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Abstract

A transaction database usually consists of a set of timegsd transactions. Mining frequent
patterns in transaction databases has been studied erdgnsai data mining research. However, most
of the existing frequent pattern mining algorithms (sucthApsiori and FP-growth do not consider the
time stamps associated with the transactions. In this paygegxtend the existing frequent pattern mining
framework to take into account the time stamp of each traimsaand discover patterns whose frequency
dramatically changes over time. We define a new type of pettealled transitional patterns, to capture
the dynamic behavior of frequent patterns in a transactatalzhse. Transitional patterns include both
positive and negative transitional patterns. Their fremirs increase/decrease dramatically at some time
points of a transaction database. We introduce the condegigoificant milestones for a transitional
pattern, which are time points at which the frequency of tagegpn changes most significantly. Moreover,
we develop an algorithm to mine from a transaction datab@seet of transitional patterns along with
their significant milestones. Our experimental studies eal-world databases illustrate that mining
positive and negative transitional patterns is highly psing as a practical and useful approach for

discovering novel and interesting knowledge from largeabases.

Index Terms

Data mining, association rule, frequent pattern, tramséi pattern, significant milestone.

. INTRODUCTION

The problem of mining frequent itemsets is to find all the ets from a transaction database
that satisfy a user specified support threshold. It is onéeffindamental and essential oper-
ations in many data mining tasks, such as association rurengi[3], [4], [34], sequential
pattern mining [5], [29], structured pattern mining [15¢relation mining [10], and associative
classification [23]. Since it was first introduced by Agrawelal. [3] in 1993, the problem of
frequent itemset mining has been studied extensively. Assalt; a large number of algorithms
have been developed in order to efficiently solve the probieeiuding the most well-known
Aproiri [4] FP-growth[16], andEclat [40] algorithms.

In practice, the number of frequent patterns generated fotata set are often excessively
large, and most of them are useless or simply redundant.,Tthese has been interest in
discovering new types of patterns, including maximal figuitemsets [1], [11], [31], closed
frequent itemset [26], [28], [41], indirect associatioB§]-[38] and emerging patterns [7], [12],
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[21]. Mining for maximal or closed frequent itemsets grgattduces the number of generated
patterns by generating only the largest frequent itemsiksno frequent superset or no superset
of higher frequency. Indirect associations are closelgtesl to negative associations in that they
both represent itemsets that do not have sufficiently higipsd. Indirect associations provide an
effective way to detect interesting negative associatiyndiscovering only “infrequent itempairs
that are highly expected to be frequent” without using nggatems or domain knowledge.
Emerging patterns are defined as itemsets whose frequea®ase significantly from one data
set to another. They can capture emerging trends from orbae to the other.

A common characteristic of the above learning methods isttiegy treat the transactions in a
database equally and do not consider the time stamps atesbwidh the transactions. Therefore,
the dynamic behavior of the discovered frequent patternsatbe revealed by these methods. In
this paper, we extend the traditional frequent pattern mgiitamework to take into account the
time stamp of each transaction, i.e., the time when the aititey occurs. We define a new type of
patterns, called transitional patterns, to represenepetwhose frequency dramatically changes
over time. Transitional patterns include both positive aregjative transitional patterns (to be
defined in Section 1ll). The frequency of a positive tramsiil pattern increases dramatically at
some time point of a transaction database, while that of atiegtransitional pattern decreases
dramatically at some point of time. We illustrate transiibpatterns using an example as follows.

Consider an example databagé) B as shown in Table I, which has 16 transactions of 8
items. Let’s focus on two patterns; P, and P, P;. Without considering the time information of
these transaction$;, P, and P, P; have the same significance in the traditional frequent patte
framework since they have the same frequency 62.50%. Howieteresting differences between
these two patterns can be found after we consider the tinoenvation of each transaction in the
database, as shown in the third column of Table I. For sintplisupposel’D B contains all the
transactions from November 2005 to February 2007, one dctios per month. We can easily
see that before (and including) May 2006, pattét?, appears every month; but after May
2006, P, P, only occurs 3 times in 9 transactions, which is equivalerd foequency of 33.33%.
That is to say that the frequency or support of pattBri®, decreases significantly after May
2006. On the other hand, after July 2006, the frequency daépaP; P; increases significantly
from 33.33% to 100%.

The above observations have shown that frequent patteseewdired by standard frequent
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TABLE |

AN EXAMPLE TRANSACTION DATABASE TDB

‘ TID ‘ List of itemIDs Time stamp
001 Py, P, P3, Ps Nov. 2005
002 Py, P Dec. 2005
003 Py, P>, P3, Ps Jan. 2006
004 Py, P, Ps Feb. 2006
005 Py, P, Py Mar. 2006

006 Py, Py, Py, P5, Ps Apr. 2006
007 P, P, P3, Py, Ps May. 2006

008 Pi, Py, Ps Jun. 2006
009 Py, Ps, Ps Jul. 2006
010 | Pu, P», P3, Py, Ps, Ps | Aug. 2006
011 Pi, Ps, Py, Ps Sep. 2006
012 Pi, Ps, Ps Oct. 2006
013 Py, P>, Ps, Ps, P; Nov. 2006
014 Py, Ps, Py, Ps Dec. 2006
015 Py, Ps, Py Jan. 2007
016 Py, Py, P5, Ps Feb. 2007

pattern mining algorithms may be different in terms of tliggtributions in a transaction database.
However, such patterns cannot be distinguished with thedatal algorithms. The objective of
the research presented in this paper is to distinguish secfuént patterns, discover frequent
patterns whose frequency changes significantly over tintei@entify the time points for such
significant changes.

Transitional patterns have a wide range of potential appbas. For example, in the market
basket scenario, transitional patterns allow businessmvio identify those products or com-
binations of products that have recently become more anc mpopular (or not as popular as
before) so that they can adjust their marketing strategyptinoze product placement in retail
environments. In medical domains, a significant increasiienoccurrence of certain symptom
in a group of patients with the same disease may indicateeaesdfdct of a new drug. Finding
the time point when this symptom starts to occur may help ¢émtifly the drug that causes the

problem. These patterns can also be used in Web applicafiengxample, for dynamically
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restructuring Web sites by adding links between those padgese frequency of being visited

together becomes more frequent.

The contributions of this paper are summarized as follows.

We propose a framework for mining a new class of patterndeddransitional patterns.
The frequencies of these patterns change significantlyraedone points of a transaction
database.

We introduce the concept of significant milestones for eaahsitional pattern, which are
specific time points at which the frequency of the patterrrdases or decreases most
significantly.

An algorithm, calledTP-ming is designed to mine the set of transitional patterns aloitig w
their significant milestones. We show through experimenéd the proposed algorithm is
highly scalable.

We present an experimental study to verify the usefulnedseffiectiveness of transitional
patterns. Our results illustrate that mining positive ardative transitional patters is highly
promising as a practical approach to discovering new aretasting knowledge from large

databases.

The remaining of the paper is organized as follows. In Sadtiove review the terminologies

used in frequent pattern mining. The concepts of positivd aagative transitional patters

and their significant milestones are introduced in Sectibnahd Section IV, respectively.

In Section V, we present an algorithm for mining transitiopatterns and their significant

milestones. In Section VI, we present an experimental stisdylemonstrate the utility of

transitional patterns in two real-world datasets and thedabdity of the proposed algorithm.

In Section VII, we compare our method with related work. Hiypan Section VIII, we conclude

paper and present some ideas for future work.

1. PRELIMINARIES AND NOTATIONS

Mining frequent patterns is one of the fundamental opemnatio data mining applications for

extracting interesting patterns from databases. In tlssign, we briefly review the basic concepts

of frequent pattern mining. Table Il summarizes the notetithat will be used throughout this

paper and their meanings.
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TABLE Il

SUMMARY OF NOTATIONS AND THEIR MEANING

D a database of transactions
[|S]| the cardinality of setS
TDB an example transaction database
cov(X) the cover of patterrX in D
sup(X) the support of patterX in D
p(7) the position of transactiof in D
79(X) the " transaction of patterX in D
¢€(X) theit" milestone of patternX in D
T: arange of¢/(X) in D
sup’ (X) the support of patterX before itsi*” milestonein D
sup’ (X) the support of patterX after itsi'" milestonein D
tran’(X) the transitional ratio of patter at its s*" milestone inD
ts pattern support threshold
t; transitional pattern threshold
PTP positive transitional pattern
NTP negative transitional pattern
(EM(X), tran™ (X))  significant frequency-descending milestoneof

(EV (), tranN (Y))  significant frequency-descending milestoneYof

LetZ = {41, i9,...,4,,} De a set oin distinctitems A subsetX C 7 is called antemsetor a
pattern A k-itemset is an itemset that contaikstems. In this paper, we uséB to represent
pattern{A, B}, whereA € 7 and B € Z, for simplicity. A transaction ovef is a couple7
= (tid,I) wheretid is the transaction identifier (or time-stamp) ahdC 7 is an itemset. A
transactiorZ = (tid, [) is said to support an itemsét C 7, if and only if X C . A transaction
databaséD overZ is a set of transactions ovér.

The coverof an itemsetX in D, denoted asov(X, D), consists of the set of transactions in
D that supportX:

cov(X,D) :={(tid, I) | (tid,I) € D, X C I}.

An itemsetX in a transaction databage has asupport denoted asup(X, D), which is the
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ratio of transactions irD containingX. That is,

[cov(X, D)|
1o

where||S|| is the cardinality of se§S. In the rest of the paper we omii? whenever it is clear

sup(X,D) :=

from the context.

Given a transaction databa®eand a user specified minimum support threshala_sup, an
itemsetX is called a frequent itemset or frequent patter@®iif sup(X) > min_sup Accordingly,
X is called an infrequent itemset or infrequent patterruip(X) < min.sup The problem of
mining frequent patterns is to find the complete set of fregjpatterns in a transaction database

with respect to a given support threshold.

[Il. TRANSITIONAL PATTERNS

In this section we first define several concepts relevant tgooaposed framework, and then

present formal definitions of positive and negative traos#l patterns.

A. Definition of milestone

In order to provide formal definitions of transitional paftte, we first introduce the concept
of a pattern’smilestones

Definition 3.1: Assuming that the transactions in a transaction databaae ordered by their
time-stamps, th@ositionof a transactior¥ in D, denoted a®(7), is the number of transactions
whose time-stamp is less than or equal to thaf ofThus,1 < p(7) < ||D||.

Definition 3.2: Thei'" transactionof a patternX in D, denoted as’(X), is thei?* transaction
in cov(X) with transactions ordered by their positions, wherg 1 < ||cov(X, D)||.

Definition 3.3 (" milestone): The i** milestoneof a patternX in D, denoted ag’(X), is

defined as: ‘
p(T' (X))

x 100% 1
2] " @)

¢'(X) =

where 1< i < ||cov(X))]|.
According to this definition, theé' milestone of patternX represents the relative position
(expressed in a percentage) of tHetransaction of{ in D. For instance, in the example database

TDB in Table |, we haves (P Py) = & = 25% and¢* (P P3) = 12 = 62.5%.
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Definition 3.4: The support of a patter before itsi’* milestone inD, denoted asup’ (X),

is defined as:
4 1
sup' (X) = ———— (2)
W= o)
where 1< i < ||cov(X)]|.
Definition 3.5: The support of a patter after its:"* milestone inD, denoted asup’, (X),
is defined as:
Jeov()] — i
ID|| — p(r(X))

sup',(X) := (3)

where 1< i < ||cov(X)]|.
For example sup® (P P,) = 1.0 and sup’. (P P,) = 0.4.

B. Transitional Ratio

We definetransitional ratio below to measure the difference of a pattern’s frequencgrbef
and after itsith milestone.
Definition 3.6 (Transitional Ratio)The transitional ratio of patternX at itsi’* milestone in

D is defined as:

() = S e e O @
wherel < i < ||cov(X)]|.

It's easy to see that the higher the absolute transitiontal of a pattern at its’* milestone,
the greater the difference between its supports before fiedits i"* milestone. A nice feature
of this definition is that the value of a transitional ratiobistween -1 and 1. As for transitional
patterns, we are interested in patterns whose absolutesvafutransitional ratio are large, which

are defined below.

C. Positive and negative transitional patterns

Definition 3.7 (Transitional Pattern)A patternX is aTransitional Pattern(TP) in D if there
exists at least one milestone &f, £%(X) € T, such that:
(@) sup™ (X) > t, and sup” (X) > tg;
(b) [tran*(X)| > t..
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whereT is a range ot’(X) (1 <1 < |cov(X)|]), ts andt, are calledpattern support threshold
and transitional pattern thresholdrespectively. MoreoverX is called aPositive Transitional
Pattern(PTP) whentran®(X) > 0; andX is called aNegative Transitional Patter(NTP) when
trank(X) < 0.

Let us explain the rangé; first. In order to obtain reliable values feup’ (X)) andsup’, (X),
the numbers of transactions bef@éX) and after¢!(X) should not be too small. Otherwise, a
“uniformly distributed” frequent pattern that happens txuar in the first few (or the last few)
transactions may have a large absolute value of transitratia due to the fact that its support
is too high beforet’(X) (or after¢'(X)). Thus,£(X) should be in an appropriate range to
allow a reasonable amount of data befgt€X) and afteré!(X) in the database. Moreover, in
practice,; can be specified by the user according to their own inter@stirfstance, in order
to find interesting patterns in the example datab&igeB which occur during the year 2006,
T should be set to [12.50% ... 87.50%)], since 12.50% is theisgatime point for 2006 and
87.50% is the ending point of 2006.

The reason we have condition (a) for a transitional patterthat, if we do not have this
condition, any pattern that does not occur at the beginninthe transaction database has a
transitional ratio very close to 1 when the pattern first esén the database (or any pattern that
does not occur at the end of the transaction database hassditmaal ratio equal to -1 after its last
occurrence in the database). However, such a pattern maysba gporadic pattern that occurs
occasionally in the database, which is not interestinglaBgladding condition (a), a transitional
pattern is also a frequent pattern in the database with cesp@attern support threshotg?®. In
other words, we are only interested in frequent patternsseticequency changes dramatically
before and after one of its milestones in the transactioabdete. In practice, should be set to a
low value for real datasets, as experienced in frequenéathining. Intuitively, the transitional

pattern threshold;, should be set to a value higher than or equal.to

It is trivial to prove that if a patterr is frequent beforg®(X) and after¢*(X), it must be frequent in the whole database.
However, please note that if a pattern is frequent®mwith respect tot,, there may not exist a milestorgé(X) such that
sup’ (X) > ts and sup® (X) > ts. Therefore, if we want to find all the transitional patternsa set of frequent patterns
discovered with support thresholdin_sup, the pattern support threshaold for transitional patterns should be set to be smaller
thanmin_sup. We consider this problem to be a different problem from wthi paper is concerned about. The pattern support

thresholdt; in Definition 3.7 is only for defining transitional patterrns avoid generalization over insufficient data.
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For example, ift, = 0.05 andt, = 0.5, pattern P, P; in the example databasEDDB is
a positive transitional pattern because there exists astoile of P, P;, such as¢®(PPs) =
68.75% corresponding to the end of September 2006, where the tiarairatio of the pattern
is greater than 0.5 and the pattern is frequent before aed thié milestone. SimilarlyP; P, is
a negative transitional pattern iiD B.

Note that, theoretically, a pattetk can be both a positive transitional pattern and a negative
transitional pattern in the same transaction databaseeretlexist two milestoneg™(X) and
£"(X) so that conditions (a) and (b) are satisfied at bgtiiX) and £"(X), wheretran™(X)
> 0 andtran™(X) < 0. For example, in the example databds® B, pattern P, P is both a
positive transitional pattern and a negative transitiquettern because its transitional ratio at
milestone&! (P, Fs) is +66.67% and the one at mileston€ (P, Fs) is —66.67%, and condition
(a) is also satisfied at both milestones.

V. SIGNIFICANT MILESTONES

There may be multiple milestones at which a transitionalgpatsatisfies conditions (a) and
(b) in Definition 3.7. People are usually interested in théestones where the frequency of a
transitional pattern changes the most significantly. Belesvdefine the concept dignificant
milestoneso represent such positions. The significant milestone®eatassified into frequency-

ascending milestones and frequency-descending milestone

A. Significant frequency-ascending milestone

Definition 4.1 (Significant frequency-ascending miles}oriene significant frequency-ascending
milestone of a positive transitional patte with respect to a time period; is defined as a
tuple, (¢M(X),tran™ (X)), whereéM(X) € T is the M™ milestone ofX such that:

1) sup™(X) > t,;

2) V E(X) € Tg, tran™(X) > tran'(X).

Table Il lists the transitional ratios of four patterns lretexample databageD B with T, =
[25%, 75%]. Figure 1 illustrates how the transitional rataf these four patterns change along
their milestones. Assuming that the support threshold isasb#the transitional pattern threshold

is 50%, P, P; and P,Ps are positive transitional patterns. The significant fremyeascending
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TABLE 1l

MILESTONES AND TRANSITIONAL RATIOS OF EXAMPLE PATTERNS WITHI; = [25%, 75%]IN TDB (%)

ZH E(P)  tran'(P) | €(PiP2)  tran'(PiP) | €&(PiPs)  tran'(PiP3) | £ (PuPs) tran'(PyPs)

1 37.50%  +66.67
2 43.75%  +35.71
3 43.75%  +44.90 50.00% O

4 || 25.00% -8.33 25.00%  -50 62.50%  +60 56.25%  -35.71
5 || 31.25% -9.09 31.25%  -54.55 68.75%  +54.55 62.50%  -66.67
6 || 37.50% -10 37.50% -60 75.00%  +50 68.75%  -100

7 || 43.75% -11.11 43.75%  -66.67

8 || 50.00% -12.5 62.50%  -44.90

9 || 62.50% +11.11

10 || 68.75% +10

11 || 75.00% +9.09

milestone forP; P; is (62.5%, +60, and the significant frequency-ascending milestone dr;
is (37.50%, +66.6Y.

The reason for having condition 1) in Definition 4.1 is asdwls. Positive transitional patterns
usually occur sporadically at the beginning of the traneactiatabase and are more heavily
distributed at the latter part of the database. For suchasioroccurrences, the transitional
ratios at the corresponding milestones may be very hightHage positions are not interesting
because the sporadic nature of the occurrence.

For example, suppose that in a dataset with 1000 transactopositive transitional pattern
occurs in every transaction in the second half of the daggldasg sporadically occurs 10 times
between the 100th and the 500th transactions. Assume ghétsit occurrence is at the 100th
transaction, its transitional ratio i83.23% at the 1°* milestone (corresponding to the 100th
transaction) and its transitional ratio is o8I§% at the10** milestone (corresponding to the 500th
transaction). But the latter milestone is much more intérgs By using constraintup™(X)
> t,, sporadic occurrences of a pattern at the beginning of tihebeae are not considered as
significant milestones because the pattern is infrequetheait milestone and we haven’t had

enough information to see the trend of the pattern yet.
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Example patterns in TDB (T = 0.2)
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Fig. 1. Transitional ratios i DB

Please note that the use of this constraint does not make ssthe significant milestone
in the situation where a positive transitional pattéfnstarts to occur very often right after its
first milestone. In this case, the significant milestoneXofmay or may not be at the place of
the first occurrence, but if not, it is not far away from thetfinsilestone because the value of
sup’ (X) generally increases quickly agets larger. Please also note that sificés a positive
transitional pattern ag*(X), it is easy to see thatup’}!(X) > ¢, sincesup’'(X) > sup™(X)
and supM(X) > ts.

B. Significant frequency-descending milestone

Similarly, the significant frequency-descending milestdor a negative transitional pattern is
defined below.

Definition 4.2 (Significant frequency-descending milesjoiThe significant frequency-descending
milestone of a negative transitional pattérnwith respect to a time period; is defined as a
tuple, (N (Y), tran™N (Y)), where¢V(Y) € T; is the N** milestone ofY” such that:

1) sup(Y) >

2) YV E(Y) € T, tranN (V) < tran’(Y).
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To give an example, patternd, P, and P, P in Table Ill are negative transitional patterns.
Their significant frequency-descending milestones (d&75%, -66.6Y and (62.50%, -66.6Y,
respectively. The reason to have Condition 1) in Definitiok i similar to that in Definition
4.1. Note that even though the transitional ratio/Qf% is —1 at its last mileston&8.75%, it
can not be considered as a significant milestone becausetioondl in Definition 4.2 is not
satisfied, due to the fact that, °; does not occur after that milestone.

Theoretically, a transitional pattern may have both sigaift frequency-ascending and signif-
icant frequency-descending milestones if it is both a pasénd a negative transitional pattern.
Also, a positive (or negative) transitional pattern mayenenore than one significant frequency-
ascending (or frequency-descending) milestones.

The significant milestones capture the most significant gbamf a transitional pattern within
a time period. In the real world, an evolving pattern may teaisnore complicated trend (such
as periodically evolving trends). Such a pattern may notdygwed as a transitional pattern if
its transitional ratio at any time point stays lower than tfaasitional pattern threshold. Finding

such patterns is not a concern of this paper, but can be @yesids future work.

V. MINING TRANSITIONAL PATTERNS AND THEIR SIGNIFICANT MILESTONES

In this section, we present an algorithm, callBd-mine for mining the set of positive and
negative transitional patterns and their significant nidless with respect to a pattern support

threshold and a transitional pattern threshold. The algoris given as follows.

A. TP-mine algorithm

Algorithm:
TP-mine. (Mine the set ofTransitional Patterns and their significant milestorjes

I nput:
A transaction databas@®j, an appropriate milestone range that the user is inter€3ig,
pattern support threshold,} and transitional pattern threshold)(

Output:
The set of transitional patterns £, and Syrp) with their significant milestones.

Method:
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14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

27:

28:

14

Extract frequent patterns};, P, ..., P,, and their supports using a frequent pattern

generation algorithm witmin_sup= t,.

: Scan the transactions from the first transaction to the lastsaction beforeél; to

compute the support counts, (1 > k£ > n), of all then frequent patterns on this part
of the database.
SPTP = @, SNTP = @
for all £k =1ton do
MaxTran(Py) =0, MinTran(P;) =0
Sram(Pr) =0, Srpa(Pr) =0
end for
for all transactions/; whose position satisfyin@; do
for k =1ton do
if 7; O P, then
. =c, +1
if sup™(Py) > ts and sup$(Py) > ts then
if tran®(Py) > t, then
if P, ¢ Sprp then
Add P, to Sprp
end if
if tran®(Py) > MaxTran(Py) then
Sram(Py) = {(E*(Fr), tran™(Py)) }
MaxTran(Py) = tran® (Py)
eseif tran(P,) = MaxTran(Fy) then
Add (¢ (Py,), tran®(Py)) t0 Span(Pr)
end if
eseif tran®(P;) < —t; then
if P, ¢ Syrp then
Add P, to Syrp
end if
if tran®(Py) < MinTran(Py) then
Srom(Pr) = {(§%(Px), tran®(Py)) }
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29: MinTran(Py) = tran®(Py)

30: eseif tran (P,) = MinTran(P) then
31 Add (¢ (Py), tran(Py)) to Sppa(Pr)
32: end if

33: end if

34: end if

35: end if

36: end for

37: end for

38: return Sprp and Span(Fy) for eachP, € Sprp

39: return Syrp and Sgpy(Py) for eachP, € Syrp

There are two major phases in this algorithm. During the fitsase (Step 1), all frequent
itemsets along with their supports are initially derivethgsa standard frequent pattern generation
algorithm, such ag\priori [4] or FP-growth [16], with ¢, as the minimum support threshold.
In the second phase (starting from Step 2 to the end), theiddgofinds all the transitional
patterns and their significant milestones based on the séegfient itemsets. As mentioned
before, a pattern that is frequent before and after one omitestones inD with respect to
support threshold, must be frequent o® with respect to the same threshold. Thus, it is safe
for us to first mine the frequent itemsets on the entire da@hsing the threshold and then
find the transitional patterns based on the set of frequeniseéts.

In Step 2, the support counts of all the frequent patternsherset from the first transaction
to the transaction right before the time perifidare collected. They are used later in computing
sup™(P;), whereP, is a frequent pattern. Step 3 initializes the set of posttiaasitional patterns
(Sprp) and the set of negative transitional patterfis{p) to empty. Steps 4-7 initialize the set of
significant frequency-ascending milestones for each gatpatternP;, Sgan (Px), and the set of
significant frequency-descending milestones for eachufrgpatternP;, Sgpy (FPy), to empty.

It also initializes the maximal and minimal transitionatioa of P, denoted byM azTran(Py)
and MinTran(Py), to zero.

After the initializations, the algorithm continues to s¢ha databas® to find the milestones of

P, within the rang€el;. At each valid mileston€“:(F;) during the scan, it calculates the support
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of P, before&c(P), i.e., sup®™(Py), and the support of’, after £(P), i.e., sup$(Py)?. If
both of them are greater thap, the algorithm then checks the transitional ratiofQf If the
ratio is greater tham;, then P, is a positive transitional pattern and is added into theSsets.
Then, the algorithm checks whether the transitional rafiaPp is greater than the current
maximal transitional ratio of,. If yes, the set of significant frequency-ascending milessoof
Py, i.e., Spam(Py), is set to contaif ((°(Py), tran®(Fy))} as its single element. If not but it
is equal to the current maximal transitional ratio Bf, {({%(Py),tran(Fy))} is added into
Similarly, Steps 23-32 are for finding the set of negativegitonal patterns and their signif-

icant frequency-descending milestones.

B. Database scan and time complexity

If we do not consider the step for generating frequent padtér.e., Step 1), th&P-mine
algorithm scans the database only once to find all the tranaitpatterns and their significant
milestones with respect to a pattern support threshold a@rashaitional pattern threshold. Suppose
the number of frequent patterns generated from Stepnltise time complexity of th& P-mine
algorithm from Step 2 to Step 35 @&(||D||+nx || T¢||), where||D|| is the number of transactions
in D and ||T¢|| is maximum number of milestones &f, (1 < k£ < n).

The number of database scans and time complexity in Step dndsn the algorithm used
for mining frequent patterns. For example AP-growth[16] is used, only two database scans
are needed in Step 1. The total number of scans for miningitranal patterns is thus 3.

Please note that in our design of tA®@-minealgorithm, finding transitional patterns is a
separate step after generation of frequent patterns. Ihinfig possible to incorporate transi-
tional pattern mining into a frequent pattern mining pracedowever, it is not a good idea
to incorporate it into eitheApriori [4] or FP-growth [16], which are the two most popular
algorithms for mining frequent pattern&priori finds frequent patterns by multi-level candidate
generation and testing, which involves multiple databas@s. Since transitional patterns do not

have the so-calledownward closure propertf.e., a sub-pattern of a transitional pattern may not

Note that the two supportsup®* (P) and supS* (Pr), can be calculated based on the support count of the patédoneb
&% (Py), which was collected in Step 2 and Step 11, and the supparitaaf P, over D computed in Step 1.
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TABLE IV

DATABASE CHARACTERISTICS

number of | number of number of number of | number of
Database| ) T
items transactions| Frequent Patterng PTPs NTPs
Retail 16,470 88,163 580 21 48
- [25%, 75%]
Livelink 38,679 30,586 125 22 22
ts = 0.5% andt;, = 0.5

be a transitional pattern), the number of candidates etedua Apriori cannot be reduced based
on the fact that a frequent pattern is found to be a transitipattern. Thus, we would need
to compute the transitional ratio for each candidate, teguln a much higher time complexity
than using the two-phadeéP-minealgorithm. As forFP-growth since aFP-treedoes not contain
the time information of the transaction database, it is rassfble to mine transitional patterns
from the FP-tree without significant modification of the tree to adapt timeoirmhation.
Therefore, we choose to design a two-phase algorithm to transitional patterns, i.e., mining
transitional patterns after mining frequent patterns. Adsi of such a design is that we can
make use of the existing efficient and scalable frequenepathining algorithms, such d&&-
growth to improve the overall efficiency of the process. In the reedtion, we will show that

the second phase of tAé€>-minealgorithm is also highly scalable.

VI. EXPERIMENTAL STUDIES

To demonstrate the utility of transitional patterns anddfieiency of theTP-minealgorithm,
we have performed two sets of experiments using datasets tikm real-world domains: retail
market basket and web log data. Table IV summaries the péeesnef each dataset along with

the threshold values used in our experiments.

A. Retail market basket data

The Retail dataset was obtained from the Frequent ItemsainyliDataset Repositoty It

contains the (anonymized) retail market basket data fronareonymous Belgian supermarket

3http://fimi.cs.helsinki.fi/data/
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TABLE V

ToP 16 POSITIVE TRANSITIONAL PATTERNS IN RETAIL DATASET

ank Transitional Pattern| sup™ (P) | sup?(P) | ( €M(P), tran™(P) ) | sup(P) | support
P (%) (%) (%) (%) rank
1 (R12025} 5.10 32.92 ( 58.52, +84.52) 1664 | 72
2 {R14098} 5.01 29.53 (60.71, +83.09 1464 | 88
3 | {R39, R12925} 5.09 22.93 ( 68.88, +77.81) 10.64 | 149
4 (R413)} 6.24 26.38 ( 25.00, +76.34 2132 | 49
5 | {R48, R12925} 5.0 19.57 (70.72, +74.43 9.27 | 180
6 {R12929} 5.01 18.33 ( 74.44, +72.64 842 | 221
7 {R48, R413} 5.01 16.56 (31.92, +69.74 12.87 | 110
8 {R39, R413} 5.04 16.28 (30.81, +69.02 1282 | 112
9 {R405} 5.09 15.03 ( 50.86, +66.15 9.97 | 160
10 {R39, R48, R413} 5.0 14.05 (/57.38, +64.41) 8.86 200
11 {R10515} 5.02 13.68 ( 42.47, +63.30 10 159
12 {R649} 5.02 12.54 (37.49, +59.94) 972 | 166
13 {R389} 5.01 12.21 (38.71, +58.98 943 | 17
14 {R809} 5.22 12.62 ( 74.56, +58.65 7.1 305
15 {R49} 6.3 14.86 ( 25.21, +57.62 127 | 113
16 {(R441} 5.32 11.52 ( 74.40, +53.80 691 | 323

store [9]. Over the entire data collection period, appratety 5 months, the supermarket store
carries16, 470 unique SKU’$, and the total amount of receipts being collected eqggl363.

Table V shows the first 16 positive transitional patterns @at. These patterns are ranked by
the transitional ratios at their significant frequencyessting milestones. For positive transitional
patterns, the greater the ratio, the higher the rank; wbilenégative transitional patterns (shown
in Table VI), the less the ratio, the higher the rank.

The first positive transitional pattern, produgk12925}, has a support rank of 72 in the
whole Retail dataset, which represents a mediocre frequdfrom its significant milestone,
we notice that before the milestone 58.52%, its frequendyss a little bit greater than the
minimum support threshold (which is 0.5%); but its frequeitcreases over 6 times after its

significant milestone, which is twice as much as its freqyeover the whole Retail dataset.

4A Stock Keeping Unit, or SKU, is a unique identifier for eachtitict product or service that can be ordered from a supplier
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TABLE VI

ToP 16 NEGATIVE TRANSITIONAL PATTERNS IN RETAIL DATASET

ok Transitional Pattern | sup™ (P) | sup’Y (P) | ( €¥(P), tran™ (P)) | sup(P) | support
P (%) (%) (%) %) | rank
1 (R1327} 31.8 5.03 ( 56.89, -84.2) 2026 | 54
2 {R39, R1327} 25.51 5.01 (39.52, -80.37) 1311 | 106
3 {RA8, R1327) 20.81 5.01 (37.77, -75.91) 10.98 | 143
4 (R32, R39, R41} 45 13.04 (42.93, -71.02) 2676 | 36
5 {R41, R225) 17.22 5.01 ( 40.44, -70.91) 995 | 161
6 (R32, Ra1} 60.82 17.92 ( 42.73, -70.53) 36.25 | 20
7 {R38, R39, R41} 57.87 17.19 (42.81, -70.29 34.61 22
8 {R32, R39, R41, R48} 31.07 9.34 ( 42.93, -69.94 18.67 63
9 {R38, R39, R41, R48} 37.63 11.34 (42.78, -69.87) 22.58 46
10 {R41, R65} 18.72 5.69 (42.97, -69.61) 11.29 137
11 {R38, R41} 73.31 22.37 ( 42.86, -69.48 44.2 17
12 (R1344} 16.35 5.01 ( 31.16, -69.36) 854 | 215
13 {R32, R41, R48} 38.71 11.89 ( 42.93, -69.29 23.4 42
14 {R38, R41, R48} 4455 13.76 (42.78, -69.12 26.93 35
15 (RA1} 27853 | 87.39 ( 42.97, -68.62) 16952 | 6
16 {R39, R41} 212.74 66.77 ( 42.95, -68.62 129.47 7

This unusual phenomena might be the result of a special erenind that time point, such
as a new advertisement or a sale promotion. In order to gatisftomers’ increasing demands
for product {R12925}, the store has to take actions to enhance the supply of tldupt.
Moreover, the supplies of produc{s:39} and { R48} need to be enhanced as well because of
their co-occurrences with produ¢fz12925} in the third and fifth positive transitional patterns.

As we can see from Table V, there are 3 itei39, R48 and R413 in the tenth positive
transitional pattern. This pattern can be easily ignoredrhglitional frequent pattern mining
framework since its support is relatively low (ranked 20Q oti1580). However, according to
the corresponding significant milestone, these produgisaptogether more frequently after the
milestone 57.38%. Therefore, putting these products dioseach other or starting a package
promotion for these products might be very useful in sellmgre of these products. This idea
is also backed up by the seventh and eighth positive transitipatterns.

The first 16 negative transitional patterns in Retail areetisn Table VI. The frequency of
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the sixth negative transitional pattefi?32, R41} is very high, ranked 20 out of 580 frequent
itemsets. Its frequency is much higher before the miles&h&3%, almost twice as much as
its frequency over the whole dataset; but it decreasesfgignily afterwards. This could be the
main reason why the frequencies of the fourth and eighthtivegiansitional patterns decrease
after almost the same time since prod¢&39} has the highest frequency in the Retail dataset
and appears in most of the top positive transitional pagtelNew marketing strategies should
be planned for product§R32} and { R41}, such as a new advertisement or price dropping, to
resume the sales volume for these two products and otheciatesb products.

Another interesting observation is that the significantestibtnes of most top negative transi-
tional patterns occur around 40% to 45%. This informatiolt @ncourage decision makers to
find out the reason and take corresponding actions to preliensales of these products from

decreasing further more.

B. Livelink web log data

The Livelink dataset was first used in [19] to discover inséirey association rules from
Livelink® web log data. This data set is not publicly available for pietary reasons. The log
files contain Livelink access data for a period of two monthgril and May 2002). The size of
the raw data is 7GB. The data describe more than 3,000,0@@segymade to a Livelink server
from around 5,000 users. Each request corresponds to gnienire log files. The detail of data
preprocessing, which transformed the raw log data into #ta that can be used for learning
association rules, was described in [19]. The resultingisasfile used in our experiment was
derived from the 10-minute time-out session identificatiwethod. The total number of sessions
(transactions) in the dataset is 30,586 and the total numibebject$ (items) is 38,679.

The top 16 positive and negative transitional patternsweliink dataset are shown in Table VII
and Table VIII, respectively. As we can see from the first rdWable VI, the object{ L15000}
is visited most frequently after the milestone 44.17% amdrg#gquency increases about 5 times.

This shows that users are very interested in the new inféoman {L15000} that are updated

SLivelink is a web-based product of Open Text Corporation.

6An object could be a document (such as a PDF file), a projeatrigien, a task description, a news group message, a

picture and so on [19].
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TABLE VII

ToP16 POSITIVE TRANSITIONAL PATTERNS IN LIVELINK DATASET

ank Transitional Pattern| sup™ (P) | sup?(P) | ( €M(P), tran™(P) ) | sup(P) | support
P (%) (%) (%) (%) rank
1 {L15000} 5.03 25.12 (44.17, +79.96) 1625 | 25
2 (L1375} 5.04 22.72 (62.87, +77.79 1161 | 35
3 (L8106} 5.03 15.6 ( 71.49, +67.75 8.04 65
4 (L544) 5.05 15.27 ( 56.96, +66.92 9.45 49
5 {L273} 5.58 16.26 (57.97, +65.69 1007 | 41
6 (L1381} 5.04 1451 ( 72.05, +65.28) 7.68 68
7 {L1509} 5.03 13.92 ( 45.5, +63.86) 9.87 44
8 {L545} 5.02 13.8 ( 57.36, +63.65 8.76 56
9 {L544, 1545} 5.02 13.65 (57.37, +63.2 8.7 57
10 {L135} 14.88 39.39 ( 74.94, +62.23) 21.02 | 14
11 {L135, 136} 12.96 33.92 ( 74.94, +61.81) 1821 | 18
12 {L136} 13.22 34.32 ( 74.94, +61.48) 1851 | 17
13 {109} 11.39 28.47 ( 43.05, +59.99 2112 | 13
14 (L1858} 6.75 15.37 ( 73.63, +56.09 9.02 55
15 (L2155} 5.04 11.28 ( 73.34, +55.35 6.7 81
16 (L1859} 5.39 11.83 (49.7, +54.4) 8.63 58

after the specific time. Therefore, objgdt15000} should be upgraded to a higher level so that
it can be more easily accessed by the users.

On the contrary, the frequency of the first negative tramséi pattern decreased significantly
from 50.31% to 7.24% after the milestone 40.42%. It is veryiobs that the information is
out-of-date or the users are not interested in it any moras Tthis object should be moved to a
corresponding lower level in order to give room to other imi@ot objects, such aSL15000}.

Object{L15000} is also in the sixth negative transitional pattefd. {5000, L15001}) and is
frequently visited together with 15001} by the users before the milestone 46.81%. However,
after that time, the frequencies of the fiftlh.1(001) and sixth negative transitional pattern
decrease significantly, which means that most of the users widit {15000} do not visit
{L15001} at the same time. Therefore, these two objects should bedrekifferently.

On the other hand, objec{d.135} and{L136} (see the eleventh positive transitional pattern)

should be in the same category and have links for the userdesadrom one to the other
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TABLE VI

TOP 16 NEGATIVE TRANSITIONAL PATTERNS IN LIVELINK DATASET

ok Transitional Pattern| sup™ (P) | sup’ (P) | ( €N(P), tran™ (P) ) | sup(P) | support
P (%) (%) (%) %) | rank
1 (1355} 50.31 7.24 (40.42, -85.6) 24.65 9
2 (1384} 26.56 5.01 (52.32, -81.15) 1628 | 24
3 (111034} 18.6 5.03 (32.35, -72.97) 9.42 | 50
4 (1434} 33.81 9.76 (59.47, -71.14) 24.06 | 10
5 {L15001} 17.03 5.04 ( 46.84, -70.39) 10.66 | 38
6 | {L15000,L15001} | 16.62 5.04 ( 46.81, -69.69) 10.46 | 40
7 (L1735} 22 7.75 ( 60.78, -64.76) 1641 | 22
8 {L396} 14.09 5.07 (52.91, -64.03 9.84 45
9 {1225, 1396} 13.54 5.07 ( 52.9, -62.56) 9.55 48
10 (L1322} 15.69 5.96 ( 41.26, -62.03 9.97 43
11 (1397} 16.78 6.92 ( 60.78, -58.79) 1201 | 31
12 (L225) 87.67 36.8 ( 61.08, -58.03 67.87 3
13 (187} 19.54 8.23 ( 31.29, -57.89 1177 | 34
14 | {1225, L1322} 11.73 5.01 (41.26, -57.29 7.78 67
15 | {1225, 1226} 67 30.15 ( 60.75, -55) 52.54
16 {L226} 68.24 31.32 ( 60.75, -54.1) 53.75 4

more easily becaus€L135}, {L136} and {L135, L136} are all positive transitional patterns

with similar supports and signifincant milestones.

C. Evaluation on scalability

To study the efficiency and scalability of the proposEd-minealgorithm, another set of
experiments is conducted on both Retail and Livelink dasadeor each dataset, we generate
a number of subsets with increasing numbers of transacti@nseach subset, we run tiAd-
mine algorithm with different support thresholds between 0.58d 2.5%. All the experiments
are performed on a double-processor server, which has RXeten 2.4G CPU and 2G main
memory, running on Linux with kernel version 2.6.

Figure 2 illustrates the execution time of the second phdsheoTP-minealgorithm (i.e.,
excluding the time for generating frequent patterns) ondifferently-sized subsets of the Retail

data set for different support threshold values. Figure @wshthat for the Livelink data set.
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Scalability with number of transactions in Retalil
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Fig. 2. Scalability on Retail dataset

As we can see from these figures, the second phase of ourthigonias linear scalability
against the number of transactions in the data set. Wd-Bsgrowthto mine frequent patterns
in the first phase, which has been shown to be linearly salatth the number of transactions
[16].

D. Comparison to Our Earlier Work on Transitional Patterns

We first introduced the concept of transitional patternsamdlgorithm for mining transitional
patterns and their significant milestones in [39]. In thgioakthm, for each frequent itemset we
calculated two supports of the pattern and the transiticat#d (if the two supports satisfy the
minimum support threshold) at eatime pointthat corresponds to a time stamp in the transaction
database, while in the new TP-mine algorithm presentedisnpidiper these values are calculated
at eachmilestonethat corresponds to the time point where the itemset océ&gs result, in
[39] a transitional pattern was defined as a frequent pattdiwse transitional ratio satisfies the
transitional pattern threshold at at least one of the timatpdi.e., time stamps). While in this
paper, a frequent pattern is a transitional pattern onlisifransitional ratio passes the threshold
at at least one of the time points where the pattern occunsilaly, the significant milestones

of a transitional pattern defined in this paper only occurhat time points where the pattern
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Scalability with number of transactions in LiveLink

a1

e tS = 0.25%
4.5 S ts = 0.5% ]
A+ | —— ts = 0.75% i
—— ts =1.0%
— 3.5 h
on —o—t =1.25%
P s
E 3 i
e
= 2.5 b
c
S
o 2 i
1.5 k
1 .
0.5

10 15 20 25 30 35
Number of transactions (K)

Fig. 3. Scalability on Livelink dataset

occurs, while in [39] a significant milestone can be at a timapwhere the pattern does not
occur. The benefits of such a change are as follows. By onlgkthg the time points where the
pattern occurs, the efficiency of transitional pattern mgnis improved. In addition, according to
[32] that discusses methods for detecting frequency chpogs in an event sequence, only the
time points where an event occurs can be the optimal changésgbat maximize the likelihood
of the event sequence when piecewise constant functiongsae to model the density of the
event occurrences. Furthermore, the event occurrencedomgs are usually more interesting
when monitoring the event changes. Thus, although theiti@mal ratio of a pattern may not
always peek at the pattern occurrence time points, focusimthe occurrence time points can
lead to faster, more interesting and potentially optimélitsons.

To show the speed-up of the new transitional pattern miniggrahm, we compared the new
TP-mine algorithm presented in this paper to the one predeint [39] in terms of run-time.
Figures 4 and 5 show the comparison on the Retail and Livelatk sets respectively. We can
see that the new TP-mine algorithm is faster than the old T nmalgorithm. The lower the
support threshold, the more significant the speed-up iseShe support threshold should usually
be set to a low value for large real data sets, such a speesldgsirable for real applications.

We also compared the top ten positive/negative transitipatierns generated by the old TP-
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Fig. 4. Run-time comparion on the Retail data set

mine algorithni and the ones generated by the new TP-mine algorithm on betRéfail and
Livelink data sets. The transitional patterns on each listranked according to the absolute
value of the transitional ratio at the significant milestové found that for the Retail data set,
the lists of top ten positive transitional patterns discedeby the two algorithms are the same,
i.e., they contain the same patterns in the same order. hgdhto their significant milestones
and the transitional ratios at these milestones, we fouatlttie significant milestone (and its
corresponding transitional ratio) of a pattern identifigddme algorithm is either the same or
very close to the one discovered by the other algorithm. Tiggdst absolute difference in the
significant milestone i$.37% and the biggest absolute difference in the highest tramsiti
ratio is 0.19%. Comparing the lists of top ten negative transitional pagediscovered by the
two algorithms from the Retail data set, the similarity ismewstronger. Not only are the two
lists the same, the significant milestones and their coomdipg transitional ratios discovered
by the two algorithms are exactly the same for 9 of the 10 psteOnly for one pattern,
a minor difference exists. The same observation holds fertio lists of top ten negative

transitional patterns discovered by the two algorithms loa Ltivelink data set. For the two

"The top ten results from theld TP-mine algorithm were listed in [39]. Here we only descrthe differences between the
results from the two algorithms.
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Fig. 5. Run-time comparison on Livelink data set

lists of top ten positive transitional patterns generatgdte two algorithms on the Livelink
data set, 9 patterns are common, 7 of which have the exaatlg sagnificant milestones and
corresponding transitional ratios and 2 of them have mirnfterénces in these two values. Only
on one pattern which appeared on the top ten list generateéldebgld algorithms but does not
appear on the top ten list by the new algorithm, we see signifidifference in the significant
milestone and its corresponding transitional ratio. Bazedhe above result we can say that in
almost all the cases, the transitional ratio reaches thamuam or minimum values at or near
a time point where the pattern occurs. Thus, the new algorgheeds up the old one without
significantly losing information in terms of finding the maxam or minimum transitional ratios

and significant milestones of a transitional pattern.

VIl. RELATED WORK

In this section, we discuss existing work related to thediteamal pattern mining framework

proposed in this paper.

A. Emerging patterns

Emerging patterns proposed in [12] are defined as itemseaisendupport increase significantly

from one dataset to another. There are two major differebeéseen transitional patterns and
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emerging patterns. First, emerging patterns are used tareajhe significant difference between
two datasets. When applied to time-stamped datasets, emme@tterns are used to find contrasts
between two datasets with different time periods, whichepasated by a unchangeable time
point. Theoretically, emerging patterns can be considaseg@ositive transitional patterns with
the time point set to a constant value. As we can see from theeabxperimental results, the
significant milestones of transitional patterns can be fi¢r@int places in one dataset. Thus, at
a specific time point, the transitional ratio of a pattern Imigot reach its greatest value or even
close to 0. For example, the transitional ratio of pattBris at milestone 50% "D B is 0 (see
Table 1ll), and the transitional ratio of pattefiy; in the Livelink dataset is close to 0 at about
60%. If the constant time point is set to 50% or 60% in these datasets respectively, these
two interesting transitional patterns cannot be identiffeecond, emerging patterns are itemsets
whose growth rates are larger than a given threshold. Thetgnate of a patterX” with respect

to datasets); and D, is defined as7rowthRate(X) = jzgggjg The value of the growth rate

ranges from O taxo, while the transitional ratio used in our method is a norgeali measure
that ranges between -1 and 1. In addition, the value of thesitianal ratio is symmetric in the
sense that a pattern whose support increases, say, 10 titesespect to a milestone has the
same absolute value of the transitional ratio with the pattehose support decreases 10 time.

This feature makes it convenient for us to define positive meghtive transitional patterns.

B. Contrast sets

Bay and Pazzani [8] introduced the problem of detectingedifices across several contrasting
groups as that of finding all contrast-sets, which are catjans of attribute-value pairs, that
have meaningfully different support levels across the remting groups. This allows users to
answer queries of the form, “How are History and Computeeism® students different?” or
“What has changed from 1993 through 19987?”. They proposedSIRUCCO algorithm [8],
which is based on Bayardo’s Max-Miner [31] rule discovergaxlthm. In the level-wise search
for contrast sets, formed of conjunctions of attributewegpairs of length, the interestingness of
the conjunct is estimated by its statistical significaneseased using @ test with a Bonferroni
correction. In their application, they discovered trendstudent admissions to UCI in the years
from 1993 to 1998 by analyzing the frequency differences pétéern across the years. Different

from our approach, their approach focused on finding frequelifferences of a pattern (which is
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a conjunction of attribute-value pairs) between two or nmwetrasting groups of objects, where
time may or may not be the criterion used to assign the objatdsdifferent groups. In this
paper we focus on discovering patterns (which can be itemmetonjunctions of attribute-value

pairs) whose frequency dramatically changes over the garidime in a database.

C. Temporal association rules

Since it was formulated over a decade ago, the problem ofciedsm rule mining has
been extended in several ways, among which is the discovetgngporal association rules. A
temporal association rule is an association rule that haldismg specific time intervals. There are
several kinds of meaningful temporal association ruleduoting cyclic association rules (i.e., the
association rules that occur periodically over time) [2a)lendar-based temporal association rules
(i.e., the association rules w.r.t. precise or fuzzy matetafuser-given calendar schema) [22], and
temporal association rules over items’ lifespan (i.e.,gbégod between the first and the last time
the item appears in transactions of a database) [6], etcp@mad to these temporal association
rule mining techniques, our proposed research is diffdretite following critical aspects. First,
temporal association rules are based on user-defined titee/aits, such as months, years, or
other calendar-based constrains, while the transitioattepn mining technique automatically
finds significant milestones of the patterns, which are unknbefore the mining process. As
we can see from the experimental results, significant noifesst of transitional patterns are
distributed throughout a wide range in the databases, ayddén hardly fit into a specific time
interval. Second, very strong rules tend to be strong in atrat) time intervals. Thus, they are
usually considered to be valid temporal association ruBes.most of them are not interesting
because they can be easily identified by the users with consaose. Transitional patterns, on
the contrary, usually do not have very high frequency, andlmaeasily ignored by the users in

the traditional pattern mining model, which has been dermnatesi in our experimental results.

D. Sequential Patterns and Frequent Episodes

Many previous studies also consider time stamps in the datalvhen mining frequent
patterns. Representative work includes mining sequepaé#terns [5], [27], [30] and mining
frequent episodes [24]. A sequential pattern, defined firs[5i, is a sequence of elements

whose occurrence frequency in a set of sequences (callequersse database) is no less than
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a minimal support threshold. Early sequential pattern ngralgorithms (e.g., in [5], [30]) are
based on a level-wise candidate generation and testinggspt which lengtf- candidates are
generated from the frequent sequences of legthl and then tested by scanning the database
to compute the frequency of each candidate. Some lateriddgm improve the efficiency of
sequential pattern mining by, e.g., using a recursive dhadd-conquer procedure that generates
the complete set of frequent sequences without candidaterggon and testing [27].

In [24], a framework for discovering frequent episodes iquantial data was proposed. An
episode is a collection of events that occur relatively eltmseach other in a given partial order.
An episode can bserial, in which events occur in a sequenceparallel, in which no constraints
are posed on the relative order of the events. In [24], anriéhgo was proposed to find all the
frequent episodes in an event sequence, which satisfy aspeeified support threshold. The
paper also presented an algorithm for producing rules thstribe the associations between the
discovered frequent episodes.

The above algorithms make use of the time information in th&althse to find frequent
sequential relationships between events or itemsetsidrptper, we focus on finding the events
or itemsets whose own frequency changes significantly dwertime period of the database

without considering the sequential relationships betwdiéfierent events or itemsets.

E. Change detection in event sequences, time series andstiatans

The problem of finding the significant milestones of a traosdl pattern is related to the
problem of finding the optimal k-partition of an event sequeerliscussed in [32]. An event
sequence is a list of events ordered according to their oecce times. It is often useful to
detect changes in the frequency or density of event ocotgeerin [32], approaches to detecting
optimal change points in a sequence of events of a single wgre proposed and compared.
Their approaches, based on dynamic programming or Mark@nchonte Carlo methods,
partition an event sequence inkosubsequences by finding— 1 change points that maximize
the Poisson likelihood of the data, and then compute a piseesonstant function to model
the intensity of the event, which expresses the instantan@oobability of occurrence of an
event as a function of time. Our problem of finding the sigaificmilestones of a transitional
pattern can be considered as that of partitioning a traisactatabase (i.e., a sequence of

transactions) intd: partitions wherek = 2. The major differences between our approach and

February 18, 2009 DRAFT



30

the approaches in [32] are as follows. First, we use the itranal ratio defined in Section 3
to evaluate time points and identify the ones whose frequehanges the most significantly
based on the transitional ratio, while the approaches i fj@ the change points by dynamic
programming or stochastic simulation that optimizes thelihood of the data. Second, we
focus on analyzing frequent patterns and finding all thesitemmal patterns and their significant
milestones from a transaction database. Since each pdtepresented by an itemset) in our
approach can be considered as an event type in the probléngset[32], our approach deals
with multiple event types. In comparison, the approachd82j focus on findingk — 1 change
points in an event sequence that consists of events of aesipgé, which may or may not be
frequent.

Methods have also been proposed for change point deteatianime series in both statistical
and data mining literature. Standard methods include thes am [14], [17], [18], [35]. These
methods worked under the assumptions that the number ofjehawints is known apriori and
that a stationary known model can be used to fit the subsequegigveen successive change
points. In [13], these assumptions are removed and chanigéspare found in a hierarchical
way by repeatedly splitting the time series that maximibesdtatistical likelihood of the change
points. The splitting process is stopped when the likelthbecomes stable or starts to increase
according to a user-defined stability threshold. Our methitidrs from these methods in that we
are not dealing with time series data although the data wevddamay be converted into a set
of time series data (i.e., one time series for one frequentset) if a good frequency function can
be found for each frequent itemset. In addition, we focus ndirfig the significant milestones
for all the transitional patterns, which correspond to filgdthe most significant change points
in the multiple sequences instead of a single sequence.

Change detection is also an important issue in data streammgniA data stream is a
continuous flow of data often generated at a high speed in andirn time-changing environment.
It is often required that a data stream be quickly analyzezhinnline fashion with only one pass
of data. A framework for diagnosing frequency changes ineti@ution of fast data streams was
presented in [2], in which velocity density estimation iedgo create both temporal velocity
profiles and spatial velocity profiles at periodic instamtdime. The velocity density estimates
the rate at which the changes in the data density are ocguatireach spatial location based

on some user-defined temporal window. Kernel density esitim33] is used in the definition

February 18, 2009 DRAFT



31

of the velocity density. In contrast to the approach we presthe framework was applied to
understand changes in multi-dimensional data streamg dfffierential kernel density estimation
functions with various window sizes. In evolving data stnsathe same data spaces are used
at different points in time while the data items change. Aeotapproach to analyzing the
distribution changes in data streams was proposed in [2t§. dpproach was based on a two-
window paradigm, in which the data in some reference windewdmpared to the data in a
current window which slides forward with each incoming dathe method passes the data once
and provides proven guarantees on the statistical signdecaf detected change. Different from
data stream mining, we focus on detecting changes on hdataand static data without real

time constraints.

F. Histogram

Our work can also be compared with the histogram techniged us statistics. Although a
histogram can illustrate the frequency distribution of aialale over a time period, it is only a
graphic tool for human to look at the distribution of a vateabNhen applying to analyzing the
frequency distributions of frequent itemsets in a trarieaatlatabase, we would need to draw a
histogram for each of the frequent pattern. When the numbigeguent patterns is large (which
is usually the case for real applications), the amount ofkwvolved is huge and the user can
be easily overwhelmed by too many graphs.

In comparison, with the transitional pattern mining tecjug proposed in this paper, patterns
with interesting distributions can be identified easilythé user would like to see the distribution
of such patterns, he/she can use histograms to look at thdetails. But without first identifying
such patterns, the user may not have an idea as to whichrsatbould be looked at.

In addition, when applying histograms to the transacticialkse, the user needs to discretize
the time variable into intervals. Without knowing how thetpens are evolving, it is not an easy
job to choose a good discretization. With our technique, weak need to split the time period

into intervals.

VIII. CONCLUSIONS ANDFUTURE WORK

A limitation of existing frequent itemset mining framewoik that it does not consider the

time stamps associated with the transactions in the daaBasa result, dynamic behavior of
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frequent itemsets cannot be discovered. In this paper, Wwedinced a novel type of patterns,
positive and negative transitional patterns, to repre$emjuent patterns whose frequency of
occurrences changes significantly at some points of time fram@saction database. We also
defined the concepts of significant frequency-ascendingstaihes and significant frequency-
descending milestones to capture the time points at whiehfrdquency of patterns changes
most significantly. To discover transitional patterns, wepgosed thé P-minealgorithm to mine
the set of positive and negative transitional patterns wapect to a pattern support threshold
and a transitional pattern threshold. Our algorithms takesdatabase scan after mining frequent
patterns to find the transitional patterns and their sigmfienilestones. Our experimental results
showed that the proposed algorithm is highly scalable.

In our experimental study, we demonstrated the usefulniesargsitional patterns in two real-
world domains and showed that what is revealed by the tranaitpatterns and their significant
milestones would not be found by the standard frequent ppatténing framework. As there are
concerns about the practical usefulness of data mininghigohs, we hope that the research
presented in this paper brings a promising avenue to lookeatlaita from a new angle, which
allows us to find new, surprising, useful and actionablegpast from data.

In the future, we would like to extend this work in the followg directions. First, we would
like to investigate whether other designs of the transitioatio would lead to better discovery
of transitional patterns and their milestones. Second, waldvlike to identify other types of
patterns (such as periodical patterns) by analyzing theodesed milestones. Moreover, finding
sequential transitional patterns is another interestomictthat we would like work on in the

future.
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