000000FCE14D ™
AND ROW CHANGE TOKEN FOR staff = 3999250443959009280;

Figure 462, RID_BIT function example — update row

Scalar Functions 169

Graeme Birchall ©

Usage Notes

e The table name provided to the RID_BIT function must uniquely identify the table being
processed. If a view is referenced, the view must be deletable.

e The RID_BIT function will return a different value for a particular row a REORG is run.

e The ROW CHANGE TOKEN changes every time a row is updated, including when an
update is rolled back. So after a rollback the value will be different from what it was at
the beginning of the unit of work.

e The ROW CHANGE TOKEN is unique per page, not per row. So if any other row in the
same page is changed, the prior update will not match. This is called a "false negative".
To avoid, define a ROW CHANGE TIMESTAMP column for the table, as the value in
this field is unique per row.

RIGHT

Has two arguments: The first is an input string of type char, varchar, clob, or blob. The sec-
ond is a positive integer value. The output, of type varchar(4000), is the right most characters
in the string.

WITH templ(cl) AS ANSWER
(VALUES (" ABC")
,(" ABC *) c1 c2 L2
JCCABC DY —
SELECT c1 ABC ABC 4
L,RIGHT(c1,4) AS c2 ABC ABC 4
LLENGTH(RIGHT(c1,4)) as 12 ABC BC 4

FROM templ;
Figure 463, RIGHT function examples

ROUND

Rounds the rightmost digits of number (1st argument). If the second argument is positive, it
rounds to the right of the decimal place. If the second argument is negative, it rounds to the
left. A second argument of zero results rounds to integer. The input and output types are the
same, except for decimal where the precision will be increased by one - if possible. Therefore,
a DEC(5,2)field will be returned as DEC(6,2), and a DEC(31,2) field as DEC(31,2). To trun-
cate instead of round, use the TRUNCATE function.

ANSWER
D1 P2 P1 PO N1 N2
WITH templ(dl) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.450 23.400 23.000 20.000 0.000
,(23.450) 3.456 3.460 3.500 3.000 0.000 0.000
,(3.456) 0.056 0.060 0.100 0.000 0.000 0.000
. .056))
SELECT d1

,DEC(ROUND(d1,+2),6,3) AS p2
,DEC(ROUND(d1,+1),6,3) AS pl
,DEC(ROUND(d1,+0),6,3) AS pO
,DEC(ROUND(d1,-1),6,3) AS n1
,DEC(ROUND(d1,-2),6,3) AS n2
FROM templ;
Figure 464, ROUND function examples

170 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

RTRIM
Trims the right-most blanks of a character string.
SELECT c1 ANSWER
,RTRIM(c1) AS r1
,LENGTH(c1) AS r2 c1 R1 R2 R3
,LENGTH(RTRIM(c1)) AS r3 ——mom -— -
FROM scalar; ABCDEF ABCDEF 6 6
ABCD ABCD 6 4
AB AB 6 2

Figure 465, RTRIM function example

SECLABEL Functions

The SECLABEL, SECLABEL_BY_NAME, and SECLABEL_BY_CHAR functions are used
to process security labels. See the SQL Reference for more details.

SECOND

Returns the second (of minute) part of a time or timestamp (or equivalent) value.

SIGN

Returns -1 if the input number is less than zero, 0 if it equals zero, and +1 if it is greater than
zero. The input and output types will equal, except for decimal which returns double.

SELECT di ANSWER (Ffloat output shortened)
,SIGN(d1)
,Fl D1 2 F1 4
LSIGN(FL) e e e

FROM scalar; -2.4 -1.000E+O -2 .400E+0 -1.000E+0O
0.0 +0.000E+0 +0.000E+0 +0.000E+0
1.8 +1.000E+0 +1.800E+0 +1.000E+0

Figure 466, SIGN function examples

SIN

Returns the SIN of the argument where the argument is an angle expressed in radians. The
output format is double.

WITH templ(nl) AS ANSWER
(VALUES (0)
UNION ALL NI RAN SIN TAN
SELECT ni + 10 e mmem e
FROM templ 0 0.000 0.000 0.000
WHERE nl1 < 80) 10 0.174 0.173 0.176
SELECT n1 20 0.349 0.342 0.363
,DEC(RADIANS(n1),4,3) AS ran 30 0.523 0.500 0.577
,DEC(SIN(RADIANS(n1)),4,3) AS sin 40 0.698 0.642 0.839
.DEC(TAN(RADIANS(n1)).4.3) AS tan 50 0.872 0.766 1.191
FROM templ; 60 1.047 0.866 1.732
70 1.221 0.939 2.747
80 1.396 0.984 5.671

Figure 467, SIN function example

SINH

Returns the hyperbolic sin for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

Scalar Functions 171

Graeme Birchall ©

SMALLINT
Converts either a number or a valid character value into a smallint value.
SELECT d1 ANSWER
,SMALLINT(d1)
LSMALLINT("+123") D1 2 3 4 5

LSMALLINT("-123") mmme e o
,SMALLINT(® 123 *) -2.4 -2 123 -123 123

FROM scalar; 0.0 0 123 -123 123
1.8 1 123 -123 123

Figure 468, SMALLINT function examples

SNAPSHOT Functions

The various SNAPSHOT functions can be used to analyze the system. They are beyond the
scope of this book. Refer instead to the DB2 System Monitor Guide and Reference.
SOUNDEX

Returns a 4-character code representing the sound of the words in the argument. Use the
DIFFERENCE function to convert words to soundex values and then compare.

SELECT a.name AS nl ANSWER
,SOUNDEX(a.name) AS sl
,b.name AS n2 N1 S1 N2 S2 DF
,SOUNDEX(b.name) AS s2 = = = ————mmm mmmm e -
,DIFFERENCE Sanders S536 Sneider S536 4
(a-name,b.name) AS df Sanders S536 Smith S530 3
FROM staff a Sanders S536 Lundquist L532 2
,staff b Sanders S536 Daniels D542 1
WHERE a.id = 10 Sanders S536 Molinare M456 1
AND b.id > 150 Sanders S536 Scoutten S350 1
AND b.id < 250 Sanders S536 Abrahams A165 O
ORDER BY df DESC Sanders S536 Kermisch K652 0
,nh2 ASC; Sanders S536 Lu LOOO O

Figure 469, SOUNDEX function example

SOUNDEX Formula

There are several minor variations on the SOUNDEX algorithm. Below is one example:

e The first letter of the name is left unchanged.

e The letters W and H are ignored.

e Thevowels, A E, I, 0, U, and Y are not coded, but are used as separators (see last item).
e The remaining letters are coded as:

B,P,F,V 1
C,GJKQSXZ

O
—

2
3
4
. N 5
6

o

o Letters that follow letters with same code are ignored unless a separator (see the third
item above) precedes them.

The result of the above calculation is a four byte value. The first byte is a character as defined
in step one. The remaining three bytes are digits as defined in steps two through four. Output

172 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

longer than four bytes is truncated If the output is not long enough, it is padded on the right
with zeros. The maximum number of distinct values is 8,918.

NOTE: The SOUNDEX function is something of an industry standard that was developed
several decades ago. Since that time, several other similar functions have been devel-
oped. You may want to investigate writing your own DB2 function to search for similar-
sounding names.

SPACE
Returns a string consisting of "n" blanks. The output format is varchar(4000).

WITH templ(nl) AS ANSWER

(VALUES (1).(2).(3))

SELECT n1 N1 sS1 S2 S3
,SPACE(n1) AS sl - ——— = -
,LENGTH(SPACE(n1)) AS s2 1 1 X
,SPACE(n1) || "X* AS s3 2 2 X

FROM templ; 3 3 X

Figure 470, SPACE function examples

SQRT

Returns the square root of the input value, which can be any positive number. The output
format is double.

WITH templ(nl) AS ANSWER
(VALUES (0_5),(0_0) ————————————
,(1.05.¢2.0)) N1 s1
SELECT DEC(nl1,4,3) ASn2 mmmee e
,DEC(SQRT(n1),4,3) AS sl 0.500 0.707
FROM templ; 0.000 0.000
1.000 1.000
2.000 1.414

Figure 471, SQRT function example

STRIP

Removes leading, trailing, or both (the default), characters from a string. If no strip character
is provided, leading and/or trailing blank characters are removed.
R 4

F STRIP (— string
B

' BOTH
B L strip-char J
| LEADING __|
L
. TRAILING |
LT

Figure 472, STRIP function syntax

Observe in the following query that the last example removes leading "A" characters:

Scalar Functions 173

Graeme Birchall ©

WITH templ(cl) AS ANSWER
(VALUES (" ABC")
,(" ABC) CIL C2 L2C3 L3c4
JCABC)) o
ABC ABC 3 ABC 3 ABC
SELECT c1 AS C1 ABC ABC 3 ABC 4 ABC
,STRIP(c1) AS C2 ABC ABC 3 ABC 5 BC
,LENGTH(STRIP(c1)) AS L2
,STRIP(c1,LEADING) AS C3
,LENGTH(STRIP(c1,LEADING)) AS L3
,STRIP(c1,LEADING, "A") AS C4

FROM templ;
Figure 473, STRIP function example

The TRIM function works the same way.

SUBSTR

Returns part of a string. If the length is not provided, the output is from the start value to the
end of the string.

F SUBSTR (string —— , start L | A) }
, lengt AAAJ

Figure 474, SUBSTR function syntax

If the length is provided, and it is longer than the field length, a SQL error results. The fol-
lowing statement illustrates this. Note that in this example the DAT1 field has a "field length"
of 9 (i.e. the length of the longest input string).

WITH templ (len, datl) AS ANSWER
(VALUES (6,%"123456789%)
,(4,712345") LEN DAT1 LDAT SUBDAT
,(16,7123") e e e
) 6 123456789 9 123456
SELECT len 4 12345 5 1234
,datl <error>
,LENGTH(datl) AS ldat
,SUBSTR(datl1,1,len) AS subdat
FROM templ;

Figure 475, SUBSTR function - error because length parm too long

The best way to avoid the above problem is to simply write good code. If that sounds too
much like hard work, try the following SQL.:

WITH templ (len, datl) AS ANSWER
(VALUES (6,71234567897)
,(4,712345") LEN DAT1 LDAT SUBDAT
,(16,7123") e e
) 6 123456789 9 123456
SELECT len 4 12345 5 1234
,datl 16 123 3 123
,LENGTH(datl) AS ldat
,SUBSTR(datl,1,CASE

WHEN len < LENGTH(datl) THEN len
ELSE LENGTH(datl)
END) AS subdat

FROM templ;

Figure 476, SUBSTR function - avoid error using CASE (see previous)

In the above SQL a CASE statement is used to compare the LEN value against the length of
the DATL field. If the former is larger, it is replaced by the length of the latter.

If the input is varchar, and no length value is provided, the output is varchar. However, if the
length is provided, the output is of type char - with padded blanks (if needed):

174 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT name ANSWER
,LENGTH(name) AS len
,SUBSTR(name, 5) AS sl NAME LEN S1 L1 S2 L2
,LENGTH(SUBSTR(name,5)) AS Il - -
,SUBSTR(name,5,3) AS s2 Sanders 7 ers 3 ers 3
,LENGTH(SUBSTR(name,5,3)) AS 12 Pernal 6 al 2 al 3
FROM staff Marenghi 8 nghi 4 ngh 3
WHERE id < 60; O"Brien 7 ien 3 1en 3
Hanes 5s 1s 3

Figure 477, SUBSTR function - fixed length output if third parm. used

TABLE

There isn't really a TABLE function, but there is a TABLE phrase that returns a result, one
row at a time, from either an external (e.g. user written) function, or from a nested table ex-
pression. The TABLE phrase (function) has to be used in the latter case whenever there is a
reference in the nested table expression to a row that exists outside of the expression. An ex-
ample follows:

SELECT a.id ANSWER
,a.dept
,a.salary ID DEPT SALARY DEPTSAL
,b.deptsal e e
FROM staff a 10 20 98357.50 254286.10
, TABLE 20 20 78171.25 254286.10
(SELECT b.dept 30 38 77506.75 302285.55
,SUM(b.salary) AS deptsal
FROM staff b

WHERE b.dept = a.dept
GROUP BY b.dept
)AS b

WHERE a.id < 40

ORDER BY a.id;

Figure 478, Fullselect with external table reference

See page 303 for more details on using of the TABLE phrase in a nested table expression.

TABLE_NAME

Returns the base view or table name for a particular alias after all alias chains have been re-
solved. The output type is varchar(18). If the alias name is not found, the result is the input
values. There are two input parameters. The first, which is required, is the alias name. The
second, which is optional, is the alias schema. If the second parameter is not provided, the
default schema is used for the qualifier.

CREATE ALIAS empl FOR employee; ANSWER
CREATE ALIAS emp2 FOR empl;

TABSCHEMA TABNAME CARD
SELECT tabschema e o -

,tabname graeme employee -1
,card

FROM syscat.tables

WHERE tabname = TABLE_NAME("emp2®,"graeme®);

Figure 479, TABLE_NAME function example

TABLE_SCHEMA

Returns the base view or table schema for a particular alias after all alias chains have been
resolved. The output type is char(8). If the alias name is not found, the result is the input val-
ues. There are two input parameters. The first, which is required, is the alias name. The sec-

Scalar Functions 175

Graeme Birchall ©

ond, which is optional, is the alias schema. If the second parameter is not provided, the de-
fault schema is used for the qualifier.

Resolving non-existent Objects

Dependent aliases are not dropped when a base table or view is removed. After the base table
or view drop, the TABLE_SCHEMA and TABLE_NAME functions continue to work fine
(see the 1st output line below). However, when the alias being checked does not exist, the
original input values (explicit or implied) are returned (see the 2nd output line below).

CREATE VIEW fredl (cl, c2, c3) ANSWER
AS VALUES (11, "AAA", "BBB");

TAB_SCH TAB_NME
CREATE ALIAS fred2 FOR fredl; = = = - mmmmmmmmmmm
CREATE ALIAS fred3 FOR fred2; graeme fredl
graeme XXXXX
DROP VIEW fredl;
WITH templ (tab_sch, tab_nme) AS
(VALUES (TABLE_SCHEMA("fred3", "graeme”),TABLE_NAME("fred3")),
(TABLE_SCHEMA (" XXXXX") , TABLE_NAME (" XXXXX", *XXX")))
SELECT *
FROM templ;

Figure 480, TABLE_SCHEMA and TABLE_NAME functions example

TAN

Returns the tangent of the argument where the argument is an angle expressed in radians.

TANH

Returns the hyperbolic tan for the argument, where the argument is an angle expressed in ra-
dians. The output format is double.

TIME

Converts the input into a time value.

TIMESTAMP

Converts the input(s) into a timestamp value.

Argument Options

o If only one argument is provided, it must be (one of):

e Atimestamp value.

o A character representation of a timestamp (the microseconds are optional).
e A 14 byte string in the form: YYYYMMDDHHMMSS.

e If both arguments are provided:

e The first must be a date, or a character representation of a date.

e The second must be a time, or a character representation of a time.

176 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT TIMESTAMP("1997-01-11-22.44.55.000000")
, TIMESTAMP("1997-01-11-22.44.55.000")
,TIMESTAMP("1997-01-11-22_44_55")

, TIMESTAMP("19970111224455")
,TIMESTAMP("1997-01-11",722.44_55")
FROM staff
WHERE id = 10;
Figure 481, TIMESTAMP function examples

TIMESTAMP_FORMAT

Takes an input string with the format: "YYYY-MM-DD HH:MM:SS" and converts it into a
valid timestamp value. The VARCHAR_FORMAT function does the inverse.

WITH templ (tsl) AS
(VALUES ("1999-12-31 23:59:597)
) ,(72002-10-30 11:22:33%)
SELECT tsl

, TIMESTAMP_FORMAT (ts1, "YYYY-MM-DD HH24:MI1:SS") AS ts2
FROM templ

ORDER BY ts1; ANSWER

1999-12-31 23:59:59 1999-12-31-23.59.59.000000
2002-10-30 11:22:33 2002-10-30-11.22_.33.000000

Figure 482, TIMESTAMP_FORMAT function example

Note that the only allowed formatting mask is the one shown.

TIMESTAMP_ISO

Returns a timestamp in the ISO format (yyyy-mm-dd hh:mm:ss.nnnnnn) converted from the
IBM internal format (yyyy-mm-dd-hh.mm.ss.nnnnnn). If the input is a date, zeros are inserted
in the time part. If the input is a time, the current date is inserted in the date part and zeros in
the microsecond section.

SELECT tml ANSWER
,TIMESTAMP_1SO(tm1)
FROM scalar; ™1 2

23:58:58 2000-09-01-23.58.58.000000
15:15:15 2000-09-01-15.15.15.000000
00:00:00 2000-09-01-00.00.00.000000

Figure 483, TIMESTAMP_ISO function example

TIMESTAMPDIFF

Returns an integer value that is an estimate of the difference between two timestamp values.
Unfortunately, the estimate can sometimes be seriously out (see the example below), so this
function should be used with extreme care.

Arguments

There are two arguments. The first argument indicates what interval kind is to be returned.
Valid options are:

1 = Microseconds. 2 = Seconds. 4 = Minutes.
8 = Hours. 16 = Days. 32 = Weeks.
64 = Months. 128 = Quarters. 256 = Years.

Scalar Functions 177

Graeme Birchall ©

The second argument is the result of one timestamp subtracted from another and then con-
verted to character.

WITH
templ (tsl,ts2) AS
(VALUES ("1996-03-01-00.00.01","1995-03-01-00.00.00%)
,("1996-03-01-00.00.00", "1995-03-01-00.00.01%)),
temp2 (tsl,ts2) AS
(SELECT TIMESTAMP(tsl)
, TIMESTAMP(ts2)
FROM templ),
temp3 (tsl,ts2,df) AS
(SELECT ts1

,ts2
,CHAR(TS1 - TS2) AS df ANSWER
FROM temp2)

SELECT df DF DIF DYS
,TIMESTAMPDIFF(16,df) AS dif = -
,DAYS(tsl) - DAYS(ts2) AS dys 00010000000001.000000 365 366

FROM temp3; 00001130235959.000000 360 366

Figure 484, TIMESTAMPDIFF function example

WARNING: Some the interval types return estimates, not definitive differences, so should
be used with care. For example, to get the difference between two timestamps in days,
use the DAYS function as shown above. It is always correct.

Roll Your Own

The following user-defined function will get the difference, in microseconds, between two
timestamp values. It can be used as an alternative to the above:

CREATE FUNCTION ts_diff works(in_hi TIMESTAMP,in_lo TIMESTAMP)
RETURNS BIGINT
RETURN (BIGINT(DAYS(in_hi)) * 86400000000

+ BIGINT(MIDNIGHT SECONDS(in_hi)) * 1000000

+ BIGINT(MICROSECOND(in_hi)))

~(BIGINT(DAYS(in_l0)) * 86400000000

+ BIGINT(MIDNIGHT SECONDS(in_lo)) * 1000000

+ BIGINT(MICROSECOND(in_l0)));

Figure 485, Function to get difference between two timestamps

TO_CHAR
This function is a synonym for VARCHAR_FORMAT (see page 181). It converts a time-
stamp value into a string using a template to define the output layout.

TO_DATE

This function is a synonym for TIMESTAMP_FORMAT (see page 177). It converts a char-
acter string value into a timestamp using a template to define the input layout.
TOTALORDER

Compares two DECFLOAT expressions and returns a SMALLINT number:

e -1 if the first value is less than the second value.

o 0if both values exactly equal (i.e. no trailing-zero differences)

o +1 if the first value is greater than the second value.

Several values that compare as "less than™ or "greater than™ in the example below are equal in
the usual sense. See the section on DECFLOAT arithmetic for details (see page: 25).

178 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

ANSWER

WITH templ (d1, d2) AS ======
(VALUES (DECFLOAT(+1.0), DECFLOAT(+1.0)) 0
, (DECFLOAT(+1.0), DECFLOAT(+1.00)) 1

, (DECFLOAT(-1.0), DECFLOAT(-1.00)) -1

, (DECFLOAT(+0.0), DECFLOAT(+0.00)) 1

, (DECFLOAT(-0.0), DECFLOAT(-0.00)) 1

, (DECFLOAT(1234), +infinity) -1
,(+infinity, +infinity) 0
,(+infinity, -infinity) 1

, (DECFLOAT(1234), -NaN) 1

)
SELECT TOTALORDER(d1,d2)
FROM templ;

Figure 486, TOTALORDER function example
TRANSLATE

Converts individual characters in either a character or graphic input string from one value to
another. It can also convert lower case data to upper case.

}fg— TRANSLATE (—— string)
L to, from ‘ ’
o Lgf,subsﬁune AAJ

Figure 487, TRANSLATE function syntax

Usage Notes
e The use of the input string alone generates upper case output.

e When "from" and "to" values are provided, each individual "from" character in the input
string is replaced by the corresponding "to" character (if there is one).

e If there is no "to" character for a particular "from" character, those characters in the input
string that match the "from" are set to blank (if there is no substitute value).

e A fourth, optional, single-character parameter can be provided that is the substitute char-
acter to be used for those "from" values having no "to" value.

e |f there are more "to" characters than "from" characters, the additional "to" characters are

ignored.
ANS. NOTES

SELECT "abcd*® ==> abcd No change
, TRANSLATE("abcd™) ==> ABCD Make upper case
, TRANSLATE("abcd®,"","a") ==> bcd "a"=>" "
, TRANSLATE("abcd®, "A","A") abcd "A"=>"A"
, TRANSLATE("abcd®, A", "a") Abcd "a"=>"A"
, TRANSLATE("abcd®, "A","ab") A cd "a"=>"A","b"=>" "
, TRANSLATE("abcd*®,"A","ab"," ") A cd "a"=>"A","b"=>" *
, TRANSLATE("abcd”®, "A","ab","z") Azcd "a"=>"A","b"=>"z"
, TRANSLATE("abcd”®,"AB*","a") Abcd "a"=>"A"

FROM staff

WHERE id = 10;
Figure 488, TRANSLATE function examples

REPLACE vs. TRANSLATE - A Comparison

Both the REPLACE and the TRANSLATE functions alter the contents of input strings. They
differ in that the REPLACE converts whole strings while the TRANSLATE converts multiple
sets of individual characters. Also, the "to" and "from" strings are back to front.

Scalar Functions 179

Graeme Birchall ©

ANSWER
SELECT c1 ==> ABCD
,REPLACE(c1,"AB","XY") ==> XYCD
,REPLACE(c1, "BA™, "XY") ==> ABCD
, TRANSLATE(c1, "XY","AB") XYCD
, TRANSLATE(c1, "XY","BA") YXCD

FROM scalar
WHERE c¢1 = "ABCD";

Figure 489, REPLACE vs. TRANSLATE
TRIM
See STRIP function on page 173.

TRUNC or TRUNCATE

Truncates (not rounds) the rightmost digits of an input number (1st argument). If the second
argument is positive, it truncates to the right of the decimal place. If the second value is nega-
tive, it truncates to the left. A second value of zero truncates to integer. The input and output
types will equal. To round instead of truncate, use the ROUND function.

ANSWER
D1 POS2 POS1 ZERO NEG1 NEG2
WITH templ(dl) AS 123.400 123.400 123.400 123.000 120.000 100.000
(VALUES (123.400) 23.450 23.440 23.400 23.000 20.000 0.000
,(23.450) 3.456 3.450 3.400 3.000 0.000 0.000
,(3.456) 0.056 0.050 0.000 0.000 0.000 0.000

, -056))

SELECT di
,DEC(TRUNC(d1,+2),6,3) AS pos2
,DEC(TRUNC(d1,+1),6,3) AS posl
,DEC(TRUNC(d1,+0),6,3) AS zero
,DEC(TRUNC(d1,-1),6,3) AS negl
,DEC(TRUNC(d1,-2),6,3) AS neg2

FROM templ

ORDER BY 1 DESC;

Figure 490, TRUNCATE function examples

TYPE_ID

Returns the internal type identifier of the dynamic data type of the expression.

TYPE_NAME

Returns the unqualified name of the dynamic data type of the expression.

TYPE_SCHEMA

Returns the schema name of the dynamic data type of the expression.

UCASE or UPPER

Converts a mixed or lower-case string to upper case. The output is the same data type and
length as the input.

180 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT name ANSWER

,LCASE(name) AS Iname

,UCASE(name) AS uname NAME LNAME UNAME
FROM staff e e e
WHERE 1i1d < 30; Sanders sanders SANDERS

Pernal pernal PERNAL
Figure 491, UCASE function example
VALUE
Same as COALESCE.

VARCHAR

Converts the input (1st argument) to a varchar data type. The output length (2nd argument) is
optional. Trailing blanks are not removed.

SELECT c1 ANSWER
,LENGTH(c1) AS 11
- VARCHAR(c1) AS v2 c1 L1 V2 L2 V3
JLENGTH(VARCHAR(c1)) AS 12 cmmmmm oo oo o o
VARCHAR(c1,4) AS v3 ABCDEF 6 ABCDEF 6 ABCD
FROM scalar; ABCD 6 ABCD 6 ABCD
AB 6 AB 6 AB

Figure 492, VARCHAR function examples

VARCHAR_BIT_FORMAT

Returns a VARCHAR bit-data representation of a character string. See the SQL Reference
for more details.

VARCHAR_FORMAT

Converts a timestamp value into a string with the format: "YYYY-MM-DD HH:MM:SS".
The TIMESTAMP_FORMAT function does the inverse.

WITH templ (tsl) AS
(VALUES (TIMESTAMP("1999-12-31-23.59.597))
, (TIMESTAMP("2002-10-30-11.22.33%))

)
SELECT tsl
, VARCHAR_FORMAT (ts1, "YYYY-MM-DD HH24:M1:SS") AS ts2
FROM templ
ORDER BY ts1; ANSWER

1999-12-31-23.59.59.000000 1999-12-31 23:59:59
2002-10-30-11.22.33.000000 2002-10-30 11:22:33

Figure 493, VARCHAR_FORMAT function example

Note that the only allowed formatting mask is the one shown.

VARCHAR_FORMAT_BIT

Returns a VARCHAR representation of a character bit-data string. See the SQL Reference
for more details.

VARGRAPHIC

Converts the input (1st argument) to a VARGRAPHIC data type. The output length (2nd ar-
gument) is optional.

Scalar Functions 181

Graeme Birchall ©

WEEK

Returns a value in the range 1 to 53 or 54 that represents the week of the year, where a week
begins on a Sunday, or on the first day of the year. Valid input types are a date, a timestamp,
or an equivalent character value. The output is of type integer.

SELECT WEEK(DATE("2000-01-01")) AS wl ANSWER
,WEEK(DATE("2000-01-02")) AS w2
,WEEK(DATE("2001-01-02")) AS w3 Wl W2 W3 w4 W5
,WEEK(DATE("2000-12-31")) AS w4 s
,WEEK(DATE("2040-12-31")) AS w5 1 2 1 54 53

FROM sysibm._sysdummy1l;
Figure 494, WEEK function examples

Both the first and last week of the year may be partial weeks. Likewise, from one year to the
next, a particular day will often be in a different week (see page 434).

WEEK_ISO

Returns an integer value, in the range 1 to 53, that is the "ISO" week number. An ISO week
differs from an ordinary week in that it begins on a Monday and it neither ends nor begins at
the exact end of the year. Instead, week 1 is the first week of the year to contain a Thursday.
Therefore, it is possible for up to three days at the beginning of the year to appear in the last
week of the previous year. As with ordinary weeks, not all 1ISO weeks contain seven days.

WITH ANSWER
templ (n) AS

(VALUES (0) DTE DY WK DY WI DI
UNION ALL e —mm —— o o -
SELECT n+1 1998-12-27 Sun 53 1 52 7
FROM templ 1998-12-28 Mon 53 2 53 1
WHERE n < 10), 1998-12-29 Tue 53 3 53 2
temp2 (dt2) AS 1998-12-30 Wed 53 4 53 3
(SELECT DATE("1998-12-27") + y.n YEARS 1998-12-31 Thu 53 5 53 4
+ d.n DAYS 1999-01-01 Fri 1 6 53 5
FROM templ y 1999-01-02 Sat 1 7 53 6
,templ d 1999-01-03 Sun 2 1 53 7
WHERE y.n IN (0,2)) 1999-01-04 Mon 2 2 1 1
SELECT CHAR(dt2,1S0) dte 1999-01-05 Tue 2 3 1 2
,SUBSTR(DAYNAME(dt2),1,3) dy 1999-01-06 Wed 2 4 1 3
,WEEK(dt2) wk 2000-12-27 Wed 53 4 52 3
,DAYOFWEEK(dt2) dy 2000-12-28 Thu 53 5 52 4
,WEEK_1S0(dt2) wi 2000-12-29 Fri 53 6 52 5
,DAYOFWEEK_1S0(dt2) di 2000-12-30 Sat 53 7 52 6
FROM temp2 2000-12-31 Sun 54 1 52 7
ORDER BY 1; 2001-01-01 Mon 1 2 1 1
2001-01-02 Tue 1 3 1 2
2001-01-03 Wed 1 4 1 3
2001-01-04 Thu 1 5 1 4
2001-01-05 Fri 1 6 1 5
2001-01-06 Sat 1 7 1 6

Figure 495, WEEK _ISO function example

YEAR

Returns a four-digit year value in the range 0001 to 9999 that represents the year (including
the century). The input is a date or timestamp (or equivalent) value. The output is integer.

182

Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

SELECT dtl ANSWER
,YEAR(dt1l) AS yr
,WEEK(dtl) AS wk DT1 YR WK

FROM scalar; e e
1996-04-22 1996 17
1996-08-15 1996 33
0001-01-01 1 1

Figure 496, YEAR and WEEK functions example

"+" PLUS

The PLUS function is same old plus sign that you have been using since you were a kid. One
can use it the old fashioned way, or as if it were normal a DB2 function - with one or two in-
put items. If there is a single input item, then the function acts as the unary "plus" operator. If
there are two items, the function adds them:

SELECT id ANSWER

,salary

, "+ (salary) AS s2 ID SALARY S2 S3

,"+"(salary,id) AS s3 = 0—— mmmmmm e
FROM staff 10 98357.50 98357.50 98367.50
WHERE id < 40 20 78171.25 78171.25 78191.25
ORDER BY id; 30 77506.75 77506.75 77536.75

Figure 497, PLUS function examples

Both the PLUS and MINUS functions can be used to add and subtract numbers, and also date
and time values. For the latter, one side of the equation has to be a date/time value, and the
other either a date or time duration (a numeric representation of a date/time), or a specified
date/time type. To illustrate, below are three different ways to add one year to a date:

SELECT empno

,CHAR(birthdate, 1S0) AS bdatel
,CHAR(birthdate + 1 YEAR,ISO) AS bdate2
,CHAR(""+""(birthdate,DEC(00010000,8)), 1S0) AS bdate3

,CHAR(""+"(birthdate,DOUBLE(1),SMALLINT(1)),1S0O) AS bdate4
FROM employee
WHERE empno < “000040*
ORDER BY empno; ANSWER

EMPNO BDATE1l BDATEZ2 BDATE3 BDATE4

000010 1933-08-24 1934-08-24 1934-08-24 1934-08-24
000020 1948-02-02 1949-02-02 1949-02-02 1949-02-02
000030 1941-05-11 1942-05-11 1942-05-11 1942-05-11

Figure 498, Adding one year to date value

"-" MINUS
The MINUS works the same way as the PLUS function, but does the opposite:
SELECT id ANSWER
,salary
,"'="(salary) AS s2 ID SALARY S2 S3
,="(salary,id) AS s3 = - —mmmmm
FROM staff 10 98357.50 -98357.50 98347.50
WHERE id < 40 20 78171.25 -78171.25 78151.25
ORDER BY id; 30 77506.75 -77506.75 77476.75

Figure 499, MINUS function examples

" MULTIPLY

The MULTIPLY function is used to multiply two numeric values:

Scalar Functions 183

Graeme Birchall ©

SELECT id ANSWER

,salary

,salary * id AS s2 ID SALARY S2 S3

,"*(salary,id) AS s3 = - e e
FROM staff 10 98357.50 983575.00 983575.00
WHERE id < 40 20 78171.25 1563425.00 1563425.00
ORDER BY id; 30 77506.75 2325202.50 2325202.50

Figure 500, MULTIPLY function examples

"/" DIVIDE
The DIVIDE function is used to divide two numeric values:
SELECT id ANSWER
,salary
,salary /7 id AS s2 ID SALARY S2 S3
/" (salary,id) AS s3 @ - e e
FROM staff 10 98357.50 9835.75 9835.75
WHERE id < 40 20 78171.25 3908.56 3908.56
ORDER BY id; 30 77506.75 2583.55 2583.55

Figure 501, DIVIDE function examples

"]|" CONCAT
Same as the CONCAT function:
SELECT id ANSWER
,hame || "Z* AS nl
,hame CONCAT "Z® AS n2 ID N1 N2 N3 N4
' (name,"Z2") As n3 0 —mm mmmem e e
,CONCAT(name, "Z") As n4 110 NganZ NganZ NganZ NganZ
FROM staff 210 Luz Luz LuzZ Luz
WHERE LENGTH(name) < 5 270 LeaZ LeaZ LeaZ Leaz

ORDER BY id;
Figure 502, CONCAT function examples

184 Scalar Functions, Definitions

DB2 V9.7 Cookbook ©

User Defined Functions

Many problems that are really hard to solve using raw SQL become surprisingly easy to ad-
dress, once one writes a simple function. This chapter will cover some of the basics of user-
defined functions. These can be very roughly categorized by their input source, their output
type, and the language used:

e External scalar functions use an external process (e.g. a C program), and possibly also an
external data source, to return a single value.

e External table functions use an external process, and possibly also an external data
source, to return a set of rows and columns.

o Internal sourced functions are variations of an existing DB2 function
o Internal scalar functions use compound SQL code to return a single value.
o Internal table functions use compound SQL code to return a set of rows and columns

This chapter will briefly go over the last three types of function listed above. See the official
DB2 documentation for more details.

WARNING: As of the time of writing, there is a known bug in DB2 that causes the prepare
cost of a dynamic SQL statement to go up exponentially when a user defined function that
is written in the SQL language is referred to multiple times in a single SQL statement.

Sourced Functions

A sourced function is used to redefine an existing DB2 function so as to in some way restrict
or enhance its applicability. Below is the basic syntax:
a7

}
L SPECIFIC— specific-name J

F SOURCE function-name N

SPECIFIC— specificname ———————————

function-name —() —
E data-type

Figure 503, Sourced function syntax

}}—CREATE FUNCTION - function-name — (

-

data-
_ parm-name ! ata-type

F RETURNS — data-type

Below is a scalar function that is a variation on the standard DIGITS function, but which only
works on small integer fields:

CREATE FUNCTION digi_int (SMALLINT)
RETURNS CHAR(5)
SOURCE SYSIBM.DIGITS(SMALLINT);

Figure 504, Create sourced function

Here is an example of the function in use:

User Defined Functions 185

Graeme Birchall ©

SELECT id AS 1D ANSWER
,DIGITS(id) AS 12
.digi_int(id) AS 13 ID 12 13
FROM staf¢ e e e
WHERE id < 40 10 00010 00010
ORDER BY id; 20 00020 00020

30 00030 00030
Figure 505, Using sourced function - works

By contrast, the following statement will fail because the input is an integer field:

SELECT id ANSWER
,digi_int(INT(id)) —======
FROM staff <error>

WHERE id < 50;
Figure 506, Using sourced function - fails

Sourced functions are especially useful when one has created a distinct (data) type, because
these do not come with any of the usual DB2 functions. To illustrate, in the following exam-
ple a distinct type is created, then a table using the type, then two rows are inserted:

CREATE DISTINCT TYPE us_dollars AS DEC(7,2) WITH COMPARISONS;

CREATE TABLE customers
(1D SMALLINT NOT NULL
,balance us_dollars NOT NULL);

ANSWER
INSERT INTO customers VALUES (1 ,111.11),(2 ,222.22); ==========

ID balance
SELECT o
FROM customers 1 111.11
ORDER BY 1ID; 2 222.22

Figure 507, Create distinct type and test table

The next query will fail because there is currently no multiply function for "us_dollars™:

SELECT id ANSWER
,balance * 10 —======
FROM customers <error>

ORDER BY id;
Figure 508, Do multiply - fails

The enable the above, we have to create a sourced function:

CREATE FUNCTION "** (us_dollars, INT)
RETURNS us_dollars
SOURCE SYSIBM."*"(DECIMAL, INT);

Figure 509, Create sourced function

Now we can do the multiply:

SELECT id ANSWER
,balance * 10 AS newbal ==========

FROM customers 1D NEWBAL
ORDER BY id; e
1 1111.10

2 2222.20

Figure 510, Do multiply - works
For the record, here is another way to write the same:

186 Sourced Functions

DB2 V9.7 Cookbook ©

SELECT id ANSWER
,""*"(balance,10) AS newbal ==========
FROM customers 1D NEWBAL
ORDER BY #d; e e
1 1111.10
2 2222.20

Figure 511, Do multiply - works

Scalar Functions

A scalar function has as input a specific number of values (i.e. not a table) and returns a single
output item. Here is the syntax (also for table function):
—p
v 1
L parm-name _

F RETURNS data-type : }
[TABLE —(£column-name ——column-type ——) J

}}—CREATE FUNCTION - function-name — (‘

data-type

- LANGUAGE SQL, - NOT DETERMINISTIC - - EXTERNAL ACTION,
} L DETERMINISTIC L NO EXTERNAL ACTION }

~READS SQL DATA - STATIC DISPATCH - CALLED ON NULL INPUT -
} L CONTAINS SQL }
} L PREDICATES —(— predicate-list—) | }
F RETURN —— value N

F NULL
L u full-select —-
WITH £ common-table-expression

Figure 512, Scalar and Table function syntax

Description

e FUNCTION NAME: A qualified or unqualified name, that along with the number and
type of parameters, uniquely identifies the function.

e RETURNS: The type of value returned, if a scalar function. For a table function, the list
of columns, with their type.

o LANGUAGE SQL.: This the default, and the only one that is supported.

o DETERMINISTIC: Specifies whether the function always returns the same result for a
given input. For example, a function that multiplies the input number by ten is determi-
nistic, whereas a function that gets the current timestamp is not. The optimizer needs to
know this information.

o EXTERNAL ACTION: Whether the function takes some action, or changes some object
that is not under the control of DB2. The optimizer needs to know this information.

User Defined Functions 187

Graeme Birchall ©

e READS SQL DATA: Whether the function reads SQL data only, or doesn't even do that.
The function cannot modify any DB2 data, except via an external procedure call.

e STATIC DISPATCH: At function resolution time, DB2 chooses the function to run
based on the parameters of the function.

e CALLED ON NULL INPUT: The function is called, even when the input is null.

o PREDICATES: For predicates using this function, this clause lists those that can use the
index extensions. If this clause is specified, function must also be DETERMINISTIC
with NO EXTERNAL ACTION. See the DB2 documentation for details.

e RETURN: The value or table (result set) returned by the function.

Null Output

If a function returns a value (as opposed to a table), that value will always be nullable, regard-
less of whether or not the returned value can ever actually be null. This may cause problems if
one is not prepared to handle a null indicator. To illustrate, the following function will return
a nullable value that never be null:

CREATE FUNCTION Test() RETURNS CHAR(5) RETURN "abcde*®;
Figure 513, Function returns nullable, but never null, value

Input and Output Limits

One can have multiple scalar functions with the same name and different input/output data
types, but not with the same name and input/output types, but with different lengths. So if one
wants to support all possible input/output lengths for, say, varchar data, one has to define the
input and output lengths to be the maximum allowed for the field type.

For varchar input, one would need an output length of 32,672 bytes to support all possible
input values. But this is a problem, because it is very close to the maximum allowable table
(row) length in DB2, which is 32,677 bytes.

Decimal field types are even more problematic, because one needs to define both a length and
a scale. To illustrate, imagine that one defines the input as being of type decimal(31,12). The
following input values would be treated thus:

e A decimal(10,5) value would be fine.
e Adecimal(31,31) value would lose precision.
o A decimal(31,0) value may fail because it is too large.

See page 401 for a detailed description of this problem.

Examples

Below is a very simple scalar function - that always returns zero:
CREATE FUNCTION returns_zero() RETURNS SMALLINT RETURN O;

ANSWER

SELECT id AS id ======
,returns_zero() AS zz ID 2z

FROM staff _— -
WHERE id = 10; 10 O

Figure 514, Simple function usage

Two functions can be created with the same name. Which one is used depends on the input
type that is provided:

188 Scalar Functions

DB2 V9.7 Cookbook ©

CREATE FUNCTION calc(inval SMALLINT) RETURNS INT RETURN inval * 10;
CREATE FUNCTION calc(inval INTEGER) RETURNS INT RETURN inval * 5;

SELECT id AS id ANSWER
,calc(SMALLINT(id)) AS ci S=========
,calc(INTEGER (id)) AS C2 IDC1 C2

FROM staff — e -

WHERE id < 30 10 100 50

ORDER BY id; 20 200 100

DROP FUNCTION calc(SMALLINT);
DROP FUNCTION calc(INTEGER);

Figure 515, Two functions with same name

Below is an example of a function that is not deterministic, which means that the function
result can not be determined based on the input:
CREATE FUNCTION rnd(inval INT)

RETURNS SMALLINT
NOT DETERMINISTIC

RETURN RAND() * 50; ANSWER
SELECT id AS id ID RND

,rmmd() ASRND e e
FROM staff 10 37
WHERE id < 40 20 8
ORDER BY 1id; 30 42

Figure 516, Not deterministic function

The next function uses a query to return a single row/column value:

CREATE FUNCTION get_sal(inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN SELECT salary

FROM staff

WHERE id = inval; ANSWER
SELECT id AS id ID SALARY
,get _sal(id) AS salary —m —mmm
FROM staff 10 98357.50
WHERE id < 40 20 78171.25
ORDER BY 1id; 30 77506.75

Figure 517, Function using query

More complex SQL statements are also allowed - as long as the result (in a scalar function) is
just one row/column value. In the next example, the either the maximum salary in the same
department is obtained, or the maximum salary for the same year - whatever is higher:

User Defined Functions

189

Graeme Birchall ©

CREATE FUNCTION max_sal(inval SMALLINT)
RETURNS DECIMAL(7,2)
RETURN WITH
ddd (max_sal) AS
(SELECT MAX(S2.salary)
FROM staff S1
,staff S2
WHERE S1.id
AND S1._dept
,Yyy (max_sal) AS
(SELECT MAX(S2.salary)
FROM staff S1
,staff S2
WHERE S1.id
AND S1.years
SELECT CASE
WHEN ddd.max_sal > yyy.max_sal
THEN ddd.max_sal
ELSE yyy.max_sal
END
FROM ddd, yyy;

inval
s2.dept)

inval
s2.years)

ANSWER
SELECT id AS id
,salary AS SAL1 ID SAL1 SAL2
,max_sal(id) AS SAL2 o e
FROM staff 10 98357.50 98357.50
WHERE id < 40 20 78171.25 98357.50
ORDER BY 1id; 30 77506.75 79260.25

Figure 518, Function using common table expression

A scalar or table function cannot change any data, but it can be used in a DML statement. In
the next example, a function is used to remove all "e" characters from the name column:

CREATE FUNCTION remove_e(instr VARCHAR(50))
RETURNS VARCHAR(50)

RETURN replace(instr,"e","");

UPDATE staff

SET name = remove_e(hame)
WHERE id < 40;

Figure 519, Function used in update
Compound SQL Usage

A function can use compound SQL, with the following limitations:
e The statement delimiter, if needed, cannot be a semi-colon.
e No DML statements are allowed.

Below is an example of a scalar function that uses compound SQL to reverse the contents of a
text string:

190 Scalar Functions

DB2 V9.7 Cookbook ©

--#SET DELIMITER !
CREATE FUNCTION reverse(instr VARCHAR(50))

IMPORTANT

This example

RETURNS VARCHAR(50) uses an """
BEGIN ATOMIC as the stmt
DECLARE outstr VARCHAR(50) DEFAULT **; delimiter.
DECLARE curbyte SMALLINT DEFAULT O;
SET curbyte = LENGTH(RTRIM(instr));
WHILE curbyte >= 1 DO
SET outstr = outstr || SUBSTR(instr,curbyte,l);
SET curbyte = curbyte - 1;
END WHILE;
RETURN outstr;
END!
ANSWER
SELECT id AS id
,hame AS namel 1D NAME1 NAME2
,reverse(name) AS name2 00 —— —mmmmmmm oo
FROM staff 10 Sanders srednaS
WHERE id < 40 20 Pernal lanreP
ORDER BY id! 30 Marenghi ihgneraM

Figure 520, Function using compound SQL

Because compound SQL is a language with basic logical constructs, one can add code that
does different things, depending on what input is provided. To illustrate, in the next example

the possible output values are as follows:
o If the input is null, the output is set to null.

o If the length of the input string is less than 6, an error is flagged.

e If the length of the input string is less than 7, the result is set to -1.

e Otherwise, the result is the length of the input string.

Now for the code:
——#SET DELIMITER !

CREATE FUNCTION check_len(instr VARCHAR(50))
RETURNS SMALLINT
BEGIN ATOMIC
IF instr IS NULL THEN
RETURN NULL;
END IF;
IF length(instr) < 6 THEN
SIGNAL SQLSTATE "75001*
SET MESSAGE_TEXT = "Input string is < 6";
ELSEIF length(instr) < 7 THEN

RETURN -1;
END IF;
RETURN length(instr);

END!

SELECT id AS id
,hame AS namel
,check_len(name) AS name2

FROM staff

WHERE id < 60

ORDER BY id!

Figure 521, Function with error checking logic

IMPORTANT
This example
uses an 1"
as the stmt
delimiter.
ANSWER
1D NAME1l NAME2
10 Sanders 7
20 Pernal -1
30 Marenghi 8
40 O"Brien 7
<error>

The above query failed when it got to the name "Hanes", which is less than six bytes long.

User Defined Functions

191

Graeme Birchall ©

Table Functions

A table function is very similar to a scalar function, except that it returns a set of rows and
columns, rather than a single value. Here is an example:

CREATE FUNCTION get_staff()

RETURNS TABLE (1D SMALLINT

,hame VARCHAR(9)

,YR SMALLINT)
RETURN SELECT id

,hame

,years ANSWER

FROM staff;
1D NAME YR

SELECT > e mmmmmeee
FROM TABLE(get_staff()) AS s 10 Sanders 7
WHERE id < 40 20 Pernal 8
ORDER BY 1id; 30 Marenghi 5

Figure 522, Simple table function

NOTE: See page 187 for the create table function syntax diagram.

Description
The basic syntax for selecting from a table function goes as follows:
w FROM — TABLE —(— function-name —(

)) P
k input-parmeter j

AS

}u— correlation-name

L() |
E column-name J
Figure 523, Table function usage - syntax

Note the following:

e The TABLE keyword, the function name (obviously), the two sets of parenthesis , and a
correlation name, are all required.

o If the function has input parameters, they are all required, and their type must match.

o Optionally, one can list all of the columns that are returned by the function, giving each
an assigned name

Below is an example of a function that uses all of the above features:
CREATE FUNCTION get_st(inval INTEGER)

RETURNS TABLE (id SMALLINT
,hame VARCHAR(9)
,yr SMALLINT)
RETURN SELECT id
,hame
,years
FROM staff ANSWER
WHERE id = inval;
ID NNN YY
SELECT * e e
FROM TABLE(get_st(30)) AS sss (id, nnn, yy); 30 Marenghi 5

Figure 524, Table function with parameters

192 Table Functions

DB2 V9.7 Cookbook ©

Examples

A table function returns a table, but it doesn't have to touch a table.

ing function creates the data on the fly:

CREATE FUNCTION make_data()
RETURNS TABLE (KY SMALLINT
,DAT CHAR(5))
RETURN WITH templ (k#) AS (VALUES (1),(2),(3))
SELECT k#
,DIGITS(SMALLINT(k#))
FROM templ;

SELECT *
FROM TABLE(make_data()) AS ttt;

Figure 525, Table function that creates data

To illustrate, the follow-

ANSWER

1 00001
2 00002
3 00003

The next example uses compound SQL to first flag an error if one of the input values is too
low, then find the maximum salary and related ID in the matching set of rows, then fetch the
same rows - returning the two previously found values at the same time:

CREATE FUNCTION staff_list(lo_key INTEGER
,1o_sal INTEGER)
RETURNS TABLE (id SMALLINT

IMPORTANT

This example

,salary DECIMAL(7,2) uses an "I
,max_sal DECIMAL(7,2) as the stmt
,id_max SMALLINT) delimiter.
LANGUAGE SQL
READS SQL DATA
EXTERNAL ACTION
DETERMINISTIC
BEGIN ATOMIC
DECLARE hold_sal DECIMAL(7,2) DEFAULT O;
DECLARE hold_key SMALLINT;
IF lo_sal < O THEN
SIGNAL SQLSTATE "75001*°
SET MESSAGE_TEXT = “Salary too low";
END IF;
FOR get_max AS
SELECT id AS in_key
,salary As in_sal
FROM staff
WHERE id >= lo_key
DO
IF in_sal > hold_sal THEN
SET hold_sal = in_sal;
SET hold_key = in_key;
END IF;
END FOR;
RETURN
SELECT id
,salary
,hold_sal
,hold_key ANSWER
FROM staff
WHERE id >= lo_key; ID SALARY MAX_SAL ID_MAX
ENDE e e e
70 76502.83 91150.00 140
SELECT * 80 43504.60 91150.00 140
FROM TABLE(staff_list(66,1)) AS ttt 90 38001.75 91150.00 140
WHERE id < 111 100 78352.80 91150.00 140
ORDER BY id! 110 42508.20 91150.00 140

Figure 526, Table function with compound SQL

User Defined Functions

193

Graeme Birchall ©

|
Useful User-Defined Functions

In this section we will describe some simple functions that are generally useful, and that peo-
ple have asked for over the years. In addition to the functions listed here, there are also the
following elsewhere in this book:

e Check character input is a numeric value - page 399

e Convert numeric data to character (right justified) - page 401.
e Like-column predicate evaluation - page 43.

e Locate string in input, a block at a time - page 322.

e Pause SQL statement (by looping) for "n" seconds - page 419.

e Sort character field contents - page 418.

Julian Date Functions

The function below converts a DB2 date into a Julian date (format) value:

CREATE FUNCTION julian_out(inval DATE)
RETURNS CHAR(7)
RETURN RTRIM(CHAR(YEAR(inval)))

Il SUBSTR(DIGITS(DAYOFYEAR(inval)),8);

ANSWER

SELECT empno
,CHAR(hiredate,1SO) AS h_date EMPNO H_DATE J_DATE
,JULIAN_OUT(hiredate) AS j date @ ————-— ——————mmm ——— v
FROM employee 000010 1995-01-01 1995001
WHERE empno < "000050* 000020 2003-10-10 2003283
ORDER BY empno; 000030 2005-04-05 2005095

Figure 527, Convert Date into Julian Date

The next function does the opposite:

CREATE FUNCTION julian_in(inval CHAR(7))
RETURNS DATE
RETURN DATE("0001-01-01")
+ (INT(SUBSTR(inval,1,4)) - 1) YEARS
+ (INT(SUBSTR(inval.5,3)) - 1) DAYS;

Figure 528, Convert Julian Date into Date

Get Prior Date
Imagine that one wanted to get all rows where some date is for the prior year - relative to the
current year. This is easy to code:

SELECT empno
,hiredate
FROM employee
WHERE YEAR(hiredate) = YEAR(CURRENT DATE) - 1;

Figure 529, Select rows where hire-date = prior year
Get Prior Month

One can use the DAY function to get the same data for the prior day. But one cannot use the
MONTH function to do the equivalent for the prior month because at the first of the year the
month number goes back to one.

194 Useful User-Defined Functions

DB2 V9.7 Cookbook ©

One can address this issue by writing a simple function that multiplies the year-number by 12,

and then adds the month-number:

CREATE FUNCTION year_month(inval DATE)

RETURNS

INTEGER

RETURN (YEAR(inval) * 12) + MONTH(inval);
Figure 530, Create year-month function

We can use this function thus:

SELECT empno

,hiredate
FROM employee
WHERE

Figure 531, Select rows where hire-date = prior month

Get Prior Week

YEAR_MONTH(hiredate) = YEAR_MONTH(CURRENT DATE) - 1;

Selecting rows for the prior week is complicated by the fact that both the US and ISO defini-
tions of a week begin at one at the start of the year (see page 434). If however we choose to
define a week as a set of seven contiguous days, regardless of the date, we can create a func-
tion to do the job. In the example below we shall assume that a week begins on a Sunday:

CREATE FUNCTION sunday_week(inval DATE)

RETURNS

INTEGER
RETURN DAYS(inval) 7/ 7;

Figure 532, Create week-number function

The next function assumes that a week begins on a Monday:
CREATE FUNCTION monday_week(inval DATE)

RETURNS

INTEGER

RETURN (DAYS(inval) - 1) 7/ 7;
Figure 533, Create week-number function

Both the above functions convert the input date into a day-number value, then subtract (if
needed) to get to the right day of the week, then divide by seven to get a week-number. The
result is the number of weeks since the beginning of the current era.

The next query shows the two functions in action:

WITH
templ (num,dt) AS
(VALUES (1
,DATE("2004-12-29%))
UNION ALL
SELECT num + 1
,dt + 1 DAY
FROM templ
WHERE num < 15
),
temp2 (dt,dy) AS
(SELECT dt
,SUBSTR(DAYNAME(dt),1,3)
FROM templ
)

SELECT CHAR(dt, 1S0O) AS date
,dy AS day
,WEEK(dt) AS wk
,WEEK_1S0(dt) AS is
,sunday_week(dt) AS sun_wk
,monday_week(dt) AS mon_wk

FROM

temp2

ORDER BY 1;
Figure 534, Use week-number functions

User Defined Functions

ANSWER
DATE DAY WK 1S SUN_WK MON_WK
2004-12-29 Wed 53 53 104563 104563
2004-12-30 Thu 53 53 104563 104563
2004-12-31 Fri 53 53 104563 104563
2005-01-01 Sat 1 53 104563 104563
2005-01-02 Sun 2 53 104564 104563
2005-01-03 Mon 2 1 104564 104564
2005-01-04 Tue 2 1 104564 104564
2005-01-05 Wed 2 1 104564 104564
2005-01-06 Thu 2 1 104564 104564
2005-01-07 Fri 2 1 104564 104564
2005-01-08 Sat 2 1 104564 104564
2005-01-09 Sun 3 1 104565 104564
2005-01-10 Mon 3 2 104565 104565
2005-01-11 Tue 3 2 104565 104565
2005-01-12 Wed 3 2 104565 104565

195

Graeme Birchall ©

Generating Numbers

The next function returns a table of rows. Each row consists of a single integer value , starting
at zero, and going up to the number given in the input. At least one row is always returned. If
the input value is greater than zero, the number of rows returned equals the input value plus
one:

CREATE FUNCTION NumList(max_num INTEGER)
RETURNS TABLE(num INTEGER)
LANGUAGE SQL
RETURN
WITH templ (num) AS
(VALUES (0)
UNION ALL
SELECT num + 1
FROM templ
WHERE num < max_num

)
SELECT num
FROM templ;

Figure 535, Create num-list function

Below are some queries that use the above function:

ANSWERS
SELECT * ——=—=—===
FROM TABLE(NumList(-1)) AS xxX; 0
SELECT *
FROM TABLE(NumList(+0)) AS xxx; 0
SELECT *
FROM TABLE(NumLiSt(+3)) AS XxX; 0
1
2
3
SELECT *
FROM TABLE(NumList(CAST(NULL AS INTEGER))) AS xxX; 0]

Figure 536, Using num-list function

NOTE: If this function did not always return one row, we might have to use a left-outer-join
when joining to it. Otherwise the calling row might disappear from the answer-set because
no row was returned.

To illustrate the function's usefulness, consider the following query, which returns the start
and end date for a given set of activities:

SELECT actno ANSWER
,emstdate
,emendate ACTNO EMSTDATE EMENDATE #DAYS
,DAYS(emendate) - === 0———mm —mmmmmmm e
DAYS(emstdate) AS #days 70 2002-06-15 2002-07-01 16
FROM emp_act act 80 2002-03-01 2002-04-15 45
WHERE empno = "000260*"
AND projno = "AD3113"
AND actno < 100
AND emptime = 0.5

ORDER BY actno;
Figure 537, Select activity start & end date

Imagine that we wanted take the above output, and generate a row for each day between the
start and end dates. To do this we first have to calculate the number of days between a given
start and end, and then join to the function using that value:

196 Useful User-Defined Functions

DB2 V9.7 Cookbook ©

SELECT actno ANSWER
,#days
,num ACTNO #DAYS NUM NEW_DATE
,emstdate + num DAYS AS new_date @ --———- ————— ———
FROM (SELECT actno 70 16 0 2002-06-15
,emstdate 70 16 1 2002-06-16
,emendate 70 16 2 2002-06-17
,DAYS(emendate) - 70 16 3 2002-06-18
DAYS(emstdate) AS #days 70 16 4 2002-06-19
FROM emp_act act 70 16 5 2002-06-20
WHERE empno = "000260" 70 16 6 2002-06-21
AND projno = "AD3113" 70 16 7 2002-06-22
AND actno < 100 70 16 8 2002-06-23
AND emptime = 0.5 70 16 9 2002-06-24
)AS aaa 70 16 10 2002-06-25
, TABLE(NumList(#days)) AS ttt etc. ..
ORDER BY actno
,num;

Figure 538, Generate one row per date between start & end dates (1 of 2)

In the above query the #days value equals the number of days between the start and end dates.
If the two dates equal, the #days value will be zero. In this case we will still get a row because
the function will return a single zero value. If this were not the case (i.e. the function returned
no rows if the input value was less than one), we would have to code a left-outer-join with a
fake ON statement:

SELECT actno

,#days
,num ACTNO #DAYS NUM NEW_DATE
,emstdate + num DAYS AS new_date --—-—- ————— ———
FROM (SELECT actno 70 16 0 2002-06-15
,emstdate 70 16 1 2002-06-16
,emendate 70 16 2 2002-06-17
,DAYS(emendate) - 70 16 3 2002-06-18
DAYS(emstdate) AS #days 70 16 4 2002-06-19
FROM emp_act act 70 16 5 2002-06-20
WHERE empno = "000260" 70 16 6 2002-06-21
AND projno = "AD3113" 70 16 7 2002-06-22
AND actno < 100 70 16 8 2002-06-23
AND emptime = 0.5 70 16 9 2002-06-24
)AS aaa 70 16 10 2002-06-25
LEFT OUTER JOIN etc. ..
TABLE(NumList(#days)) AS ttt
ON 1=1
ORDER BY actno
,num;

Figure 539, Generate one row per date between start & end dates (2 of 2)

Check Data Value Type

The following function checks to see if an input value is character, where character is defined
as meaning that all bytes are "A" through "Z" or blank. It converts (if possible) all bytes to
blank using the TRANSLATE function, and then checks to see if the result is blank:

CREATE FUNCTION ISCHAR (inval VARCHAR(250))

RETURNS SMALLINT

LANGUAGE SQL

RETURN

CASE
WHEN TRANSLATE(UPPER(inval)," *,"ABCDEFGHIJKLMNOPQRSTUVWXYZ®") = = *
THEN 1
ELSE O

END;

Figure 540, Check if input value is character

User Defined Functions 197

Graeme Birchall ©

The next function is similar to the prior, except that it looks to see if all bytes in the input are
in the range of "0" through "9", or blank:

CREATE FUNCTION ISNUM (inval VARCHAR(250))
RETURNS SMALLINT
LANGUAGE SQL
RETURN
CASE
WHEN TRANSLATE(inval,” *,"01234567890%) = * ~
THEN 1
ELSE O
END;

Figure 541, Check if input value is numeric

Below is an example of the above two functions in action:

WITH temp (indata) AS ANSWER
(VALUES ("ABC"),(123"),("3.4") ==========
,("-449),CAL D)) INDATA C N

SELECT 1indata AS indata ———— - -
, ISCHAR(indata) AS c ABC 10
,ISNUM(indata) AS n 123 01

FROM temp; 3.4 00
-44 00

Al 00

11

Figure 542, Example of functions in use

The above ISNUM function is a little simplistic. It doesn't check for all-blanks, or embedded
blanks, decimal input, or sign indicators. The next function does all of this, and also indicates
what type of number was found:

CREATE FUNCTION ISNUM2 (inval VARCHAR(255))

RETURNS CHAR(4)
LANGUAGE SQL

RETURN
CASE
WHEN inval =" "
THEN * -
WHEN LOCATE(" *,RTRIM(LTRIM(inval))) >0
THEN * -
WHEN TRANSLATE(inval,® *,"01234567890") = inval
THEN * -
WHEN TRANSLATE(inval,® ","01234567890") =" "
THEN "INT *
WHEN TRANSLATE(inval,® *,"+012345678907) =" "
AND LOCATE("+",LTRIM(inval)) =1
AND LENGTH(REPLACE(inval,"+","%)) = LENGTH(inval) - 1
THEN "INT+*
WHEN TRANSLATE(inval,® *,"-012345678907) =" "
AND LOCATE("-",LTRIM(inval)) =1
AND LENGTH(REPLACE(inval,"-","%)) = LENGTH(inval) - 1
THEN "INT-*
WHEN TRANSLATE(inval,™ *,".01234567890") =" -
AND LENGTH(REPLACE(inval,".","")) = LENGTH(inval) - 1
THEN "DEC -~
WHEN TRANSLATE(inval,” *,"+.01234567890%) = " *
AND LOCATE(™+",LTRIM(inval)) =1
AND LENGTH(REPLACE(inval,"+","")) = LENGTH(inval) - 1
AND LENGTH(REPLACE(inval,".","")) = LENGTH(inval) - 1

THEN "DEC+*
Figure 543, Check if input value is numeric - part 1 of 2

198 Useful User-Defined Functions

DB2 V9.7 Cookbook ©

WHEN TRANSLATE(inval,*® *,"-.01234567890") .-
AND LOCATE("-",LTRIM(inval)) 1
AND LENGTH(REPLACE(inval,*=*,*"))
AND LENGTH(REPLACE(inval,".",""))

THEN *DEC-*

ELSE * .

END;

Figure 544, Check if input value is numeric - part 2 of 2

The first three WHEN checks above are looking for non-numeric input:
e The inputis blank.
e The input has embedded blanks.

e The input does not contain any digits.

LENGTH(inval) - 1
LENGTHCinval) - 1

The final five WHEN checks look for a specific types of numeric input. They are all similar
in design, so we can use the last one (looking of negative decimal input) to illustrate how they

all work:

e Check that the input consists only of digits, dots, the minus sign, and blanks.
e Check that the minus sign is the left-most non-blank character.

e Check that there is only one minus sign in the input.

e Check that there is only one dot in the input.

Below is an example of the above function in use:

WITH temp (indata) AS ANSWER
(VALUES ("ABC"),("1237),("3.4%)

,("-447),("+117),("-1-7) INDATA TYPE NUMBER

,("12+7),("+.17),("-0.") e e

¢ .1 1), ¢ T ABC -

SELECT 1indata AS indata 123 INT 123.00

, ISNUM2(indata) AS type 3.4 DEC 3.40

,CASE -44 INT- -44.00

WHEN ISNUM2(indata) <> "~ +11 INT+ 11.00

THEN DEC(indata,5,2) -1- -

ELSE NULL 12+ -

END AS number +.1 DEC+ 0.10

FROM temp; -0. DEC- 0.00

Figure 545, Example of function in use

Hash Function

The following hash function is a little crude, but it works. It accepts a VARCHAR string as
input, then walks the string and, one byte at a time, manipulates a floating point number. At

the end of the process the floating point value is translated into BIGINT.

User Defined Functions

199

Graeme Birchall ©

CREATE FUNCTION HASH_STRING (instr VARCHAR(30000)) IMPORTANT
RETURNS BIGINT ============
DETERMINISTIC This example
CONTAINS SQL uses an """
NO EXTERNAL ACTION as the stmt
BEGIN ATOMIC delimiter.

DECLARE inlen SMALLINT;
DECLARE curbit SMALLINT DEFAULT 1;
DECLARE outnum DOUBLE DEFAULT O;
SET inlen = LENGTH(instr);
WHILE curbit <= inlen DO
SET outnum = (outnum * 123) + ASCII(SUBSTR(instr,curbit));
IF outnum > 1E10 THEN
SET outnum = outnum / 1.2345E6;

END 1F;
SET curbit = curbit + 1;
END WHILE;
RETURN BIGINT(TRANSLATE(CHAR(outnum),"01","_E"));

END!
Figure 546, Create HASH_STRING function

Below is an example of the function in use:

SELECT id
,hame
,HASH_STRING(name) AS hash_val
FROM staff s
WHERE id <70 ANSWER
ORDER BY id!
ID NAME HASH_VAL
10 Sanders 203506538768383718
20 Pernal 108434258721263716
30 Marenghi 201743899927085914
40 O"Brien 202251277018590318
50 Hanes 103496977706763914
60 Quigley 202990889019520318

Figure 547, HASH_STRING function usage

One way to judge a hash function is to look at the number of distinct values generated for a
given number of input strings. Below is a very simple test:

WITH ANSWER
templ (coll) AS
(VALUES (1) #ROWS #HASH1 #HASH2
UNION ALL e e
SELECT coll + 1 100000 100000 100000

FROM templ
WHERE coll < 100000

)

SELECT COUNT(*) AS #rows
,COUNT(DISTINCT HASH_STRING(CHAR(col1))) AS #hashl
,COUNT(DISTINCT HASH_STRING(DIGITS(coll))) AS #hash2

FROM templ!

Figure 548, HASH_FUNCTION test

200 Useful User-Defined Functions

DB2 V9.7 Cookbook ©

Order By, Group By, and Having

Order By

The ORDER BY statement is used to sequence output rows. The syntax goes as follows:
' ASC
F ORDER BY — column name r “ }
Ecolumn# LDESC J

expression —

—— ORDER OF —— table-designator —
L—— INPUT SEQUENCE

Figure 549, ORDER BY syntax

Notes

One can order on any one of the following:

e A named column, or an expression, neither of which need to be in the select list.

e Anunnamed column - identified by its number in the list of columns selected.

e The ordering sequence of a specific nested subselect.

e For an insert, the order in which the rows were inserted (see page 71).

Also note:

e One can have multiple ORDER BY statements in a query, but only one per subselect.

e Specifying the same field multiple times in an ORDER BY list is allowed, but silly. Only
the first specification of the field will have any impact on the output order.

e If the ORDER BY column list does not uniquely identify each row, any rows with dupli-
cate values will come out in random order. This is almost always the wrong thing to do
when the data is being displayed to an end-user.

e Use the TRANSLATE function to order data regardless of case. Note that this trick may
not work consistently with some European character sets.

e NULL values sort high.

Sample Data

The following view is used throughout this section:

CREATE VIEW SEQ_DATA(col1,col2)
AS VALUES ("ab"™,"xy")
LCAB™ XY™
} (-aC- ; -XY-)
,("AB™,"XY")
,("Ab","12%);
Figure 550, ORDER BY sample data definition

Order By, Group By, and Having 201

Graeme Birchall ©

Order by Examples

The following query presents the output in ascending order:

SELECT coll ANSWER SEQ_DATA
,col2 —======== o +
FROM seq_data COL1 coL2 JcoL1]COoL2]
ORDER BY coll ASC mmem |-———+-———]
,col2; AB XY lab |Ixy |
AB xy |AB |xy |
Ab 12 lac XY |
ab Xy |AB XY |
ac XY [Ab |12 |
Fom——_— +

Figure 551, Simple ORDER BY

In the above example, all of the lower case data comes before any of the upper case data. Use
the TRANSLATE function to display the data in case-independent order:

SELECT coll ANSWER
,COIZ —=—=======
FROM seqg_data COL1 coL2
ORDER BY TRANSLATE(coll) AsSC —mmm
, TRANSLATE(col2) ASC Ab 12
ab xy
AB Xy
AB XY
ac XY

Figure 552, Case insensitive ORDER BY

One does not have to specify the column in the ORDER BY in the select list though, to the
end-user, the data may seem to be random order if one leaves it out:

SELECT col2 ANSWER
FROM seq_data ======
ORDER BY col1l coL2
,col2; _—
XY
Xy
12
Xy
XY

Figure 553, ORDER BY on not-displayed column

In the next example, the data is (primarily) sorted in descending sequence, based on the sec-
ond byte of the first column:

SELECT coll ANSWER
,COI2 ————=—=—===
FROM seq_data COL1 COL2
ORDER BY SUBSTR(col1,2) DEsc == oo
,col ac XY
13 Ab 12
ab xy
AB XY
AB xy

Figure 554, ORDER BY second byte of first column

The standard ASCII collating sequence defines upper-case characters as being lower than
lower-case (i.e. 'A' < 'a"), so upper-case characters display first if the data is ascending order.
In the next example, this is illustrated using the HEX function is used to display character
data in bit-data order:

202 Order By

DB2 V9.7 Cookbook ©

SELECT coll ANSWER
,HEX(coll) AS hexl
,col2 COL1 HEX1 COL2 HEX2
,HEX(col2) AS hex2 mmem o
FROM seq_data AB 4142 XY 5859
ORDER BY HEX(coll) AB 4142 xy 7879
LHEX(col2) Ab 4162 12 3132

Figure 555, ORDER BY in bit-data sequence
ORDER BY subselect

One can order by the result of a nested ORDER BY, thus enabling one to order by a column
that is not in the input - as is done below:

SELECT col1l ANSWER SEQ_DATA
FROM (SELECT col1 ====== Fom +
FROM seq_data coL1 jcoL1jcoL2|
ORDER BY col2 —_—— |-—--+----]
) AS XxXxx Ab lab [xy |
ORDER BY ORDER OF xxx; ac |AB |xy |
AB ac |IXy |
ab |AB |XY |
AB [Ab 12 |
Fom +

Figure 556, ORDER BY nested ORDER BY

In the next example the ordering of the innermost subselect is used, in part, to order the final
output. This is done by first referring it to directly, and then indirectly:

SELECT * ANSWER
FROM (SELECT * —=———====
FROM (SELECT = COL1 coL2
FROM seq_data = ———— =
ORDER BY col2 Ab 12
)AS xxx AB XY
ORDER BY ORDER OF xxx ac Xy
,SUBSTR(col1,2) AB xy
) AS yyy ac Xy
ORDER BY ORDER OF yyy
,coll;

Figure 557, Multiple nested ORDER BY statements
ORDER BY inserted rows

One can select from an insert statement (see page 71) to see what was inserted. Order by the
INSERT SEQUENCE to display the rows in the order that they were inserted:

SELECT empno ANSWER
,projno AS prj
,actno AS act EMPNO PRJ ACT R#
,ROW_NUMBER() OVER() AS r# ——mmmm ——— ——— ——
FROM FINAL TABLE 400000 ZZZ 999 1
(INSERT INTO emp_act (empno, projno, actno) 400000 VW 111 2

VALUES ("4000007,"ZZZ",999)
,(7400000", "VWV" ,111))
ORDER BY INPUT SEQUENCE;

Figure 558, ORDER BY insert input sequence

NOTE: The INPUT SEQUENCE phrase only works in an insert statement. It can be listed
in the ORDER BY part of the statement, but not in the SELECT part. The select cannot be
a nested table expression.

Order By, Group By, and Having 203

Graeme Birchall ©

Group By and Having

The GROUP BY and GROUPING SETS statements are used to group individual rows into
combined sets based on the value in one, or more, columns. The related ROLLUP and CUBE
statements are short-hand forms of particular types of GROUPING SETS statement.

F GROUP BY ; ;expression

F HAVING

— GROUPING SETS—($ expression ‘) J
ROLLUP stmt (see below)—]
grand-total CUBE stmt (see below) ——
e

— ROLLUP —(i expression ‘)

L(iéxpression l) —

—CUBE —(i expression ‘)

L(£ ;expression l) —

—(-)

search-condition(s) ’

Figure 559, GROUP BY syntax

Rules and Restrictions

204

There can only be one GROUP BY per SELECT. Multiple select statements in the same
query can each have their own GROUP BY.

Every field in the SELECT list must either be specified in the GROUP BY, or must have
a column function applied against it.

The result of a simple GROUP BY is always a distinct set of rows, where the unique
identifier is whatever fields were grouped on.

Only expressions returning constant values (e.g. a column name, a constant) can be refer-
enced in a GROUP BY. For example, one cannot group on the RAND function as its re-
sult varies from one call to the next. To reference such a value in a GROUP BY, resolve
it beforehand using a nested-table-expression.

Variable length character fields with differing numbers on trailing blanks are treated as
equal in the GROUP. The number of trailing blanks, if any, in the result is unpredictable.

When grouping, all null values in the GROUP BY fields are considered equal.

There is no guarantee that the rows resulting from a GROUP BY will come back in any
particular order. If this is a problem, use an ORDER BY.

Group By and Having

DB2 V9.7 Cookbook ©

GROUP BY Flavors

A typical GROUP BY that encompasses one or more fields is actually a subset of the more
general GROUPING SETS command. In a grouping set, one can do the following:

e Summarize the selected data by the items listed such that one row is returned per unique
combination of values. This is an ordinary GROUP BY.

e Summarize the selected data using multiple independent fields. This is equivalent to do-
ing multiple independent GROUP BY statements - with the separate results combined
into one using UNION ALL statements.

e Summarize the selected data by the items listed such that one row is returned per unique
combination of values, and also get various sub-totals, plus a grand-total. Depending on
what exactly is wanted, this statement can be written as a ROLLUP, or a CUBE.

To illustrate the above concepts, imagine that we want to group some company data by team,
department, and division. The possible sub-totals and totals that we might want to get are:

GROUP BY division, department, team

GROUP BY division, department

GROUP BY division

GROUP BY division, team

GROUP BY department, team

GROUP BY department

GROUP BY team

GROUP BY O <= grand-total

Figure 560, Possible groupings

If we wanted to get the first three totals listed above, plus the grand-total, we could write the
statement one of three ways:

GROUP BY division, department, team

UNION ALL

GROUP BY division, department

UNION ALL

GROUP BY division

UNION ALL

GROUP BY

GROUP BY GROUPING SETS ((division, department, team)
,(division, department)
,(division)

10))

GROUP BY ROLLUP (division, department, team)
Figure 561, Three ways to write the same GROUP BY

Usage Warnings
Before we continue, be aware of the following:

e Single vs. double parenthesis is a very big deal in grouping sets. When using the former,
one is listing multiple independent groupings, while with the latter one is listing the set of
items in a particular grouping.

e Repetition matters - sometimes. In an ordinary GROUP BY duplicate references to the
same field has no impact on the result. By contrast, ina GROUPING SET, ROLLUP, or
CUBE statement, duplicate references can often result in the same set of data being re-
trieved multiple times.

Order By, Group By, and Having 205

GROUP BY Sample Data

The following view will be used throughout this section:

CREATE VIEW employee_view
(d1,dept,sex,salary) AS
VALUES("A*","A00","F",52750)

,("A"."A00" . "M",29250)
A" ."A00" . "M",46500)
B, "BO1","M",41250)
C,"CO1","F",23800)
C,"CO1","F".28420)
*C"."CO01","F".38250)
D,"D11","F*".21340)
D,"D11","F".22250)
"D*,"D11","F",29840)
D,"D11","M",18270)
"D*,"D11","M",20450)
D.,"D11","M",24680)
"D*,"D11","M",25280)

(
(
(
(
(
(
(
(
(
(
E
E'D','Dll','M',27740)

D,"D11","M*",32250);

Figure 562, GROUP BY Sample Data

Simple

GROUP BY Statements

Graeme Birchall ©

VIEW CONTENTS

D1 DEPT SEX SALARY

vlvivivivivlvlvliviotoXol b5
oo
gt
[N
ZT=z====TIMTTNTIE===T
N
[
w
I
o

A simple GROUP BY is used to combine individual rows into a distinct set of summary rows.

Sample Queries

In this first query we group our sample data by the leftmost three fields in the view:
SELECT dl, dept, sex

,SUM(salary)

,SMALLINT(COUNT(*))
FROM employee_view
WHERE dept <> “ABC"
GROUP BY d1, dept, sex
HAVING dept > "AO*"

AND (SUM(salary) > 100
OR MIN(salary) > 10
OR COUNT(*) ~ <> 22)

ORDER

BY d1, dept, sex;

Figure 563, Simple GROUP BY

There is no need to have a field in the GROUP BY in the SELECT list, but the answer really
doesn't make much sense if one does this:

SELECT sex

FROM
WHERE
GROUP

ORDER

,SUM(salary)
» SMALLINT (COUNT (*))
employee_view
sex IN (°F","M")
BY dept
,sex
BY sex;

AS salary
AS #rows

AS salary
AS #rows

Figure 564, GROUP BY on non-displayed field

One can also do a GROUP BY on a derived field, which may, or may not be, in the statement

SELECT list. This is an amazingly stupid thing to do:

206

ANSWER

D1 DEPT SEX SALARY #ROWS

A AOO F 52750 1
A AOO M 75750 2
B BO1 M 41250 1
C CO01 F 90470 3
D D11 F 73430 3
D D11 M 148670 6

ANSWER

SEX SALARY #ROWS

41250

Group By and Having

DB2 V9.7 Cookbook ©

SELECT SUM(salary) AS salary
,SMALLINT(COUNT(*)) AS #rows
FROM employee_view

WHERE d1 <> "X~
GROUP BY SUBSTR(dept,3,1)
HAVING ~ COUNT(*) <> 99;

Figure 565, GROUP BY on derived field, not shown

One can not refer to the name of a derived column in a GROUP BY statement. Instead, one
has to repeat the actual derivation code. One can however refer to the new column name in an

ORDER BY:

SELECT SUBSTR(dept,3,1) AS wpart
,SUM(salary) AS salary
,SMALLINT(COUNT(*)) AS #rows

FROM employee_view

GROUP BY SUBSTR(dept,3,1)
ORDER BY wpart DESC;

Figure 566, GROUP BY on derived field, shown

GROUPING SETS Statement

ANSWER

ANSWER

128500 3
353820 13

WPART

SALARY #ROWS
353820 13
128500 3

The GROUPING SETS statement enables one to get multiple GROUP BY result sets using a
single statement. It is important to understand the difference between nested (i.e. in secondary
parenthesis), and non-nested GROUPING SETS sub-phrases:

e Anested list of columns works as a simple GROUP BY.

e A non-nested list of columns works as separate simple GROUP BY statements, which are

then combined in an implied UNION ALL.
GROUP BY GROUPING SETS ((A,B,C))

GROUP BY GROUPING SETS (A,B,C)

GROUP BY GROUPING SETS (A, (B,C))

is equivalent to

is equivalent to

is equivalent to

Figure 567, GROUPING SETS in parenthesis vs. not
Multiple GROUPING SETS in the same GROUP BY are combined together as if they were

simple fields in a GROUP BY list:

GROUP BY GROUPING SETS (A)
,GROUPING SETS (B)
LGROUPING SETS (C)

GROUP BY GROUPING SETS (A)
,GROUPING SETS ((B,C))

GROUP BY GROUPING SETS (A)
,GROUPING SETS (B,C)

Figure 568, Multiple GROUPING SETS

Order By, Group By, and Having

is equivalent to

is equivalent to

is equivalent to

GROUP BY A
,B
,C

GROUP BY A
UNION ALL
GROUP BY B
UNION ALL
GROUP BY C

GROUP BY A
UNION ALL

GROUP BY B
,BY C

GROUP BY A

GROUP BY

Ow> OwW

GROUP BY A
,B
UNION ALL
GROUP BY A
,C

207

Graeme Birchall ©

One can mix simple expressions and GROUPING SETS in the same GROUP BY:

GROUP BY A is equivalent to GROUP BY A
,GROUPING SETS ((B,C)) ,B
,C

Figure 569, Simple GROUP BY expression and GROUPING SETS combined

Repeating the same field in two parts of the GROUP BY will result in different actions de-
pending on the nature of the repetition. The second field reference is ignored if a standard
GROUP BY is being made, and used if multiple GROUP BY statements are implied:

GROUP BY A is equivalent to GROUP BY A
,B ,B
,GROUPING SETS ((B,C)) ,C

GROUP BY A is equivalent to GROUP BY A
,B ,B
,GROUPING SETS (B,C) ,C

UNION ALL
GROUP BY A
,B

GROUP BY A is equivalent to GROUP BY A
,B ,B
Ne ,C
,GROUPING SETS (B,C) UNION ALL

GROUP BY A
,B
,C

Figure 570, Mixing simple GROUP BY expressions and GROUPING SETS

A single GROUPING SETS statement can contain multiple sets of (implied) GROUP BY
phrases. These are combined using implied UNION ALL statements:

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY
»(A,B)
-(©))

Ow>

UNION ALL
GROUP BY A
.B
UNION ALL
GROUP BY C

GROUP BY GROUPING SETS ((A) is equivalent to GROUP BY A
,(B,0) UNION ALL
(A GROUP BY B
A ,C
,((©))) UNION ALL
GROUP BY A
UNION ALL
GROUP BY A
UNION ALL
GROUP BY C

Figure 571, GROUPING SETS with multiple components

The null-field list "()" can be used to get a grand total. This is equivalent to not having the
GROUP BY at all.

208 Group By and Having

DB2 V9.7 Cookbook ©

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
»(A,B ,
»(A) ,C
,O) UNION ALL
GROUP BY A
,B

is equivalent to UNION ALL
GROUP BY A

UNION ALL

ROLLUP(A,B,C) grand-totl

Figure 572, GROUPING SET with multiple components, using grand-total

The above GROUPING SETS statement is equivalent to a ROLLUP(A,B,C), while the next
is equivalent to a CUBE(A,B,C):

GROUP BY GROUPING SETS ((A,B,C) is equivalent to GROUP BY A
.(A,B) ,B
»(A.C) ,C
(8.0 UNION ALL
,(A) GROUP BY A
»(B) ,B
,(O UNION ALL
Ne) GROUP BY A
,C
UNION ALL
GROUP BY B
is equivalent to ,C
UNION ALL
GROUP BY A
UNION ALL
CUBE(A,B,C) GROUP BY B
UNION ALL
GROUP BY C
UNION ALL
grand-totl

Figure 573, GROUPING SET with multiple components, using grand-total
SQL Examples

This first example has two GROUPING SETS. Because the second is in nested parenthesis,
the result is the same as a simple three-field group by:

SELECT di1 ANSWER
,dept
,Sex D1 DEPT SEX SAL #R DF WF SF
,SUM(salary) AS sal e it Tt
,SMALLINT(COUNT(*)) AS #r A AO0 F 52750 1 0 O O
,GROUPING(d1) AS f1 A AOO M 75750 2 0 0 O
,GROUPING(dept) AS fd B BO1 M 41250 1 0 O O
,GROUPING(sex) AS fs C Co1 F 90470 3 0 0 O
FROM employee_view D D11 F 73430 3 0 O O
GROUP BY GROUPING SETS (d1) D D11 M 148670 6 0 O O

,GROUPING SETS ((dept,sex))
ORDER BY d1
,dept
,Sex;
Figure 574, Multiple GROUPING SETS, making one GROUP BY

NOTE: The GROUPING(field-name) column function is used in these examples to identify
what rows come from which particular GROUPING SET. A value of 1 indicates that the
corresponding data field is null because the row is from of a GROUPING SET that does
not involve this row. Otherwise, the value is zero.

In the next query, the second GROUPING SET is not in nested-parenthesis. The query is
therefore equivalent to GROUP BY D1, DEPT UNION ALL GROUP BY D1, SEX:

Order By, Group By, and Having 209

SELECT

FROM
GROUP BY

ORDER BY

di

,dept

,Sex

,SUM(salary) AS sal
LSMALLINT(COUNT(*)) AS #r
,GROUPING(d1) AS f1
,GROUPING(dept) AS fd
,GROUPING(sex) AS fs

employee_view

GROUPING SETS (d1)
,GROUPING SETS (dept,sex)
di

,dept

,Sex;

Graeme Birchall ©

ANSWER

D1 DEPT SEX SAL #R F1 FD FS
A AOO - 128500 3 0 O 1
A - F 52750 1 0 1 O
A - M 75750 2 0 1 O
B BO1 - 41250 1 0 O 1
B - M 41250 1 0 1 O
c Co1 - 90470 3 0 O 1
C - F 90470 3 0 1 O
D D11 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D - M 148670 6 0 1 O

Figure 575, Multiple GROUPING SETS, making two GROUP BY results

It is generally unwise to repeat the same field in both ordinary GROUP BY and GROUPING
SETS statements, because the result is often rather hard to understand. To illustrate, the fol-
lowing two queries differ only in their use of nested-parenthesis. Both of them repeat the

DEPT field:

e In the first, the repetition is ignored, because what is created is an ordinary GROUP BY
on all three fields.

o Inthe second, repetition is important, because two GROUP BY statements are implicitly
generated. The first is on D1 and DEPT. The second is on D1, DEPT, and SEX.

ANSWER

SELECT

FROM
GROUP BY

ORDER BY

Figure 576, Repeated field essentially ignored

SELECT

FROM
GROUP BY

ORDER BY

Figure 577, Repeated field impacts query result

The above two queries can be rewritten as follows:

210

di

,dept

,Sex
,SUM(salary)
LSMALLINT(COUNT(*)) AS #r
,GROUPING(d1) AS f1
,GROUPING(dept) AS fd
,GROUPING(sex) AS fs
employee_view

di

,dept

,GROUPING SETS ((dept,sex))

di
,dept
,Sex;

di

,dept

,Sex
,SUM(salary)
,SMALLINT(COUNT(*)) AS #r
,GROUPING(d1) AS 1
,GROUPING(dept) AS fd
,GROUPING(sex) AS fs
employee view

dl

,DEPT

,GROUPING SETS (dept,sex)
di

,dept

,Sex;

AS sal

AS sal

D1 DEPT SEX SAL #R F1 FD FS
A AO0O F 52750 1 0 O O
A AOO M 75750 2 0 O O
B BO1 M 41250 1 0 O O
C CO01 F 90470 3 0 O O
D D11 F 73430 3 0 O O
D D11 M 148670 6 0 O O
ANSWER

D1 DEPT SEX SAL #R F1 FD FS
A AOO0 F 52750 1 0 O O
A AOO M 75750 2 0 0 O
A AOO - 128500 3 0 0O 1
B BO1 M 41250 1 0 O O
B BOl1 - 41250 1 0 O 1
C CO01 F 90470 3 0 O O
c Co1 - 90470 3 0 O 1
D D11 F 73430 3 0 O O
D D11 M 148670 6 0 O O
D D11 - 222100 9 0 0 1

Group By and Having

DB2 V9.7 Cookbook ©

GROUP BY di is equivalent to GROUP BY di
,dept ,dept
,GROUPING SETS ((dept,sex)) sex

GROUP BY di1 is equivalent to GROUP BY di1
,dept ,dept
,GROUPING SETS (dept,sex) sex

UNION ALL

GROUP BY di
,dept
,dept

Figure 578, Repeated field impacts query result

NOTE: Repetitions of the same field in a GROUP BY (as is done above) are ignored dur-
ing query processing. Therefore GROUP BY D1, DEPT, DEPT, SEX is the same as
GROUP BY D1, DEPT, SEX.

ROLLUP Statement

A ROLLUP expression displays sub-totals for the specified fields. This is equivalent to doing
the original GROUP BY, and also doing more groupings on sets of the left-most columns.

GROUP BY ROLLUP(A,B,C) ===> GROUP BY GROUPING SETS((A,B,C)
- (A,B)
- (A)
10))

GROUP BY ROLLUP(C,B) ===> GROUP BY GROUPING SETS((C,B)
()
0D

GROUP BY ROLLUP(A) —==> GROUP BY GROUPING SETS((A)

-O)
Figure 579, ROLLUP vs. GROUPING SETS

Imagine that we wanted to GROUP BY, but not ROLLUP one field in a list of fields. To do
this, we simply combine the field to be removed with the next more granular field:

GROUP BY ROLLUP(A, (B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
-(A)
_ o))
Figure 580, ROLLUP vs. GROUPING SETS

Multiple ROLLUP statements in the same GROUP BY act independently of each other:

GROUP BY ROLLUP(A) ===> GROUP BY GROUPING SETS((A,B,C)
LROLLUP(B,C) »(A,B)
- (A)
L] (B 1C)
.(B)
. -0)
Figure 581, ROLLUP vs. GROUPING SETS
One way to understand the above is to convert the two ROLLUP statement into equivalent

grouping sets, and them "multiply" them - ignoring any grand-totals except when they are on
both sides of the equation:

ROLLUP(A) * ROLLUP(B,C) = GROUPING SETS((A,ESC)
S (A
GROUPING SETS((A) * GROUPING SETS((B,C) = ,EB?C)
o)) > (B) 2 ()
0) Ce))

Figure 582, Multiplying GROUPING SETS

Order By, Group By, and Having 211

Graeme Birchall ©

SQL Examples
Here is a standard GROUP BY that gets no sub-totals:

SELECT dept ANSWER
,SUM(salary) AS salary
,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
,GROUPING(dept) AS fd s e e
FROM employee_view AOO 128500 30
GROUP BY dept BO1 41250 10
ORDER BY dept; Col1 90470 30
D11 222100 90

Figure 583, Simple GROUP BY

Imagine that we wanted to also get a grand total for the above. Below is an example of using
the ROLLUP statement to do this:

SELECT dept ANSWER
,SUM(salary) AS salary
,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
,GROUPING(dept) AS FD e mmmmmm
FROM employee_view AOO 128500 3 0
GROUP BY ROLLUP(dept) BO1 41250 10
ORDER BY dept; Col1 90470 3 0
D11 222100 9 0
- 482320 16 1

Figure 584, GROUP BY with ROLLUP

NOTE: The GROUPING(field-name) function that is selected in the above example re-
turns a one when the output row is a summary row, else it returns a zero.

Alternatively, we could do things the old-fashioned way and use a UNION ALL to combine
the original GROUP BY with an all-row summary:

SELECT dept ANSWER
,SUM(salary) AS salary
, SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
,GROUPING(dept) AS fd = 0@————
FROM employee_view AOO 128500 3 0
GROUP BY dept BO1 41250 1 0
UNION ALL Cco1 90470 3 0
SELECT CAST(NULL AS CHAR(3)) AS dept D11 222100 9 O
,SUM(salary) AS salary - 482320 16 1

» SMALLINT (COUNT (*)) AS #rows
,CAST(1 AS INTEGER) AS fd
FROM employee_view
ORDER BY dept;

Figure 585, ROLLUP done the old-fashioned way

Specifying a field both in the original GROUP BY, and in a ROLLUP list simply results in
every data row being returned twice. In other words, the result is garbage:

SELECT dept ANSWER
,SUM(salary) AS salary
,SMALLINT(COUNT(*)) AS #rows DEPT SALARY #ROWS FD
,GROUPING(dept) AS fd s e
FROM employee_view AOO 128500 3 0
GROUP BY dept AOO 128500 3 0
,ROLLUP(dept) BO1 41250 1 0
ORDER BY dept; BO1 41250 1 0
CO01 90470 3 0
CO01 90470 3 0
D11 222100 9 0
D11 222100 9 0

Figure 586, Repeating a field in GROUP BY and ROLLUP (error)

212 Group By and Having

DB2 V9.7 Cookbook ©

Below is a graphic representation of why the data rows were repeated above. Observe that
two GROUP BY statements were, in effect, generated:

GROUP BY dept => GROUP BY dept => GROUP BY dept
,ROLLUP(dept) ,GROUPING SETS((dept) UNION ALL
,O) GROUP BY dept
O

Figure 587, Repeating a field, explanation

In the next example the GROUP BY, is on two fields, with the second also being rolled up:

SELECT dept ANSWER
,Sex
,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ———— ——= —————— ————— —— ——
,GROUPING(dept) AS fd AOO F 52750 1 0 O
,GROUPING(sex) AS fs AOO M 75750 2 0 O
FROM employee_view AOO - 128500 3 0 1
GROUP BY dept BO1 M 41250 1 0 O
,ROLLUP (sex) BO1 - 41250 1 0 1
ORDER BY dept col1 F 90470 3 0 O
,Sex; col1 - 90470 3 0 1
D11 F 73430 3 0O
D11 M 148670 6 0 O
D11 - 222100 9 0 1

Figure 588, GROUP BY on 1st field, ROLLUP on 2nd

The next example does a ROLLUP on both the DEPT and SEX fields, which means that we
will get rows for the following:

e The work-department and sex field combined (i.e. the original raw GROUP BY).
e Asummary for all sexes within an individual work-department.

e A summary for all work-departments (i.e. a grand-total).

SELECT dept ANSWER
,Sex

,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ———— ——= —————— ————— —— ——
,GROUPING(dept) AS fd AOO F 52750 1 0 O
,GROUPING(sex) AS fs AOO M 75750 2 0 O
FROM employee_view AOO - 128500 3 0 1
GROUP BY ROLLUP(dept BO1 M 41250 1 0 O
,Sex) BO1 - 41250 1 0 1
ORDER BY dept col1 F 90470 3 0 O
,Sex; col1 - 90470 3 0 1
D11 F 73430 3 0 O
D11 M 148670 6 0 O
D11 - 222100 9 0 1
- - 482320 16 1 1

Figure 589, ROLLUP on DEPT, then SEX

In the next example we have reversed the ordering of fields in the ROLLUP statement. To
make things easier to read, we have also altered the ORDER BY sequence. Now get an indi-
vidual row for each sex and work-department value, plus a summary row for each sex:, plus a
grand-total row:

Order By, Group By, and Having 213

Graeme Birchall ©

SELECT sex ANSWER
,dept

,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ——— ———— —————— ——mm o= ——
,GROUPING(dept) AS fd F AOO 52750 1 0 O
,GROUPING(sex) AS fs F CO01 90470 3 0O
FROM employee_view F D11 73430 3 0 O
GROUP BY ROLLUP(sex F - 216650 7 1 0
,dept) M AOO 75750 2 0 O
ORDER BY sex M BO1 41250 1 0 O
,dept; M D11 148670 6 0 O
M- 265670 9 1 O
- - 482320 16 1 1

Figure 590, ROLLUP on SEX, then DEPT

The next statement is the same as the prior, but it uses the logically equivalent GROUPING
SETS syntax:

SELECT sex ANSWER
,dept

,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ——— ———— —————— ————— —— ——
,GROUPING(dept) AS fd F A00 52750 1 0 O
,GROUPING(sex) AS fs F CO1 90470 3 0 O
FROM employee_view F D11 73430 3 0 O
GROUP BY GROUPING SETS ((sex, dept) F - 216650 7 1 0
, (sex) M AOO 75750 2 0 O
,O) M BO1 41250 1 0 O
ORDER BY sex M D11 148670 6 0 O
,dept; M- 265670 9 1 0
- - 482320 16 1 1

Figure 591, ROLLUP on SEX, then DEPT

The next example has two independent rollups:

e The first generates a summary row for each sex.

e The second generates a summary row for each work-department.

The two together make a (single) combined summary row of all matching data. This query is
the same as a UNION of the two individual rollups, but it has the advantage of being done in
a single pass of the data. The result is the same as a CUBE of the two fields:

SELECT sex ANSWER
,dept
,SUM(salary) AS salary SEX DEPT SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ——— ———= —————— ————— —— ——
,GROUPING(dept) AS fd F A00O 52750 1 0 O
,GROUPING(sex) AS fs F CO1 90470 3 0 O
FROM employee_view F D11 73430 3 0 O
GROUP BY ROLLUP(sex) F - 216650 7 1 0
,ROLLUP(dept) M AOO 75750 2 0 O
ORDER BY sex M BO1 41250 1 0 O
,dept; M D11 148670 6 0 O
M- 265670 9 1 0
- AOO 128500 3 0 1
- BO1 41250 1 0 1
- CO01 90470 3 0 1
- D11 222100 9 0 1
- - 482320 16 1 1

Figure 592, Two independent ROLLUPS

Below we use an inner set of parenthesis to tell the ROLLUP to treat the two fields as one,
which causes us to only get the detailed rows, and the grand-total summary:

214 Group By and Having

DB2 V9.7 Cookbook ©

SELECT dept ANSWER
,Sex
,SUM(salary) AS salary DEPT SEX SALARY #ROWS FD FS
,SMALLINT(COUNT(*)) AS #rows = ———= ——= —————— ————— —— ——
,GROUPING(dept) AS fd AOO F 52750 1 0 O
,GROUPING(sex) AS fs AOO M 75750 2 0 0
FROM employee_view BO1 M 41250 1 0 O
GROUP BY ROLLUP((dept,sex)) Col1 F 90470 3 0O
ORDER BY dept D11 F 73430 3 0 O
,Sex; D11 M 148670 6 0 O
- - 482320 16 1 1

Figure 593, Combined-field ROLLUP

The HAVING statement can be used to refer to the two GROUPING fields. For example, in
the following query, we eliminate all rows except the grand total:

SELECT SUM(salary) AS salary ANSWER
LSMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY ROLLUP(sex e —mm
,dept) 482320 16
HAVING GROUPING(dept) = 1

AND GROUPING(sex)
ORDER BY salary;

Figure 594, Use HAVING to get only grand-total row

1

Below is a logically equivalent SQL statement:

SELECT SUM(salary) AS salary ANSWER
,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY GROUPING SETS((O):; mmmmme o
482320 16
Figure 595, Use GROUPING SETS to get grand-total row
Here is another:
SELECT SUM(salary) AS salary ANSWER
,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view SALARY #ROWS
GROUP BY O: ~ e o
482320 16
Figure 596, Use GROUP BY to get grand-total row
And another:
SELECT SUM(salary) AS salary ANSWER
,SMALLINT(COUNT(*)) AS #rows ============
FROM employee_view; SALARY #ROWS
482320 16

Figure 597, Get grand-total row directly

CUBE Statement

A CUBE expression displays a cross-tabulation of the sub-totals for any specified fields. As
such, it generates many more totals than the similar ROLLUP.

Order By, Group By, and Having 215

Graeme Birchall ©

GROUP BY CUBE(A,B,C) ===> GROUP BY GROUPING SETS((A,B,C)
, B

GROUP BY CUBE(C,B) ===> GROUP BY GROUPING SETS((C,B)
,(C)

-(B)

GROUP BY CUBE(A) ===> GROUP BY GROUPING SETS((A)
-0O)

Figure 598, CUBE vs. GROUPING SETS

As with the ROLLLUP statement, any set of fields in nested parenthesis is treated by the
CUBE as a single field:

GROUP BY CUBE(A, (B,C)) ===> GROUP BY GROUPING SETS((A,B,C)
1(BvC)
- (A)
0D
Figure 599, CUBE vs. GROUPING SETS

Having multiple CUBE statements is allowed, but very, very silly:

GROUP BY CUBE(A,B) ==> GROUPING SETS((A,B,C),(A,B),(A,B,C),(A,B)
LCUBE(B.,C) ,(A,B,C),(A,B),(A,C),(A)
,(B,C),(B),(B,C),(B)
.(B.C).(B).(C).0)

Figure 600, CUBE vs. GROUPING SETS

Obviously, the above is a lot of GROUPING SETS, and even more underlying GROUP BY
statements. Think of the query as the Cartesian Product of the two CUBE statements, which
are first resolved down into the following two GROUPING SETS:

((AB).(A).(B).()
((B,C),(B),(C).0)

SQL Examples
Below is a standard CUBE statement:

216 Group By and Having

DB2 V9.7 Cookbook ©

SELECT dl
,dept
,Sex
, INT(SUM(salary)) AS sal
LSMALLINT(COUNT(*)) AS #r
,GROUPING(d1) AS f1
,GROUPING(dept) AS fd
,GROUPING(sex) AS fs
FROM employee_view

GROUP BY CUBE(d1, dept, sex)
ORDER BY d1

,dept
,Sex;

Figure 601, CUBE example
Here is the same query expressed as GROUPING SETS;

SELECT

FROM

GROUP BY GROUPING SETS

di

,dept

,Sex

, INT(SUM(salary)) AS sal
LSMALLINT(COUNT(*)) AS #r
,GROUPING(d1) AS f1
,GROUPING(dept) AS fd
,GROUPING(sex) AS fs
employee_view

,(d1,dept)
,(d1,sex)

, (dept,sex)
.(d1)

. (dept)
,(sex)

40))

ORDER BY di1

,dept
,Sex;

((d1, dept, sex)

ANSWER
D1 DEPT SEX SAL #R F1 FD FS
A AO0O F 52750 1 0 O O
A AOO M 75750 2 0 O O
A AOO - 128500 3 0 0 1
A - F 52750 1 0 1 O
A - M 75750 2 0 1 O
A - - 128500 3 0 1 1
B BO1 M 41250 1 0 O O
B BOl1 - 41250 1 0 O 1
B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C CO01 F 90470 3 0 O O
c Co1 - 90470 3 0 O 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 O O
D D11 M 148670 6 0 O O
D Di1 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D - M 148670 6 0 1 O
D - - 222100 9 0 1 1
- AO0O F 52750 1 1 O O
- AOO M 75750 2 1 0 O
- AOO - 128500 3 1 0 1
- BO1 M 41250 1 1 O O
BO1 - 41250 1 1 O 1
- CO01 F 90470 3 1 0 O
- Co1 - 90470 3 1 0 1
- D11 F 73430 3 1 0 O
- D11 M 148670 6 1 0 O
- D11 - 222100 9 1 0 1
- - F 216650 7 1 1 O
- M 265670 9 1 1 O
- - - 482320 16 1 1 1

ANSWER

D1 DEPT SEX

A AO0O F
A AOO M

SAL #R F1 FD FS

52750 1 0 O O
75750 2 0 O O

etc... (same as prior query)

Figure 602, CUBE expressed using multiple GROUPING SETS

A CUBE on a list of columns in nested parenthesis acts as if the set of columns was only one
field. The result is that one gets a standard GROUP BY (on the listed columns), plus a row

with the grand-totals:

Order By, Group By, and Having

217

Graeme Birchall ©

SELECT dl ANSWER
,dept
,Sex D1 DEPT SEX SAL #R F1 FD FS

, INT(SUM(salary)) ASsal @ ---—-—-"H—c———

,SMALLINT(COUNT(*)) AS #r A AOO F 52750 1 0 O O

,GROUPING(d1) AS 1 A AOO M 75750 2 0 0 O

,GROUPING(dept) AS fd B BO1 M 41250 1 0 O O

,GROUPING(sex) AS fs C CO01 F 90470 3 0 0O O
FROM employee VIEW D D11 F 73430 3 0 O O
GROUP BY CUBE((d1l, dept, sex)) D D11 M 148670 6 O O O
ORDER BY di1 - - - 48232016 1 1 1

,dept

,Sex;

Figure 603, CUBE on compound fields

The above query is resolved thus:

GROUP BY CUBE((A,B,C)) => GROUP BY GROUING SETS((A,B,C) => GROUP BY A
Ne)) ,B
.C
UNION ALL
GROUP BYQ)

Figure 604, CUBE on compound field, explanation

Complex Grouping Sets - Done Easy

Many of the more complicated SQL statements illustrated above are essentially unreadable
because it is very hard to tell what combinations of fields are being rolled up, and what are

not. There ought to be a more user-friendly way and, fortunately, there is. The CUBE com-
mand can be used to roll up everything. Then one can use ordinary SQL predicates to select
only those totals and sub-totals that one wants to display.

NOTE: Queries with multiple complicated ROLLUP and/or GROUPING SET statements
sometimes fail to compile. In which case, this method can be used to get the answer.

To illustrate this technique, consider the following query. It summarizes the data in the sam-
ple view by three fields:

SELECT di AS di1 ANSWER
,dept AS dpt
,sex AS sx D1 DPT SX SAL R
, INT(SUM(salary)) AS sal —— mmm e e -
,SMALLINT(COUNT(*)) AS r A AO0 F 52750 1
FROM employee_ VIEW A AOO M 75750 2
GROUP BY di1 B BO1 M 41250 1
,dept C CO1L F 90470 3
,sex D D11 F 73430 3
ORDER BY 1,2,3; D D11 M 148670 6

Figure 605, Basic GROUP BY example
Now imagine that we want to extend the above query to get the following sub-total rows:

DESIRED SUB-TOTALS EQUIVILENT TO
D1, DEPT, and SEX. GROUP BY GROUPING SETS ((d1,dept,sex)
D1 and DEPT. ,(d1,dept)
D1 and SEX. ,(d1,sex)
D1. ,(d1)
SEX. ,(sex)
Grand total. EQUIVILENT TO ,O)

GROUP BY ROLLUP(d1,dept)

,ROLLUP(sex)

Figure 606, Sub-totals that we want to get

218 Group By and Having

DB2 V9.7 Cookbook ©

Rather than use either of the syntaxes shown on the right above, below we use the CUBE ex-
pression to get all sub-totals, and then select those that we want:

SELECT *
FROM (SELECT d1 AS di1
,dept AS dpt
,Sex AS sx
, INT(SUM(salary)) AS sal
»SMALL INT (COUNT(*)) AS #r
,SMALLINT(GROUPING(d1)) AS gl
,SMALL INT(GROUPING(dept)) AS gd
,SMALLINT(GROUPING(sex)) AS gs
FROM EMPLOYEE_VIEW ANSWER
GROUP BY CUBE(d1,dept,sex)
)AS xxx D1 DPT SX SAL #R G1 GD GS
WHERE (g1,0d,gs) = (0,0,0) —— mmm mm e - -
OR (g9l,0d,gs) = (0,0,1) A AOOF 52750 1 O O O
OR (91,q9d,gs) = (0,1,0) A AOOM 75750 2 0 O O
OR (g9l,0d,gs) = (0,1,1) A A0O - 128500 3 0 0 1
OR (g9l,0d,gs) = (1,1,0) A - F 52750 1 0 1 O
OR (g91,0d,0s) = (1,1,1) A - M 75750 2 0 1 O
ORDER BY 1,2,3; A - - 128500 3 0 1 1
B BO1LM 41250 1 0 O O
B BOl1 - 41250 1 0 O 1
B - M 41250 1 0 1 O
B - - 41250 1 0 1 1
C CO1F 90470 3 0 O O
C CO1 - 90470 3 0 0 1
c - F 90470 3 0 1 O
c - - 90470 3 0 1 1
D D11 F 73430 3 0 0 O
D D11 M 148670 6 0O O O
D D11 - 222100 9 0 0 1
D - F 73430 3 0 1 O
D M 148670 6 0 1 O
D - - 222100 9 0 1 1
- - F 216650 7 1 1 O
- M 265670 9 1 1 O
- - - 48232016 1 1 1

Figure 607, Get lots of sub-totals, using CUBE

In the above query, the GROUPING function (see page 93) is used to identify what fields are
being summarized on each row. A value of one indicates that the field is being summarized;
while a value of zero means that it is not. Only the following combinations are kept:

(G1,6D,GS) = (0,0,0) <== D1, DEPT, SEX
(G1,6D,GS) = (0,0,1) <== D1, DEPT
(G1,GD,GS) = (0,1,0) <== D1, SEX
(G1,GD,GS) = (0,1,1) <== D1,
(G1,6D,GS) = (1,1,0) <== SEX,
(G1,6D,GS) = (1,1,1) <== grand total

Figure 608, Predicates used - explanation

Here is the same query written using two ROLLUP expressions. You can be the judge as to
which is the easier to understand:

Order By, Group By, and Having 219

Graeme Birchall ©

SELECT dl ANSWER
,dept
,Sex D1 DEPT SEX SAL #R

, INT(SUM(salary)) AS sal 0 - e e e
,SMALLINT(COUNT(*)) AS #r
FROM employee_view 75750
GROUP BY ROLLUP(d1,dept) 128500
,ROLLUP(sex) 52750
ORDER BY 1,2,3; 75750
128500

F 1
M 2
- 3
F 1
M 2
- 3
M 41250 1
- 41250 1
M 41250 1
- 41250 1
F 90470 3
colr - 90470 3
F 90470 3
- 90470 3
F 73430 3
M 148670 6
- 222100 9
F 73430 3
M 148670 6
- 222100 9
F 216650 7
M 265670 9
- 482320 16

11 1 OO0 OO0OO0OOWWWI>IT>TT>>>

Figure 609, Get lots of sub-totals, using ROLLUP

Group By and Order By

One should never assume that the result of a GROUP BY will be a set of appropriately or-
dered rows because DB2 may choose to use a “strange" index for the grouping so as to avoid
doing a row sort. For example, if one says "GROUP BY C1, C2" and the only suitable index
is on C2 descending and then C1, the data will probably come back in index-key order.
SELECT dept, job
,COUNT(*)
FROM staff

GROUP BY dept, job
ORDER BY dept, job;

Figure 610, GROUP BY with ORDER BY

NOTE: Always code an ORDER BY if there is a need for the rows returned from the query
to be specifically ordered - which there usually is.

Group By in Join

We want to select those rows in the STAFF table where the average SALARY for the em-
ployee's DEPT is greater than $18,000. Answering this question requires using a JOIN and
GROUP BY in the same statement. The GROUP BY will have to be done first, then its' result
will be joined to the STAFF table.

There are two syntactically different, but technically similar, ways to write this query. Both
techniques use a temporary table, but the way by which this is expressed differs. In the first
example, we shall use a common table expression:

220 Group By and Having

DB2 V9.7 Cookbook ©

WITH staff2 (dept, avgsal) AS
(SELECT dept
,AVG(salary)
FROM staff
GROUP BY dept
HAVING AVG(salary) > 18000

)

SELECT a.id
,a.name
,a.dept

FROM staff
,staff2

WHERE a.dept

ORDER BY a.id;

oo

b.dept

Figure 611, GROUP BY on one side of join - using common table expression

In the next example, we shall use a fullselect:
SELECT a.id

,a.name
,a.dept
FROM staff a
,(SELECT dept AS dept
,AVG(salary) AS avgsal
FROM staff

GROUP BY dept
HAVING AVG(salary) > 18000
)AS b

WHERE a.dept = b.dept

ORDER BY a.id;

Figure 612, GROUP BY on one side of join - using fullselect

COUNT and No Rows

ANSWER

ID NAME DEPT
160 Molinare 10
210 Lu 10
240 Daniels 10
260 Jones 10
ANSWER

ID NAME DEPT
160 Molinare 10
210 Lu 10
240 Daniels 10
260 Jones 10

When there are no matching rows, the value returned by the COUNT depends upon whether

this isa GROUP BY in the SQL statement or not:

SELECT COUNT(*) AS c1
FROM staff
WHERE id < 1;

SELECT COUNT(*) AS cl
FROM staff

WHERE id <1

GROUP BY id;

Figure 613, COUNT and No Rows

ANSWER

See page 428 for a comprehensive discussion of what happens when no rows match.

Order By, Group By, and Having

221

Graeme Birchall ©

222 Group By and Having

DB2 V9.7 Cookbook ©

Joins

A join is used to relate sets of rows in two or more logical tables. The tables are always joined
on a row-by-row basis using whatever join criteria are provided in the query. The result of a
join is always a new, albeit possibly empty, set of rows.

In a join, the matching rows are joined side-by-side to make the result table. By contrast, in a
union (see page 259) the matching rows are joined (in a sense) one-above-the-other to make
the result table.

Why Joins Matter

The most important data in a relational database is not that stored in the individual rows.
Rather, it is the implied relationships between sets of related rows. For example, individual
rows in an EMPLOYEE table may contain the employee ID and salary - both of which are
very important data items. However, it is the set of all rows in the same table that gives the
gross wages for the whole company, and it is the (implied) relationship between the
EMPLOYEE and DEPARTMENT tables that enables one to get a breakdown of employees
by department and/or division.

Joins are important because one uses them to tease the relationships out of the database. They
are also important because they are very easy to get wrong.

Sample Views

CREATE VIEW staff vl AS STAFF_V1 STAFF_V2
SELECT id, name Fom - + A +
FROM staff | 1D NAME | |1D]JoB |
WHERE ID BETWEEN 10 AND 30; |I—-1-———-- | |—-1-—-—- |
|10]Sanders | |20]|Sales |
CREATE VIEW staff v2 AS |20|Pernal | |30|Clerk |
SELECT 1id, job |30 Marenghi | |30 Mgr |
FROM staff Fom + |40]|Sales |
WHERE id BETWEEN 20 AND 50 |50 Mgr |
UNION ALL Fom - +
SELECT id, "Clerk™ AS job
FROM staff

WHERE id = 30;
Figure 614, Sample Views used in Join Examples

Observe that the above two views have the following characteristics:
e Both views contain rows that have no corresponding ID in the other view.

e Inthe V2 view, there are two rows for ID of 30.

Join Syntax

DB2 SQL comes with two quite different ways to represent a join. Both syntax styles will be
shown throughout this section though, in truth, one of the styles is usually the better, depend-
ing upon the situation.

The first style, which is only really suitable for inner joins, involves listing the tables to be
joined in a FROM statement. A comma separates each table name. A subsequent WHERE
statement constrains the join.

Joins 223

Graeme Birchall ©

v |
SELECT ... FROM —* table name
» L correlation name J }

} LWHEREjOin and other predicates J }

Figure 615, Join Syntax #1

Here are some sample joins:

SELECT wvl.id JOIN ANSWER
,v1l._name
,V2._job ID NAME JoB
FROM staff VA1v1 e e o
,staff_v2 v2 20 Pernal Sales
WHERE vl.id = v2.id 30 Marenghi Clerk
ORDER BY vl1.id 30 Marenghi Mgr
,v2_job;

Figure 616, Sample two-table join

SELECT vl.id
,V2_job
,v3.name

FROM staff_vl vl
,staff v2 v2

JOIN ANSWER

ID JOB NAME

30 Clerk Marenghi

,staff_vl v3 30 Mgr Marenghi
WHERE vi.id = v2.id
AND v2._.id = v3.id
AND v3.name LIKE "M%"
ORDER BY v1.name
,v2_job;
Figure 617, Sample three-table join

The second join style, which is suitable for both inner and outer joins, involves joining the
tables two at a time, listing the type of join as one goes. ON conditions constrain the join
(note: there must be at least one), while WHERE conditions are applied after the join and
constrain the result.

INNER

V SELECT ... FROM — table name T }
L C. nameJ LEFT ‘
RIGHT L OUTERj
FULL

F JOIN — table name — ON — join predicates

>

L WHERE join & other predicates J
Figure 618, Join Syntax #2

The following sample joins are logically equivalent to the two given above:

SELECT wvl.id JOIN ANSWER
,v1l_name
,V2_job ID NAME JOB
FROM staff VO1vV1I e e e
INNER JOIN 20 Pernal Sales
staff_v2 v2 30 Marenghi Clerk
ON vli.id = v2.id 30 Marenghi Mgr
ORDER BY v1.id
,v2_job;

Figure 619, Sample two-table inner join

224 Join Syntax

DB2 V9.7 Cookbook ©

SELECT wvl.id STAFF_V1 STAFF_V2
,V2_job Fomm + Fomm +
,v3_name | 1D | NAME | J1D]JOB |

FROM staff vav1 |--l--------1 1-- |---—---

JOIN |10]Sanders | 20| Sales |
staff_v2 v2 |20|Pernal | |30|Clerk |

ON vl.id = v2.id |30 Marenghi | 130 Mgr |

JOIN Fomm - + 40| Sales |
staff_v1 v3 |50 Mgr |

ON v2.id = v3.id JOIN ANSWER Fomm +

WHERE v3.name LIKE "M%"

ORDER BY vl1.name ID JOB NAME
,v2_job; e e e

30 Clerk Marenghi
30 Mgr Marenghi

Figure 620, Sample three-table inner join

Query Processing Sequence

The following table lists the sequence with which various parts of a query are executed:

FROM clause

JOIN ON clause

WHERE clause

GROUP BY and aggregate
HAVING clause

SELECT list

ORDER BY clause

FETCH FIRST

Figure 621, Query Processing Sequence

Observe that ON predicates (e.g. in an outer join) are always processed before any WHERE
predicates (in the same join) are applied. Ignoring this processing sequence can cause what
looks like an outer join to run as an inner join - see figure 633.

ON vs. WHERE

A join written using the second syntax style shown above can have either, or both, ON and
WHERE checks. These two types of check work quite differently:

o WHERE checks are used to filter rows, and to define the nature of the join. Only those
rows that match all WHERE checks are returned.

e ON checks define the nature of the join. They are used to categorize rows as either joined
or not-joined, rather than to exclude rows from the answer-set, though they may do this in
some situations.

Let illustrate this difference with a simple, if slightly silly, left outer join:

SELECT * ANSWER

FROM staff_vl vl

LEFT OUTER JOIN 1D NAME 1D JOB
staff v2v2 e e e

ON 1 =1 10 Sanders - -

AND vli.id = v2.id 20 Pernal 20 Sales

ORDER BY vl.id 30 Marenghi 30 Clerk
,V2_job; 30 Marenghi 30 Mgr

Figure 622, Sample Views used in Join Examples
Now lets replace the second ON check with a WHERE check:

Joins 225

Graeme Birchall ©

SELECT * ANSWER

FROM staff_vl vl

LEFT OUTER JOIN 1D NAME 1D JOB
staff V2vVv2 e e e

ON 1 =1 20 Pernal 20 Sales

WHERE vli.id = v2.id 30 Marenghi 30 Clerk

ORDER BY vl.id 30 Marenghi 30 Mgr

,V2_job;
Figure 623, Sample Views used in Join Examples

In the first example above, all rows were retrieved from the V1 view. Then, for each row, the
two ON checks were used to find matching rows in the V2 view. In the second query, all rows
were again retrieved from the V1 view. Then each V1 row was joined to every row in the V2
view using the (silly) ON check. Finally, the WHERE check (which is always done after the
join) was applied to filter out all pairs that do not match on ID.

Can an ON check ever exclude rows? The answer is complicated:

e Inaninnerjoin, an ON check can exclude rows because it is used to define the nature of
the join and, by definition, in an inner join only matching rows are returned.

o Inapartial outer join, an ON check on the originating table does not exclude rows. It
simply categorizes each row as participating in the join or not.

o Ina partial outer join, an ON check on the table to be joined to can exclude rows because
if the row fails the test, it does not match the join.

e Ina full outer join, an ON check never excludes rows. It simply categorizes them as
matching the join or not.

Each of the above principles will be demonstrated as we look at the different types of join.

Join Types

A generic join matches one row with another to create a new compound row. Joins can be
categorized by the nature of the match between the joined rows. In this section we shall dis-
cuss each join type and how to code it in SQL.

Inner Join

An inner-join is another name for a standard join in which two sets of columns are joined by
matching those rows that have equal data values. Most of the joins that one writes will proba-
bly be of this kind and, assuming that suitable indexes have been created, they will almost
always be very efficient.

STAFF_V1 STAFF_V2 INNER-JOIN ANSWER
Fom e - + Fom e ——— +
| ID|NAME | |1ID]JoB | Join on ID 1D NAME 1D JOB
I__I ________ I I__ I —————— ——========> e e e e
|10]|Sanders | |20]|Sales | 20 Pernal 20 Sales
|20|Pernal | |30|Clerk | 30 Marenghi 30 Clerk
|30 Marenghi | |30 Mgr | 30 Marenghi 30 Mgr
Fomm + |40]|sales |

I150|mMgr |

Figure 624, Example of Inner Join

226 Join Types

DB2 V9.7 Cookbook ©

SELECT * ANSWER
FROM staff vl vl
,staff_v2 v2 ID NAME 1D JOB
WHERE vi.id =v2.id —m e o
ORDER BY vl.id 20 Pernal 20 Sales
,v2_job; 30 Marenghi 30 Clerk

30 Marenghi 30 Mgr
Figure 625, Inner Join SQL (1 of 2)

SELECT * ANSWER

FROM staff_v1 vl

INNER JOIN 1D NAME 1D JOB
staff V2 v2 e e e e

ON vi.id = v2.id 20 Pernal 20 Sales

ORDER BY vi.id 30 Marenghi 30 Clerk
,v2_job; 30 Marenghi 30 Mgr

Figure 626, Inner Join SQL (2 of 2)
ON and WHERE Usage

In an inner join only, an ON and a WHERE check work much the same way. Both define the
nature of the join, and because in an inner join, only matching rows are returned, both act to
exclude all rows that do not match the join.

Below is an inner join that uses an ON check to exclude managers:

SELECT * ANSWER
FROM staff_vl vl
INNER JOIN 1D NAME 1D JOB
staff V2 v2 e e o
ON vi.id =v2.id 20 Pernal 20 Sales
AND v2.job <> “"Mgr- 30 Marenghi 30 Clerk
ORDER BY vi1.1id
,v2_job;

Figure 627, Inner join, using ON check

Here is the same query written using a WHERE check

SELECT * ANSWER
FROM staff vl vl
INNER JOIN 1D NAME 1D JOB
staff V2vVv2 e e e e
ON vi.id = v2.id 20 Pernal 20 Sales
WHERE v2_job <> "Mgr* 30 Marenghi 30 Clerk
ORDER BY vi.id
,v2_job;

Figure 628, Inner join, using WHERE check

Left Outer Join

A left outer join is the same as saying that | want all of the rows in the first table listed, plus
any matching rows in the second table:

STAFF_V1 STAFF_V2 LEFT-OUTER-JOIN ANSWER
Fom e - + Fom e ——— +
| ID|NAME | |1ID]JoB | 1D NAME 1D JOB
I__I ________ I I__I______ —========> @ e e e
|10]|Sanders | |20]|Sales | 10 Sanders - -
|20|Pernal | |30|Clerk | 20 Pernal 20 Sales
|30 Marenghi | |30 Mgr | 30 Marenghi 30 Clerk
Fom + |40]sales | 30 Marenghi 30 Mgr

|

Figure 629, Example of Left Outer Join

Joins 227

Graeme Birchall ©

SELECT *

FROM staff_vl vl

LEFT OUTER JOIN
staff_v2 v2

ON vi.id = v2.id

ORDER BY 1,4;
Figure 630, Left Outer Join SQL (1 of 2)

It is possible to code a left outer join using the standard inner join syntax (with commas be-
tween tables), but it is a lot of work:

SELECT vi1.* <== This join gets all
,V2.* rows in STAFF V1

FROM staff_vl vl that match rows
,staff_v2 v2 in STAFF_V2.

WHERE vi.id = v2.id

UNION

SELECT v1.* <== This query gets
,CAST(NULL AS SMALLINT) AS id all the rows in
,CAST(NULL AS CHAR(5)) AS job STAFF_V1 with no

FROM staff_vi1 vl matching rows

WHERE vl.id NOT IN in STAFF_V2.

(SELECT id FROM staff v2)
ORDER BY 1,4;

Figure 631, Left Outer Join SQL (2 of 2)
ON and WHERE Usage
In any type of join, a WHERE check works as if the join is an inner join. If no row matches,

then no row is returned, regardless of what table the predicate refers to. By contrast, in a left
or right outer join, an ON check works differently, depending on what table field it refers to:

e Ifitrefersto afield in the table being joined to, it determines whether the related row
matches the join or not.

o Ifitrefers to a field in the table being joined from, it determines whether the related row
finds a match or not. Regardless, the row will be returned.

In the next example, those rows in the table being joined to (i.e. the V2 view) that match on
ID, and that are not for a manager are joined to:

SELECT * ANSWER

FROM staff_vl vl

LEFT OUTER JOIN 1D NAME 1D JOB
staff V2 v2 e e o

ON vi.id =v2.id 10 Sanders - -

AND v2.job <> “"Mgr- 20 Pernal 20 Sales

ORDER BY vi.id 30 Marenghi 30 Clerk
,v2_job;

Figure 632, ON check on table being joined to

If we rewrite the above query using a WHERE check we will lose a row (of output) because
the check is applied after the join is done, and a null JOB does not match:

SELECT * ANSWER
FROM staff_vl vl
LEFT OUTER JOIN 1D NAME 1D JOB
staff V2 v2 e e
ON vi.id =v2.id 20 Pernal 20 Sales
WHERE v2.job <> “"Mgr- 30 Marenghi 30 Clerk
ORDER BY vi1.1id
,v2_job;

Figure 633, WHERE check on table being joined to (1 of 2)
We could make the WHERE equivalent to the ON, if we also checked for nulls:

228 Join Types

DB2 V9.7 Cookbook ©

SELECT * ANSWER
FROM staff_vl vl
LEFT OUTER JOIN 1D NAME 1D JOB
staff v2v2 e e e
ON vi.id = v2.id 10 Sanders - -
WHERE (v2_.job <> "Mgr* 20 Pernal 20 Sales
OR v2_job IS NULL) 30 Marenghi 30 Clerk
ORDER BY vi1.1id
,v2_job;

Figure 634, WHERE check on table being joined to (2 of 2)

In the next example, those rows in the table being joined from (i.e. the V1 view) that match
on ID and have a NAME > 'N' participate in the join. Note however that V1 rows that do not
participate in the join (i.e. ID = 30) are still returned:

SELECT * ANSWER

FROM staff_vl vl

LEFT OUTER JOIN 1D NAME 1D JOB
staff V2 vVv2 e e o o

ON vl.id = v2.id 10 Sanders - -

AND vl.name > "N* 20 Pernal 20 Sales

ORDER BY vl.id 30 Marenghi - -
,V2_job;

Figure 635, ON check on table being joined from

If we rewrite the above query using a WHERE check (on NAME) we will lose a row because
now the check excludes rows from the answer-set, rather than from participating in the join:

SELECT * ANSWER
FROM staff_v1 vl
LEFT OUTER JOIN 1D NAME 1D JOB
staff V2 v2 e e o o
ON vi.id = v2.id 10 Sanders - -
WHERE vl.name > "N* 20 Pernal 20 Sales
ORDER BY vl.id
,vV2_job;

Figure 636, WHERE check on table being joined from

Unlike in the previous example, there is no way to alter the above WHERE check to make it
logically equivalent to the prior ON check. The ON and the WHERE are applied at different
times and for different purposes, and thus do completely different things.

Right Outer Join

A right outer join is the inverse of a left outer join. One gets every row in the second table
listed, plus any matching rows in the first table:

STAFF_V1 STAFF_V2 RIGHT-OUTER-JOIN ANSWER

- I TS +

| 1D NAME | |1ID]JoB | 1D NAME 1D JOB

I——I ———————— I——I —————— I —========> = e e

|10]Sanders | |20]Sales | 20 Pernal 20 Sales

|20]Pernal | |30]Clerk | 30 Marenghi 30 Clerk

|30 Marenghi | |30 Mgr | 30 Marenghi 30 Mgr

Fom - + |40]|sales | - - 40 Sales
|50 | Mgr | - - 50 Mgr
————————— +

Figure 637, Example of Right Outer Join

Joins 229

SELECT *

FROM staff_vl vl

RIGHT OUTER JOIN
staff_v2 v2

ON vi.id = v2.id

ORDER BY v2.id
,v2_job;

Figure 638, Right Outer Join SQL (1 of 2)

It is also possible to code a right outer join using the standard inner join syntax:

SELECT
FROM
WHERE

UNION
SELECT

FROM
WHERE

ORDER BY

vi.*
,V2.*
staff_vl vl
,staff_v2 v2

vi.id = v2.id

CAST(NULL AS SMALLINT)
LCAST(NULL AS VARCHAR(9)) AS name

,V2.*
staff_v2 v2
v2.id NOT IN

3.,4;

AS id

(SELECT id FROM staff v1)

Figure 639, Right Outer Join SQL (2 of 2)
ON and WHERE Usage

Graeme Birchall ©

ANSWER

1D NAME 1D JOB
20 Pernal 20 Sales
30 Marenghi 30 Clerk
30 Marenghi 30 Mgr

40 Sales
- - 50 Mgr
ANSWER
1D NAME 1D JOB

20 Pernal 20 Sales
30 Marenghi 30 Clerk
30 Marenghi 30 Mgr

- - 50 Mgr

The rules for ON and WHERE usage are the same in a right outer join as they are for a left
outer join (see page 228), except that the relevant tables are reversed.

Full Outer Joins

A full outer join occurs when all of the matching rows in two tables are joined, and there is

also returned one copy of each non-matching row in both tables.

STAFF_V1

|10]Sanders
|20]Pernal

|30 Marenghi
e

Figure 640, Example of Full Outer Join

STAFF_V2

I |
|20]Sales |
|30|Clerk |
|30IMgr |
|
|

w0

|40|Sales

SELECT *
FROM staff_vl vl
FULL OUTER JOIN
staff_v2 v2
ON vi.id = v2.id
ORDER BY vl.id
,v2._id
,V2_job;

Figure 641, Full Outer Join SQL

Here is the same done using the standard inner join syntax:

230

FULL-OUTER-JOIN ANSWER

1D NAME

10 Sanders
20 Pernal

30 Marenghi
30 Marenghi

ANSWER

20
30
30
40
50

1D NAME ID JOB

10 Sanders - -

20 Pernal 20 Sales
30 Marenghi 30 Clerk
30 Marenghi 30 Mgr

- - 50 Mgr

Join Types

DB2 V9.7 Cookbook ©

SELECT v1.* ANSWER
,V2.*
FROM staff vl vl ID NAME 1D JOB
,staff.v2v2 e e e e
WHERE vi.id = v2.id 10 Sanders - -
UNION 20 Pernal 20 Sales
SELECT v1.* 30 Marenghi 30 Clerk
,CAST(NULL AS SMALLINT) AS id 30 Marenghi 30 Mgr
,CAST(NULL AS CHAR(5)) AS job - - 40 Sales
FROM staff_vl vl - - 50 Mgr

WHERE vl._.id NOT IN
(SELECT id FROM staff _v2)

UNION

SELECT CAST(NULL AS SMALLINT) AS id
,CAST(NULL AS VARCHAR(9)) AS name
,V2.*

FROM staff_v2 v2

WHERE v2._id NOT IN
(SELECT id FROM staff vl)

ORDER BY 1,3,4;

Figure 642, Full Outer Join SQL

The above is reasonably hard to understand when two tables are involved, and it goes down
hill fast as more tables are joined. Avoid.

ON and WHERE Usage

In a full outer join, an ON check is quite unlike a WHERE check in that it never results in a
row being excluded from the answer set. All it does is categorize the input row as being either
matching or non-matching. For example, in the following full outer join, the ON check joins
those rows with equal key values:

SELECT * ANSWER
FROM staff_vl vl
FULL OUTER JOIN 1D NAME 1D JOB
staff V2vVv2 e e e
ON vi.id = v2.id 10 Sanders - -
ORDER BY vi1.id 20 Pernal 20 Sales
,v2._id 30 Marenghi 30 Clerk
,V2_job; 30 Marenghi 30 Mgr
- - 40 Sales
- - 50 Mgr

Figure 643, Full Outer Join, match on keys

In the next example, we have deemed that only those IDs that match, and that also have a
value greater than 20, are a true match:

SELECT * ANSWER
FROM staff_vl vl
FULL OUTER JOIN 1D NAME 1D JOB
staff V2 vVv2 e e o
ON vi.id = v2.id 10 Sanders - -
AND vi.id > 20 20 Pernal - -
ORDER BY vl.id 30 Marenghi 30 Clerk
,v2._id 30 Marenghi 30 Mgr
,v2.job; - - 20 Sales
- - 40 Sales
50 Mgr

Figure 644, Full Outer Join, match on keys > 20

Observe how in the above statement we added a predicate, and we got more rows! This is
because in an outer join an ON predicate never removes rows. It simply categorizes them as
being either matching or non-matching. If they match, it joins them. If they don't, it passes
them through.

Joins 231

Graeme Birchall ©

In the next example, nothing matches. Consequently, every row is returned individually. This
query is logically similar to doing a UNION ALL on the two views:

SELECT * ANSWER
FROM staff_vl vl
FULL OUTER JOIN ID NAME ID JOB
staff V2 v2 e e o o
ON vi.id = v2.id 10 Sanders
AND +1 = -1 20 Pernal
ORDER BY vl1.id 30 Marenghi - -
,v2._id - - 20 Sales
,vV2_job; 30 Clerk
- - 30 Mgr
- - 40 Sales
50 Mgr

Figure 645, Full Outer Join, match on keys (no rows match)

ON checks are somewhat like WHERE checks in that they have two purposes. Within a table,
they are used to categorize rows as being either matching or non-matching. Between tables,

they are used to define the fields that are to be joined on.

In the prior example, the first ON check defined the fields to join on, while the second join
identified those fields that matched the join. Because nothing matched (due to the second
predicate), everything fell into the "outer join" category. This means that we can remove the

first ON check without altering the answer set:

SELECT * ANSWER
FROM staff_vl vl
FULL OUTER JOIN 1D NAME 1D JOB
staff v2v2 e e e
ON +1 = -1 10 Sanders - -
ORDER BY vi1.id 20 Pernal - -
,v2._id 30 Marenghi - -
,V2_job; - - 20 Sales
- - 30 Clerk
30 Mgr
40 Sales
- - 50 Mgr

Figure 646, Full Outer Join, don't match on keys (no rows match)

What happens if everything matches and we don't identify the join fields? The result in a Car-

tesian Product:

SELECT * ANSWER
FROM staff_vl vl
FULL OUTER JOIN 1D NAME 1D JOB
staff v2v2 e e e
ON +1 <> -1 10 Sanders 20 Sales
ORDER BY vi.id 10 Sanders 30 Clerk
,v2._id 10 Sanders 30 Mgr
,v2_job; 10 Sanders 40 Sales
10 Sanders 50 Mgr
20 Pernal 20 Sales
STAFF_V1 STAFF_V2 20 Pernal 30 Clerk
Fom + Fom + 20 Pernal 30 Mgr
| IDINAME | |1D]JOB | 20 Pernal 40 Sales
l--1--———---- | l--1--———-- 20 Pernal 50 Mgr
|10]Sanders | |20]Sales | 30 Marenghi 20 Sales
|20|Pernal | |30|Clerk | 30 Marenghi 30 Clerk
|30 Marenghi | |30 Mgr | 30 Marenghi 30 Mgr
Fom - + |40]Sales | 30 Marenghi 40 Sales
|50 | Mgr | 30 Marenghi 50 Mgr
o +

Figure 647, Full Outer Join, don't match on keys (all rows match)

232

Join Types

DB2 V9.7 Cookbook ©

In an outer join, WHERE predicates behave as if they were written for an inner join. In par-
ticular, they always do the following:

e WHERE predicates defining join fields enforce an inner join on those fields.

o WHERE predicates on non-join fields are applied after the join, which means that when
they are used on not-null fields, they negate the outer join.

Here is an example of a WHERE join predicate turning an outer join into an inner join:

SELECT * ANSWER

FROM staff vl vl

FULL JOIN ID NAME 1D JOB
staff vV2v2 e e o —m e

ON vi.id = v2.id 20 Pernal 20 Sales

WHERE vl.id = v2.id 30 Marenghi 30 Clerk

ORDER BY 1,3,4; 30 Marenghi 30 Mgr

Figure 648, Full Outer Join, turned into an inner join by WHERE

To illustrate some of the complications that WHERE checks can cause, imagine that we want
to doa FULL OUTER JOIN on our two test views (see below), limiting the answer to those
rows where the "V1 ID" field is less than 30. There are several ways to express this query,
each giving a different answer:

STAFF_V1 STAFF_V2
tmmm e T e — + ANSWER
[IDINAME | [IDJJOB | OUTER-JOIN CRITERIA ============
[-—|--—-———- | -] 1 > 27?7, DEPENDS

|10]Sanders | |20]Sales V1.1D = V2.1D

|

|20]Pernal | |30]Clerk | V1.1D < 30
|30|Marenghi | |30 |Mgr |
Fom + |40|sales |
ISOIMgr |
Fom e ——— +

Figure 649, Outer join V1.I1D < 30, sample data

In our first example, the "V1.I1D < 30" predicate is applied after the join, which effectively
eliminates all "V2" rows that don't match (because their "V1.ID" value is null):

SELECT * ANSWER

FROM staff_vl vl

FULL JOIN 1D NAME 1D JOB
staff V2vVv2 e e e e

ON vi.id = v2.id 10 Sanders - -

WHERE vli.id < 30 20 Pernal 20 Sales

ORDER BY 1,3,4;
Figure 650, Outer join V1.I1D < 30, check applied in WHERE (after join)

In the next example the "V1.ID < 30" check is done during the outer join where it does not
any eliminate rows, but rather limits those that match in the two views:

SELECT * ANSWER
FROM staff_vl vl
FULL JOIN 1D NAME 1D JOB
staff V2 v2 e e o o
ON vi.id = v2.id 10 Sanders - -
AND vl.id < 30 20 Pernal 20 Sales
ORDER BY 1,3,4; 30 Marenghi - -
- - 30 Clerk
- - 30 Mgr
- - 40 Sales
- 50 Mgr

Figure 651, Outer join V1.I1D < 30, check applied in ON (during join)

Joins 233

Graeme Birchall ©

Imagine that what really wanted to have the "V1.ID < 30" check to only apply to those rows
in the "V1" table. Then one has to apply the check before the join, which requires the use of a
nested-table expression:

SELECT * ANSWER
FROM (SELECT *
FROM staff vl 1D NAME 1D JOB
WHERE 1id < 30) ASvli o e o
FULL OUTER JOIN 10 Sanders - -
staff_v2 v2 20 Pernal 20 Sales
ON vi.id = v2.id - - 30 Clerk
ORDER BY 1,3,4; - - 30 Mgr
- - 40 Sales
50 Mgr

Figure 652, Outer join V1.I1D < 30, check applied in WHERE (before join)

Observe how in the above query we still got a row back with an ID of 30, but it came from
the "V2" table. This makes sense, because the WHERE condition had been applied before we
got to this table.

There are several incorrect ways to answer the above question. In the first example, we shall
keep all non-matching V2 rows by allowing to pass any null V1.ID values:

SELECT * ANSWER

FROM staff_v1 vl

FULL OUTER JOIN 1D NAME 1D JOB

staff V2 v2 e e o

ON vi.id = v2.id 10 Sanders - -

WHERE vi.id < 30 20 Pernal 20 Sales
OR vl.id IS NULL - - 40 Sales

ORDER BY 1,3,4; - - 50 Mgr

Figure 653, Outer join V1.ID < 30, (gives wrong answer - see text)

There are two problems with the above query: First, it is only appropriate to use when the
V1.1D field is defined as not null, which it is in this case. Second, we lost the row in the V2
table where the ID equaled 30. We can fix this latter problem, by adding another check, but
the answer is still wrong:

SELECT * ANSWER
FROM staff vl vl
FULL OUTER JOIN 1D NAME 1D JOB
staff V2vVv2 e e e e
ON vi.id = v2.id 10 Sanders - -
WHERE vli.id < 30 20 Pernal 20 sales
OR vi.id = v2.id 30 Marenghi 30 Clerk
OR vl.id IS NULL 30 Marenghi 30 Mgr
ORDER BY 1,3,4; - - 40 Sales
- - 50 Mgr

Figure 654, Outer join V1.ID < 30, (gives wrong answer - see text)

The last two checks in the above query ensure that every V2 row is returned. But they also
have the affect of returning the NAME field from the V1 table whenever there is a match.
Given our intentions, this should not happen.

SUMMARY: Query WHERE conditions are applied after the join. When used in an outer

join, this means that they applied to all rows from all tables. In effect, this means that any

WHERE conditions in a full outer join will, in most cases, turn it into a form of inner join.
Cartesian Product

A Cartesian Product is a form of inner join, where the join predicates either do not exist, or
where they do a poor job of matching the keys in the joined tables.

234 Join Types

DB2 V9.7 Cookbook ©

STAFF_V1 STAFF_V2 CARTESIAN-PRODUCT

Fom e - + Fom e ——— +

| ID|NAME | |1ID]JoB | 1D NAME 1D JOB
I__I ________ I I__I______ —========> e e e
|10]|Sanders | |20]|Sales 10 Sanders 20 Sales
|20|Pernal | |30|Clerk 10 Sanders 30 Clerk
30|Marenghi

| |
I + [40]|Sales 10 Sanders 40 Sales

|

|
[30[Mgr | 10 Sanders 30 Mgr

|
|50 [Mgr | 10 Sanders 50 Mgr
I + 20 Pernal 20 Sales
20 Pernal 30 Clerk
20 Pernal 30 Mgr
20 Pernal 40 Sales
20 Pernal 50 Mgr
30 Marenghi 20 Sales
30 Marenghi 30 Clerk
30 Marenghi 30 Mgr
30 Marenghi 40 Sales
30 Marenghi 50 Mgr

Figure 655, Example of Cartesian Product

Writing a Cartesian Product is simplicity itself. One simply omits the WHERE conditions:

SELECT *

FROM staff vl vl
,staff_v2 v2

ORDER BY vl.id
,v2.id
,v2_job;

Figure 656, Cartesian Product SQL (1 of 2)

One way to reduce the likelihood of writing a full Cartesian Product is to always use the in-
ner/outer join style. With this syntax, an ON predicate is always required. There is however
no guarantee that the ON will do any good. Witness the following example:

SELECT *
FROM staff vl vl
INNER JOIN
staff_v2 v2
ON "AT <> "B*
ORDER BY vi.id
,v2._id
,v2_job;

Figure 657, Cartesian Product SQL (2 of 2)

A Cartesian Product is almost always the wrong result. There are very few business situations
where it makes sense to use the kind of SQL shown above. The good news is that few people
ever make the mistake of writing the above. But partial Cartesian Products are very common,
and they are also almost always incorrect. Here is an example:

SELECT v2a.id ANSWER
,Vv2a.job —=—=========
,v2b.id ID JOB 1D
FROM staff V2V2a em mm— =
,staff _v2 v2b 20 Sales 20
WHERE v2a.job = v2b.job 20 Sales 40
AND v2a.id < 40 30 Clerk 30
ORDER BY v2a.id 30 Mgr 30
,v2b.id; 30 Mgr 50

Figure 658, Partial Cartesian Product SQL

In the above example we joined the two views by JOB, which is not a unique key. The result
was that for each JOB value, we got a mini Cartesian Product.

Joins 235

Graeme Birchall ©

Cartesian Products are at their most insidious when the result of the (invalid) join is feed into
a GROUP BY or DISTINCT statement that removes all of the duplicate rows. Below is an
example where the only clue that things are wrong is that the count is incorrect:

SELECT v2_job ANSWER
,COUNT(*) AS #rows ===========
FROM staff vl vl JOB #ROWS
,staff V2V2 e
GROUP BY v2.job Clerk 3
ORDER BY #rows Mgr 6
,v2_job; Sales 6

Figure 659, Partial Cartesian Product SQL, with GROUP BY

To really mess up with a Cartesian Product you may have to join more than one table. Note
however that big tables are not required. For example, a Cartesian Product of five 100-row
tables will result in 10,000,000,000 rows being returned.

HINT: A good rule of thumb to use when writing a join is that for all of the tables (except
one) there should be equal conditions on all of the fields that make up the various unique
keys. If this is not true then it is probable that some kind Cartesian Product is being done
and the answer may be wrong.

|
Join Notes

Using the COALESCE Function

If you don't like working with nulls, but you need to do outer joins, then life is tough. In an
outer join, fields in non-matching rows are given null values as placeholders. Fortunately,
these nulls can be eliminated using the COALESCE function.

The COALESCE function can be used to combine multiple fields into one, and/or to elimi-
nate null values where they occur. The result of the COALESCE is always the first non-null
value encountered. In the following example, the two ID fields are combined, and any null
NAME values are replaced with a question mark.

SELECT COALESCE(v1.id,v2.id) AS id ANSWER
,COALESCE(v1l.name,"?") AS name
,V2._job ID NAME JoB
FROM staff V1Vv1 e e o
FULL OUTER JOIN 10 Sanders -
staff_v2 v2 20 Pernal Sales
ON vl.id = v2.id 30 Marenghi Clerk
ORDER BY vl1.id 30 Marenghi Mgr
,v2.job; 40 ? Sales
50 ? Mgr

Figure 660, Use of COALESCE function in outer join

Listing non-matching rows only

Imagine that we wanted to do an outer join on our two test views, only getting those rows that
do not match. This is a surprisingly hard query to write.

236 Join Notes

DB2 V9.7 Cookbook ©

STAFF_V1 STAFF_V2 ANSWER

e S + NON-MATCHING

| ID|NAME | |IDJJoB | OUTER-JOIN ID NAME ID JOB

I__I ________ I I__I______ ——=—=======> e e e e

|10]|Sanders | |20]|Sales | 10 Sanders - -

|20|Pernal | |30|Clerk | - 40 Sales
|30|Marengh|| |30 Mgr | - - 50 Mgr
——————————— |40]sales |
I50IM9r |
————————— +
Figure 661, Example of outer join, only getting the non-matching rows
One way to express the above is to use the standard inner-join syntax:

SELECT vi1.* <== Get all the rows
,CAST(NULL AS SMALLINT) AS id in STAFF_V1 that
,CAST(NULL AS CHAR(5)) AS job have no matching

FROM staff_vi1 vl row in STAFF_V2.

WHERE vl.id NOT IN
(SELECT id FROM staff v2)

UNION

SELECT CAST(NULL AS SMALLINT) AS id <== Get all the rows
,CAST(NULL AS VARCHAR(9)) AS name in STAFF_V2 that
,V2.* have no matching

FROM staff_v2 v2 row in STAFF_V1.

WHERE v2.id NOT IN
(SELECT id FROM staff vl)
ORDER BY 1,3,4;

Figure 662, Outer Join SQL, getting only non-matching rows

The above question can also be expressed using the outer-join syntax, but it requires the use
of two nested-table expressions. These are used to assign a label field to each table. Only
those rows where either of the two labels are null are returned:

SELECT *
FROM (SELECT vi1.* ,"V1® AS flag FROM staff_v1l vl1) AS vl
FULL OUTER JOIN

(SELECT v2.* ,"V2" AS flag FROM staff v2 v2) AS v2
ON vi.id = v2.id

WHERE vl_flag 1S NULL ANSWER
OR v2._.flag IS NULL
ORDER BY vi1.id ID NAME FLAG 1D JOB FLAG
,v2.id e e e e e
,V2_job; 10 Sanders V1 - - -
- - - 40 Sales V2
- - 50 Mgr V2

Figure 663, Outer Join SQL, getting only non-matching rows

Alternatively, one can use two common table expressions to do the same job:

WITH

vl AS (SELECT vi1.* ,"V1® AS flag FROM staff vl vl)
,v2 AS (SELECT v2.* ,"V2" AS flag FROM staff _v2 v2)
SELECT *

FROM vl vl ANSWER
FULL OUTER JOIN
v2 v2 ID NAME FLAG ID JOB FLAG
ON viiid = v2.id 0000 o mmmmmem e o e
WHERE vli.flag IS NULL 10 Sanders V1 - - -
OR v2_flag IS NULL - - - 40 Sales V2
ORDER BY v1.id, v2.id, v2_job; - 50 Mgr V2

Figure 664, Outer Join SQL, getting only non- matchlng rows

If either or both of the input tables have a field that is defined as not null, then label fields can
be discarded. For example, in our test tables, the two ID fields will suffice:

Joins 237

Graeme Birchall ©

SELECT * STAFF_V1 STAFF_V2
FROM staff_vl vl e + Fom +
FULL OUTER JOIN | 1D NAME | |1D]JoB |
staff v2v2 |- l--------1 1-- |--———-
ON vi.id = v2.id |10]Sanders | |20]|Sales |
WHERE vl.id IS NULL |20|Pernal | |30|Clerk |
OR v2._id IS NULL |30 Marenghi | |30 Mgr |
ORDER BY v1.id Fom - + |40]Sales |
,v2._id |50 Mgr |
,V2_job; tom - +

Figure 665, Outer Join SQL, getting only non-matching rows

Join in SELECT Phrase

Imagine that we want to get selected rows from the V1 view, and for each matching row, get
the corresponding JOB from the V2 view - if there is one:

STAFF_V1 STAFF_V2 ANSWER
Fomm T + oo + LEFT OUTER JOIN
| IDINAME | |1D]JOB | > ID NAME 1D JOB
—————————— l--1--—-- Vi.ID = V2.1D e it
|10]Sanders | |20]Sales | V1.1D <> 30 10 Sanders - -
|20|Pernal | |30|Clerk | 20 Pernal 20 Sales
|30 Marenghi | |30 Mgr |
Fomm - + |40]Sales |
I50ImMgr |
Figure 666, Left outer join example
Here is one way to express the above as a query:
SELECT wvil1.id ANSWER
,v1l._name
,Vv2_job ID NAME JOB
FROM staff vAv1 mm e o
LEFT OUTER JOIN 10 Sanders -
staff v2 v2 20 Pernal Sales
ON vi.id = v2.id
WHERE vi.id <> 30

ORDER BY v1.id ;
Figure 667, Outer Join done in FROM phrase of SQL

Below is a logically equivalent left outer join with the join placed in the SELECT phrase of
the SQL statement. In this query, for each matching row in STAFF_V1, the join (i.e. the
nested table expression) will be done:

SELECT vi.id ANSWER
,v1l_name
,(SELECT v2_job ID NAME JB
FROM staff v2v2 e e e
WHERE vl1.id = v2.id) AS jb 10 Sanders -
FROM staff vl vl 20 Pernal Sales
WHERE vli.id <> 30

ORDER BY v1.id;
Figure 668, Outer Join done in SELECT phrase of SQL

Certain rules apply when using the above syntax:

e The nested table expression in the SELECT is applied after all other joins and sub-queries
(i.e. in the FROM section of the query) are done.

e The nested table expression acts as a left outer join.

e Only one column and row (at most) can be returned by the expression.

238 Join Notes

DB2 V9.7 Cookbook ©

e |fnorow is returned, the result is null.

Given the above restrictions, the following query will fail because more than one V2 row is
returned for every V1 row (for ID = 30):

SELECT vl.id ANSWER
,Vv1_name
,(SELECT v2.job ID NAME JB
FROM staff v2v2 e e
WHERE vi1.id = v2.id) AS jb 10 Sanders -
FROM staff_vil vl 20 Pernal Sales
ORDER BY vl.id; <error>

Figure 669, Outer Join done in SELECT phrase of SQL - gets error

To make the above query work for all IDs, we have to decide which of the two matching JOB
values for ID 30 we want. Let us assume that we want the maximum:

SELECT vl.id ANSWER
,v1l._name
, (SELECT MAX(v2.job) ID NAME JB
FROM staff v2v2 —m e
WHERE vl1.id = v2.id) AS jb 10 Sanders -
FROM staff vl vl 20 Pernal Sales
ORDER BY vl1.id; 30 Marenghi Mgr

Figure 670, Outer Join done in SELECT phrase of SQL - fixed

The above is equivalent to the following query:

SELECT vl.id ANSWER

,v1l._name

,MAX(v2.job) AS jb ID NAME JB
FROM staff V1v1 e e o
LEFT OUTER JOIN 10 Sanders -

staff v2 v2 20 Pernal Sales
ON vi.id = v2.id 30 Marenghi Mgr
GROUP BY vl1.id

,V1._name

ORDER BY v1.id ;
Figure 671, Same as prior query - using join and GROUP BY

The above query is rather misleading because someone unfamiliar with the data may not un-
derstand why the NAME field is in the GROUP BY. Obviously, it is not there to remove any
rows, it simply needs to be there because of the presence of the MAX function. Therefore, the
preceding query is better because it is much easier to understand. It is also probably more
efficient.

CASE Usage

The SELECT expression can be placed in a CASE statement if needed. To illustrate, in the
following query we get the JOB from the V2 view, except when the person is a manager, in
which case we get the NAME from the corresponding row in the V1 view:

SELECT v2.id ANSWER
R CASE —————————=—=
WHEN v2.job <> “Mgr- ID J2
THEN v2.job e e
ELSE (SELECT vl.name 20 Sales
FROM staff_vl vl 30 Clerk
WHERE vl1.id = v2.id) 30 Marenghi
END AS j2 40 Sales
FROM staff v2 v2 50 -
ORDER BY v2.id
323

Figure 672, Sample Views used in Join Examples

Joins 239

Graeme Birchall ©

Multiple Columns

If you want to retrieve two columns using this type of join, you need to have two independent
nested table expressions:

SELECT v2.id ANSWER
,Vv2_job
, (SELECT vl._name ID JOB NAME N2
FROM staff vivli e e e -
WHERE v2.id = vl1.id) 20 Sales Pernal 6
, (SELECT LENGTH(v1.name) AS n2 30 Clerk Marenghi 8
FROM staff_vl vl 30 Mgr Marenghi 8
WHERE v2.id = vl.id) 40 Sales - -
FROM staff_v2 v2 50 Mgr - -
ORDER BY v2.id
,V2_job;

Figure 673, Outer Join done in SELECT, 2 columns

An easier way to do the above is to write an ordinary left outer join with the joined columns
in the SELECT list. To illustrate this, the next query is logically equivalent to the prior:

SELECT v2.id ANSWER
,V2_job
,Vl._.name 1D JOB NAME N2
,LENGTH(v1.name) AS n2 = oo o -
FROM staff_v2 v2 20 Sales Pernal 6
LEFT OUTER JOIN 30 Clerk Marenghi 8
staff vl vl 30 Mgr Marenghi 8
ON v2_.id = vil.id 40 Sales - -
ORDER BY v2.id 50 Mgr - -
,V2_job;

Figure 674, Outer Join done in FROM, 2 columns
Column Functions

This join style lets one easily mix and match individual rows with the results of column func-
tions. For example, the following query returns a running SUM of the ID column:

SELECT wvl.id ANSWER
,v1l._name
, (SELECT SUM(x1.id) 1D NAME SUM_ID
FROM staff vl x1 e e
WHERE x1.id <= vil.id 10 Sanders 10
)AS sum_id 20 Pernal 30
FROM staff_vl vl 30 Marenghi 60
ORDER BY v1.id
,v2_job;

Figure 675, Running total, using JOIN in SELECT

An easier way to do the same as the above is to use an OLAP function:

SELECT vi.id ANSWER
,v1l._name
,SUM(id) OVER(ORDER BY id) AS sum_id 1D NAME SUM_ID
FROM staff VA1v1 mm e e
ORDER BY vl.id; 10 Sanders 10
20 Pernal 30
30 Marenghi 60

Figure 676, Running total, using OLAP function

Predicates and Joins, a Lesson

Imagine that one wants to get all of the rows in STAFF_V1, and to also join those matching
rows in STAFF_V2 where the JOB begins with an 'S":

240 Join Notes

DB2 V9.7 Cookbook ©

STAFF_V1 STAFF_V2 ANSWER
Fom e - + Fom e ——— +
| ID|NAME | |1ID]JoB | OUTER-JOIN CRITERIA ID NAME JOB
R I e | > o e -
|10]|Sanders | |20]|Sales | V1.1D = V2.1D 10 Sanders -
|20|Pernal | |30|Clerk | V2.J0B LIKE "S%" 20 Pernal Sales
|30 Marenghi | |30 Mgr | 30 Marenghi -
Fomm + |40]|Sales |

I150|mMgr |

Fomm +

Figure 677, Outer join, with WHERE filter

The first query below gives the wrong answer. It is wrong because the WHERE is applied
after the join, so eliminating some of the rows in the STAFF_V1 table:

SELECT vl.id ANSWER (WRONG)
,vVl._.name
,Vv2_job ID NAME JOB
FROM staff V1vVv1 e e
LEFT OUTER JOIN 20 Pernal Sales
staff_v2 v2
ON vl.id = v2.id

WHERE v2_job LIKE "S%"
ORDER BY v1.1id
,v2_job;
Figure 678, Outer Join, WHERE done after - wrong

In the next query, the WHERE is moved into a nested table expression - so it is done before
the join (and against STAFF_V2 only), thus giving the correct answer:

SELECT vl.id ANSWER
,V1._name
,Vv2_job ID NAME JOoB
FROM staff V1Vv1 e e o
LEFT OUTER JOIN 10 Sanders -
(SELECT * 20 Pernal Sales
FROM staff_v2 30 Marenghi -
WHERE job LIKE "S%"
)AS v2
ON vi.id = v2.id
ORDER BY vl.id
,V2_job;

Figure 679, Outer Join, WHERE done before - correct

The next query does the join in the SELECT phrase. In this case, whatever predicates are in
the nested table expression apply to STAFF_V2 only, so we get the correct answer:

SELECT wvl.id ANSWER
,V1l._name
, (SELECT v2.job ID NAME JoB
FROM staff V2 v2 e e
WHERE v1.id = v2.id 10 Sanders -
AND v2_job LIKE *"S%") 20 Pernal Sales
FROM staff vl vl 30 Marenghi -
ORDER BY v1.id
,job;

Figure 680, Outer Join, WHERE done independently - correct

Joins - Things to Remember

e You get nulls in an outer join, whether you want them or not, because the fields in non-
matching rows are set to null. If they bug you, use the COALESCE function to remove
them. See page 236 for an example.

Joins 241

Graeme Birchall ©

e From a logical perspective, all WHERE conditions are applied after the join. For per-
formance reasons, DB2 may apply some checks before the join, especially in an inner
join, where doing this cannot affect the result set.

o All WHERE conditions that join tables act as if they are doing an inner join, even when
they are written in an outer join.

o The ON checks in a full outer join never remove rows. They simply determine what rows
are matching versus not (see page 231). To eliminate rows in an outer join, one must use
a WHERE condition.

o The ON checks in a partial outer join work differently, depending on whether they are
against fields in the table being joined to, or joined from (see page 228).

e A Cartesian Product is not an outer join. It is a poorly matching inner join. By contrast, a
true outer join gets both matching rows, and non-matching rows.

e The NODENUMBER and PARTITION functions cannot be used in an outer join. These
functions only work on rows in real tables.

When the join is defined in the SELECT part of the query (see page 238), it is done after any
other joins and/or sub-queries specified in the FROM phrase. And it acts as if it is a left outer
join.

Complex Joins

When one joins multiple tables using an outer join, one must consider carefully what exactly
what one wants to do, because the answer that one gets will depend upon how one writes the
query. To illustrate, the following query first gets a set of rows from the employee table, and
then joins (from the employee table) to both the activity and photo tables:

SELECT eee._empno ANSWER
,aaa.projno
,aaa.actno EMPNO PROJNO ACTNO FORMAT
,ppp-photo_format AS format = = = —————— ————— o
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
emp_act aaa 000130 - - bitmap
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE "M%1%" 000160 MA2113 60 -

LEFT OUTER JOIN
emp_photo ppp

ON eee._empno = ppp-empno <«—
AND ppp-photo_format LIKE "b%"
WHERE eee. lastname LIKE "%A%"

AND eee.empno < "000170"

AND eee.empno <> "000030"

ORDER BY eee.empno;
Figure 681, Join from Employee to Activity and Photo

Observe that we got photo data, even when there was no activity data. This is because both
tables were joined directly from the employee table. In the next query, we will again start at
the employee table, then join to the activity table, and then from the activity table join to the
photo table. We will not get any photo data, if the employee has no activity:

242 Join Notes

DB2 V9.7 Cookbook ©

SELECT eee._empno ANSWER
,aaa.projno
,aaa.actno EMPNO PROJNO ACTNO FORMAT
,ppp-photo_format AS format = = -————-- -
FROM employee eee 000010 MA2110 10 -
LEFT OUTER JOIN 000070 - - -
emp_act aaa 000130 - - -
ON eee.empno = aaa.empno 000150 MA2112 60 bitmap
AND aaa.emptime = 1 000150 MA2112 180 bitmap
AND aaa.projno LIKE "M%1%" 000160 MA2113 60 -
LEFT OUTER JOIN
emp_photo ppp
ON aaa.empno = ppp-empno
AND ppp.-photo_format LIKE “b%" -
WHERE eee. lastname LIKE “%A%"
AND eee.empno < "000170*"
AND eee.empno <> *000030"

ORDER BY eee.empno;
Figure 682, Join from Employee to Activity, then from Activity to Photo

The only difference between the above two queries is the first line of the second ON.
Outer Join followed by Inner Join

Mixing and matching inner and outer joins in the same query can cause one to get the wrong
answer. To illustrate, the next query has an outer join, followed by an inner join. We are try-
ing to do the following:

o Get a list of matching employees - based on some local predicates.
e For each employee found, list their matching activities, if any (i.e. left outer join).

e For each activity found, only list it if its project-name contains the letter "Q" (i.e. inner
join between activity and project).

Below is the wrong way to write this query. It is wrong because the final inner join (between
activity and project) turns the preceding outer join into an inner join. This causes an employee
to not show when there are no matching projects:

SELECT eee.workdept AS dp# ANSWER
,eee._empno
,aaa.projno DP# EMPNO PROJNO STAFF
,ppp-prstaff AS staff 00—
FROM (SELECT * CO1 000030 IF1000 2.00
FROM employee CO1 000130 IF1000 2.00
WHERE lastname LIKE "%A%"
AND job <> "DESIGNER"
AND workdept BETWEEN "B® AND "E*
)AS eee
LEFT OUTER JOIN
emp_act aaa
ON aaa.empno = eee.empno
AND aaa.emptime <= 0.5
INNER JOIN
project ppp
ON aaa.projno = ppp-projno
AND ppp-projname LIKE "%Q%"

ORDER BY eee.workdept
,eee.empno
,aaa.projno;

Figure 683, Complex join - wrong

As was stated above, we really want to get all matching employees, and their related activities
(projects). If an employee has no matching activates, we still want to see the employee.

Joins 243

Graeme Birchall ©

The next query gets the correct answer by putting the inner join between the activity and pro-
ject tables in parenthesis, and then doing an outer join to the combined result:

SELECT workdept AS dp#
empno
,XXX.projno
,Xxx.prstaff AS staff
(SELECT *
FROM employee
WHERE lastname LIKE "%A%*
AND job <> "DESIGNER"
AND workdept BETWEEN "B* AND "E*
)AS eee
LEFT OUTER JOIN
(SELECT aaa.empno
,aaa.emptime
,aaa.projno
,ppp-prstaff
FROM emp_act
INNER JOIN

eee.
,eee.

FROM

aaa

ANSWER

DP# EMPNO PROJNO STAFF
CO01 000030 1F1000
CO1 000130 I1F1000
D21 000070 -
D21 000240 -

ON
AND

project ppp
aaa.projno
ppp-projname LIKE '%Q%

p.projno

)AS xXxx

ON XXX .
AND XXX -
ORDER BY eee.
,eee.
, XXX .

empno
emptime
workdept
empno
projno;

= eee.empno
<= 0.5

Figure 684, Complex join - right

The lesson to be learnt here is that if a subsequent inner join acts upon data in a preceding
outer join, then it, in effect, turns the former into an inner join.

Simplified Nested Table Expression

The next query is the same as the prior, except that the nested-

table expression has no select

list, nor correlation name. In this example, any columns in tables that are inside of the nested-
table expression are refere