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Abstract

A transaction database usually consists of a set of time-stamped transactions. Mining frequent

patterns in transaction databases has been studied extensively in data mining research. However, most

of the existing frequent pattern mining algorithms (such asApriori andFP-growth) do not consider the

time stamps associated with the transactions. In this paper, we extend the existing frequent pattern mining

framework to take into account the time stamp of each transaction and discover patterns whose frequency

dramatically changes over time. We define a new type of patterns, called transitional patterns, to capture

the dynamic behavior of frequent patterns in a transaction database. Transitional patterns include both

positive and negative transitional patterns. Their frequencies increase/decrease dramatically at some time

points of a transaction database. We introduce the concept of significant milestones for a transitional

pattern, which are time points at which the frequency of the pattern changes most significantly. Moreover,

we develop an algorithm to mine from a transaction database the set of transitional patterns along with

their significant milestones. Our experimental studies on real-world databases illustrate that mining

positive and negative transitional patterns is highly promising as a practical and useful approach for

discovering novel and interesting knowledge from large databases.

Index Terms

Data mining, association rule, frequent pattern, transitional pattern, significant milestone.

I. INTRODUCTION

The problem of mining frequent itemsets is to find all the itemsets from a transaction database

that satisfy a user specified support threshold. It is one of the fundamental and essential oper-

ations in many data mining tasks, such as association rule mining [3], [4], [34], sequential

pattern mining [5], [29], structured pattern mining [15], correlation mining [10], and associative

classification [23]. Since it was first introduced by Agrawalet al. [3] in 1993, the problem of

frequent itemset mining has been studied extensively. As a result, a large number of algorithms

have been developed in order to efficiently solve the problem, including the most well-known

Aproiri [4] FP-growth [16], andEclat [40] algorithms.

In practice, the number of frequent patterns generated froma data set are often excessively

large, and most of them are useless or simply redundant. Thus, there has been interest in

discovering new types of patterns, including maximal frequent itemsets [1], [11], [31], closed

frequent itemset [26], [28], [41], indirect associations [36]–[38] and emerging patterns [7], [12],
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[21]. Mining for maximal or closed frequent itemsets greatly reduces the number of generated

patterns by generating only the largest frequent itemsets with no frequent superset or no superset

of higher frequency. Indirect associations are closely related to negative associations in that they

both represent itemsets that do not have sufficiently high support. Indirect associations provide an

effective way to detect interesting negative associationsby discovering only “infrequent itempairs

that are highly expected to be frequent” without using negative items or domain knowledge.

Emerging patterns are defined as itemsets whose frequency increase significantly from one data

set to another. They can capture emerging trends from one database to the other.

A common characteristic of the above learning methods is that they treat the transactions in a

database equally and do not consider the time stamps associated with the transactions. Therefore,

the dynamic behavior of the discovered frequent patterns cannot be revealed by these methods. In

this paper, we extend the traditional frequent pattern mining framework to take into account the

time stamp of each transaction, i.e., the time when the transaction occurs. We define a new type of

patterns, called transitional patterns, to represent patterns whose frequency dramatically changes

over time. Transitional patterns include both positive andnegative transitional patterns (to be

defined in Section III). The frequency of a positive transitional pattern increases dramatically at

some time point of a transaction database, while that of a negative transitional pattern decreases

dramatically at some point of time. We illustrate transitional patterns using an example as follows.

Consider an example databaseTDB as shown in Table I, which has 16 transactions of 8

items. Let’s focus on two patterns,P1P2 andP1P3. Without considering the time information of

these transactions,P1P2 andP1P3 have the same significance in the traditional frequent pattern

framework since they have the same frequency 62.50%. However, interesting differences between

these two patterns can be found after we consider the time information of each transaction in the

database, as shown in the third column of Table I. For simplicity, supposeTDB contains all the

transactions from November 2005 to February 2007, one transaction per month. We can easily

see that before (and including) May 2006, patternP1P2 appears every month; but after May

2006,P1P2 only occurs 3 times in 9 transactions, which is equivalent toa frequency of 33.33%.

That is to say that the frequency or support of patternP1P2 decreases significantly after May

2006. On the other hand, after July 2006, the frequency of pattern P1P3 increases significantly

from 33.33% to 100%.

The above observations have shown that frequent patterns discovered by standard frequent
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TABLE I

AN EXAMPLE TRANSACTION DATABASE TDB

TID List of itemIDs Time stamp

001 P1, P2, P3, P5 Nov. 2005

002 P1, P2 Dec. 2005

003 P1, P2, P3, P8 Jan. 2006

004 P1, P2, P5 Feb. 2006

005 P1, P2, P4 Mar. 2006

006 P1, P2, P4, P5, P6 Apr. 2006

007 P1, P2, P3, P4, P6 May. 2006

008 P1, P4, P6 Jun. 2006

009 P4, P5, P6 Jul. 2006

010 P1, P2, P3, P4, P5, P6 Aug. 2006

011 P1, P3, P4, P6 Sep. 2006

012 P1, P3, P5 Oct. 2006

013 P1, P2, P3, P6, P7 Nov. 2006

014 P1, P3, P4, P5 Dec. 2006

015 P1, P3, P4 Jan. 2007

016 P1, P2, P3, P5 Feb. 2007

pattern mining algorithms may be different in terms of theirdistributions in a transaction database.

However, such patterns cannot be distinguished with the standard algorithms. The objective of

the research presented in this paper is to distinguish such frequent patterns, discover frequent

patterns whose frequency changes significantly over time and identify the time points for such

significant changes.

Transitional patterns have a wide range of potential applications. For example, in the market

basket scenario, transitional patterns allow business owners to identify those products or com-

binations of products that have recently become more and more popular (or not as popular as

before) so that they can adjust their marketing strategy or optimize product placement in retail

environments. In medical domains, a significant increase inthe occurrence of certain symptom

in a group of patients with the same disease may indicate a side effect of a new drug. Finding

the time point when this symptom starts to occur may help to identify the drug that causes the

problem. These patterns can also be used in Web applications, for example, for dynamically
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restructuring Web sites by adding links between those pageswhose frequency of being visited

together becomes more frequent.

The contributions of this paper are summarized as follows.

• We propose a framework for mining a new class of patterns, called transitional patterns.

The frequencies of these patterns change significantly at some time points of a transaction

database.

• We introduce the concept of significant milestones for each transitional pattern, which are

specific time points at which the frequency of the pattern increases or decreases most

significantly.

• An algorithm, calledTP-mine, is designed to mine the set of transitional patterns along with

their significant milestones. We show through experiments that the proposed algorithm is

highly scalable.

• We present an experimental study to verify the usefulness and effectiveness of transitional

patterns. Our results illustrate that mining positive and negative transitional patters is highly

promising as a practical approach to discovering new and interesting knowledge from large

databases.

The remaining of the paper is organized as follows. In Section II we review the terminologies

used in frequent pattern mining. The concepts of positive and negative transitional patters

and their significant milestones are introduced in Section III and Section IV, respectively.

In Section V, we present an algorithm for mining transitional patterns and their significant

milestones. In Section VI, we present an experimental studyto demonstrate the utility of

transitional patterns in two real-world datasets and the scalability of the proposed algorithm.

In Section VII, we compare our method with related work. Finally, in Section VIII, we conclude

paper and present some ideas for future work.

II. PRELIMINARIES AND NOTATIONS

Mining frequent patterns is one of the fundamental operations in data mining applications for

extracting interesting patterns from databases. In this session, we briefly review the basic concepts

of frequent pattern mining. Table II summarizes the notations that will be used throughout this

paper and their meanings.
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TABLE II

SUMMARY OF NOTATIONS AND THEIR MEANING

D a database of transactions

||S|| the cardinality of setS

TDB an example transaction database

cov(X) the cover of patternX in D

sup(X) the support of patternX in D

ρ(T ) the position of transactionT in D

τ i(X) the ith transaction of patternX in D

ξi(X) the ith milestone of patternX in D

Tξ a range ofξi(X) in D

supi
−(X) the support of patternX before itsith milestonein D

supi
+(X) the support of patternX after its ith milestonein D

trani(X) the transitional ratio of patternX at its ith milestone inD

ts pattern support threshold

tt transitional pattern threshold

PTP positive transitional pattern

NTP negative transitional pattern

〈ξM(X), tranM(X)〉 significant frequency-descending milestone ofX

〈ξN (Y ), tranN (Y )〉 significant frequency-descending milestone ofY

Let I = {i1, i2,. . . , im} be a set ofm distinct items. A subsetX ⊆ I is called anitemsetor a

pattern. A k-itemset is an itemset that containsk items. In this paper, we useAB to represent

pattern{A, B}, whereA ∈ I and B ∈ I, for simplicity. A transaction overI is a coupleT

= (tid, I) where tid is the transaction identifier (or time-stamp) andI ⊆ I is an itemset. A

transactionT = (tid, I) is said to support an itemsetX ⊆ I, if and only if X ⊆ I. A transaction

databaseD over I is a set of transactions overI.

The coverof an itemsetX in D, denoted ascov(X, D), consists of the set of transactions in

D that supportX:

cov(X,D) := {(tid, I) | (tid, I) ∈ D, X ⊆ I}.

An itemsetX in a transaction databaseD has asupport, denoted assup(X, D), which is the
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ratio of transactions inD containingX. That is,

sup(X,D) :=
‖cov(X,D)‖

||D||
,

where‖S‖ is the cardinality of setS. In the rest of the paper we omitD whenever it is clear

from the context.

Given a transaction databaseD and a user specified minimum support thresholdmin sup, an

itemsetX is called a frequent itemset or frequent pattern inD if sup(X) ≥ min sup. Accordingly,

X is called an infrequent itemset or infrequent pattern ifsup(X) < min sup. The problem of

mining frequent patterns is to find the complete set of frequent patterns in a transaction database

with respect to a given support threshold.

III. T RANSITIONAL PATTERNS

In this section we first define several concepts relevant to our proposed framework, and then

present formal definitions of positive and negative transitional patterns.

A. Definition of milestone

In order to provide formal definitions of transitional patterns, we first introduce the concept

of a pattern’smilestones.

Definition 3.1: Assuming that the transactions in a transaction databaseD are ordered by their

time-stamps, thepositionof a transactionT in D, denoted asρ(T ), is the number of transactions

whose time-stamp is less than or equal to that ofT . Thus,1 ≤ ρ(T ) ≤ ‖D‖.

Definition 3.2: Theith transactionof a patternX in D, denoted asτ i(X), is theith transaction

in cov(X) with transactions ordered by their positions, where 1≤ i ≤ ‖cov(X, D)‖.

Definition 3.3 (ith milestone):The ith milestoneof a patternX in D, denoted asξi(X), is

defined as:

ξi(X) :=
ρ(τ i(X))

‖D‖
× 100% (1)

where 1≤ i ≤ ‖cov(X)‖.

According to this definition, theith milestone of patternX represents the relative position

(expressed in a percentage) of theith transaction ofX in D. For instance, in the example database

TDB in Table I, we haveξ4(P1P2) = 4
16

= 25% andξ4(P1P3) = 10
16

= 62.5%.
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Definition 3.4: The support of a patternX before itsith milestone inD, denoted assupi
−(X),

is defined as:

supi
−(X) :=

i

ρ(τ i(X))
(2)

where 1≤ i ≤ ‖cov(X)‖.

Definition 3.5: The support of a patternX after its ith milestone inD, denoted assupi
+(X),

is defined as:

supi
+(X) :=

‖cov(X)‖ − i

‖D‖ − ρ(τ i(X))
(3)

where 1≤ i ≤ ‖cov(X)‖.

For example,sup6
−(P1P2) = 1.0 andsup6

+(P1P2) = 0.4.

B. Transitional Ratio

We definetransitional ratio below to measure the difference of a pattern’s frequency before

and after itsith milestone.

Definition 3.6 (Transitional Ratio):The transitional ratio of patternX at its ith milestone in

D is defined as:

trani(X) :=
supi

+(X) − supi
−(X)

MAX(supi
+(X), supi

−(X))
(4)

where1 ≤ i ≤ ‖cov(X)‖.

It’s easy to see that the higher the absolute transitional ratio of a pattern at itsith milestone,

the greater the difference between its supports before and after its ith milestone. A nice feature

of this definition is that the value of a transitional ratio isbetween -1 and 1. As for transitional

patterns, we are interested in patterns whose absolute values of transitional ratio are large, which

are defined below.

C. Positive and negative transitional patterns

Definition 3.7 (Transitional Pattern):A patternX is aTransitional Pattern(TP) in D if there

exists at least one milestone ofX, ξk(X) ∈ Tξ, such that:

(a) supk
−(X) ≥ ts andsupk

+(X) ≥ ts;

(b) |trank(X)| ≥ tt.
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whereTξ is a range ofξi(X) (1 ≤ i ≤ ‖cov(X)‖), ts andtt are calledpattern support threshold

and transitional pattern threshold, respectively. Moreover,X is called aPositive Transitional

Pattern(PTP) whentrank(X) > 0; andX is called aNegative Transitional Pattern(NTP) when

trank(X) < 0.

Let us explain the rangeTξ first. In order to obtain reliable values forsupi
−(X) andsupi

+(X),

the numbers of transactions beforeξi(X) and afterξi(X) should not be too small. Otherwise, a

“uniformly distributed” frequent pattern that happens to occur in the first few (or the last few)

transactions may have a large absolute value of transitional ratio due to the fact that its support

is too high beforeξi(X) (or after ξi(X)). Thus,ξi(X) should be in an appropriate rangeTξ, to

allow a reasonable amount of data beforeξi(X) and afterξi(X) in the database. Moreover, in

practice,Tξ can be specified by the user according to their own interest. For instance, in order

to find interesting patterns in the example databaseTDB which occur during the year 2006,

Tξ should be set to [12.50% ... 87.50%], since 12.50% is the starting time point for 2006 and

87.50% is the ending point of 2006.

The reason we have condition (a) for a transitional pattern is that, if we do not have this

condition, any pattern that does not occur at the beginning of the transaction database has a

transitional ratio very close to 1 when the pattern first occurs in the database (or any pattern that

does not occur at the end of the transaction database has a transitional ratio equal to -1 after its last

occurrence in the database). However, such a pattern may be just a sporadic pattern that occurs

occasionally in the database, which is not interesting at all. By adding condition (a), a transitional

pattern is also a frequent pattern in the database with respect to pattern support thresholdts 1. In

other words, we are only interested in frequent patterns whose frequency changes dramatically

before and after one of its milestones in the transaction database. In practice,ts should be set to a

low value for real datasets, as experienced in frequent pattern mining. Intuitively, the transitional

pattern thresholdtt should be set to a value higher than or equal to0.5.

1It is trivial to prove that if a patternX is frequent beforeξi(X) and afterξi(X), it must be frequent in the whole database.

However, please note that if a pattern is frequent onD with respect tots, there may not exist a milestoneξi(X) such that

supi
−(X) ≥ ts and supi

+(X) ≥ ts. Therefore, if we want to find all the transitional patterns in a set of frequent patterns

discovered with support thresholdmin sup, the pattern support thresholdts for transitional patterns should be set to be smaller

thanmin sup. We consider this problem to be a different problem from whatthis paper is concerned about. The pattern support

thresholdts in Definition 3.7 is only for defining transitional patterns to avoid generalization over insufficient data.
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For example, ifts = 0.05 and tt = 0.5, patternP1P3 in the example databaseTDB is

a positive transitional pattern because there exists a milestone ofP1P3, such asξ5(P1P3) =

68.75% corresponding to the end of September 2006, where the transitional ratio of the pattern

is greater than 0.5 and the pattern is frequent before and after the milestone. Similarly,P1P2 is

a negative transitional pattern inTDB.

Note that, theoretically, a patternX can be both a positive transitional pattern and a negative

transitional pattern in the same transaction database if there exist two milestonesξm(X) and

ξn(X) so that conditions (a) and (b) are satisfied at bothξm(X) and ξn(X), wheretranm(X)

> 0 and trann(X) < 0. For example, in the example databaseTDB, patternP4P6 is both a

positive transitional pattern and a negative transitionalpattern because its transitional ratio at

milestoneξ1(P4P6) is +66.67% and the one at milestoneξ5(P4P6) is −66.67%, and condition

(a) is also satisfied at both milestones.

IV. SIGNIFICANT MILESTONES

There may be multiple milestones at which a transitional pattern satisfies conditions (a) and

(b) in Definition 3.7. People are usually interested in the milestones where the frequency of a

transitional pattern changes the most significantly. Belowwe define the concept ofsignificant

milestonesto represent such positions. The significant milestones canbe classified into frequency-

ascending milestones and frequency-descending milestones.

A. Significant frequency-ascending milestone

Definition 4.1 (Significant frequency-ascending milestone): The significant frequency-ascending

milestone of a positive transitional patternX with respect to a time periodTξ is defined as a

tuple, 〈ξM(X),tranM(X)〉, whereξM(X) ∈ Tξ is theMth milestone ofX such that:

1) supM− (X) ≥ ts;

2) ∀ ξi(X) ∈ Tξ, tranM(X) ≥ trani(X).

Table III lists the transitional ratios of four patterns in the example databaseTDB with Tξ =

[25%, 75%]. Figure 1 illustrates how the transitional ratios of these four patterns change along

their milestones. Assuming that the support threshold is 5%and the transitional pattern threshold

is 50%,P1P3 and P4P6 are positive transitional patterns. The significant frequency-ascending
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TABLE III

M ILESTONES AND TRANSITIONAL RATIOS OF EXAMPLE PATTERNS WITHTξ = [25%, 75%]IN TDB (%)

i ξi(P1) trani(P1) ξi(P1P2) trani(P1P2) ξi(P1P3) trani(P1P3) ξi(P4P6) trani(P4P6)

1 37.50% +66.67

2 43.75% +35.71

3 43.75% +44.90 50.00% 0

4 25.00% -8.33 25.00% -50 62.50% +60 56.25% -35.71

5 31.25% -9.09 31.25% -54.55 68.75% +54.55 62.50% -66.67

6 37.50% -10 37.50% -60 75.00% +50 68.75% -100

7 43.75% -11.11 43.75% -66.67

8 50.00% -12.5 62.50% -44.90

9 62.50% +11.11

10 68.75% +10

11 75.00% +9.09

milestone forP1P3 is 〈62.5%, +60〉, and the significant frequency-ascending milestone forP4P6

is 〈37.50%, +66.67〉.

The reason for having condition 1) in Definition 4.1 is as follows. Positive transitional patterns

usually occur sporadically at the beginning of the transaction database and are more heavily

distributed at the latter part of the database. For such sporadic occurrences, the transitional

ratios at the corresponding milestones may be very high, butthese positions are not interesting

because the sporadic nature of the occurrence.

For example, suppose that in a dataset with 1000 transactions, a positive transitional pattern

occurs in every transaction in the second half of the database, but sporadically occurs 10 times

between the 100th and the 500th transactions. Assume that its first occurrence is at the 100th

transaction, its transitional ratio is98.23% at the 1st milestone (corresponding to the 100th

transaction) and its transitional ratio is only98% at the10th milestone (corresponding to the 500th

transaction). But the latter milestone is much more interesting. By using constraintsupM− (X)

≥ ts, sporadic occurrences of a pattern at the beginning of the database are not considered as

significant milestones because the pattern is infrequent atthat milestone and we haven’t had

enough information to see the trend of the pattern yet.
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Fig. 1. Transitional ratios inTDB

Please note that the use of this constraint does not make us miss the significant milestone

in the situation where a positive transitional patternX starts to occur very often right after its

first milestone. In this case, the significant milestone ofX may or may not be at the place of

the first occurrence, but if not, it is not far away from the first milestone because the value of

supi
−(X) generally increases quickly asi gets larger. Please also note that sinceX is a positive

transitional pattern atξM(X), it is easy to see thatsupM+ (X) > ts sincesupM+ (X) > supM− (X)

andsupM− (X) ≥ ts.

B. Significant frequency-descending milestone

Similarly, the significant frequency-descending milestone for a negative transitional pattern is

defined below.

Definition 4.2 (Significant frequency-descending milestone): The significant frequency-descending

milestone of a negative transitional patternY with respect to a time periodTξ is defined as a

tuple, 〈ξN (Y ), tranN (Y )〉, whereξN (Y ) ∈ Tξ is theN th milestone ofY such that:

1) supN+ (Y ) ≥ ts;

2) ∀ ξj(Y ) ∈ Tξ, tranN (Y ) ≤ tranj(Y ).
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To give an example, patternsP1P2 and P4P6 in Table III are negative transitional patterns.

Their significant frequency-descending milestones are〈43.75%, -66.67〉 and 〈62.50%, -66.67〉,

respectively. The reason to have Condition 1) in Definition 4.2 is similar to that in Definition

4.1. Note that even though the transitional ratio ofP4P6 is −1 at its last milestone68.75%, it

can not be considered as a significant milestone because condition 1 in Definition 4.2 is not

satisfied, due to the fact thatP4P6 does not occur after that milestone.

Theoretically, a transitional pattern may have both significant frequency-ascending and signif-

icant frequency-descending milestones if it is both a positive and a negative transitional pattern.

Also, a positive (or negative) transitional pattern may have more than one significant frequency-

ascending (or frequency-descending) milestones.

The significant milestones capture the most significant changes of a transitional pattern within

a time period. In the real world, an evolving pattern may exist a more complicated trend (such

as periodically evolving trends). Such a pattern may not be captured as a transitional pattern if

its transitional ratio at any time point stays lower than thetransitional pattern threshold. Finding

such patterns is not a concern of this paper, but can be considered as future work.

V. M INING TRANSITIONAL PATTERNS AND THEIR SIGNIFICANT MILESTONES

In this section, we present an algorithm, calledTP-mine, for mining the set of positive and

negative transitional patterns and their significant milestones with respect to a pattern support

threshold and a transitional pattern threshold. The algorithm is given as follows.

A. TP-mine algorithm

Algorithm:

TP-mine. (Mine the set ofTransitional Patterns and their significant milestones)

Input:

A transaction database (D), an appropriate milestone range that the user is interested (Tξ),

pattern support threshold (ts) and transitional pattern threshold (tt).

Output:

The set of transitional patterns (SPTP andSNTP ) with their significant milestones.

Method:
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1: Extract frequent patterns,P1, P2, ..., Pn, and their supports using a frequent pattern

generation algorithm withmin sup= ts.

2: Scan the transactions from the first transaction to the last transaction beforeTξ to

compute the support counts,ck (1 ≥ k ≥ n), of all then frequent patterns on this part

of the database.

3: SPTP = ∅, SNTP = ∅

4: for all k = 1 to n do

5: MaxTran(Pk) = 0, MinTran(Pk) = 0

6: SFAM(Pk) = ∅, SFDM(Pk) = ∅

7: end for

8: for all transactionsTi whose position satisfyingTξ do

9: for k = 1 to n do

10: if Ti ⊇ Pk then

11: ck = ck + 1

12: if supck
− (Pk) ≥ ts and supck

+ (Pk) ≥ ts then

13: if tranck(Pk) ≥ tt then

14: if Pk /∈ SPTP then

15: Add Pk to SPTP

16: end if

17: if tranck(Pk) > MaxTran(Pk) then

18: SFAM(Pk) = {〈ξck(Pk), tranck(Pk)〉}

19: MaxTran(Pk) = tranck(Pk)

20: else if tranck(Pk) = MaxTran(Pk) then

21: Add 〈ξck(Pk), tranck(Pk)〉 to SFAM(Pk)

22: end if

23: else if tranck(Pk) ≤ −tt then

24: if Pk /∈ SNTP then

25: Add Pk to SNTP

26: end if

27: if tranck(Pk) < MinTran(Pk) then

28: SFDM(Pk) = {〈ξck(Pk), tranck(Pk)〉}
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29: MinTran(Pk) = tranck(Pk)

30: else if tranck(Pk) = MinTran(Pk) then

31: Add 〈ξck(Pk), tranck(Pk)〉 to SFDM(Pk)

32: end if

33: end if

34: end if

35: end if

36: end for

37: end for

38: return SPTP andSFAM(Pk) for eachPk ∈ SPTP

39: return SNTP andSFDM(Pk) for eachPk ∈ SNTP

There are two major phases in this algorithm. During the firstphase (Step 1), all frequent

itemsets along with their supports are initially derived using a standard frequent pattern generation

algorithm, such asApriori [4] or FP-growth [16], with ts as the minimum support threshold.

In the second phase (starting from Step 2 to the end), the algorithm finds all the transitional

patterns and their significant milestones based on the set offrequent itemsets. As mentioned

before, a pattern that is frequent before and after one of itsmilestones inD with respect to

support thresholdts must be frequent onD with respect to the same threshold. Thus, it is safe

for us to first mine the frequent itemsets on the entire database using the thresholdts and then

find the transitional patterns based on the set of frequent itemsets.

In Step 2, the support counts of all the frequent patterns on the set from the first transaction

to the transaction right before the time periodTξ are collected. They are used later in computing

supck
− (Pi), wherePi is a frequent pattern. Step 3 initializes the set of positivetransitional patterns

(SPTP ) and the set of negative transitional patterns (SNTP ) to empty. Steps 4-7 initialize the set of

significant frequency-ascending milestones for each frequent patternPk, SFAM(Pk), and the set of

significant frequency-descending milestones for each frequent patternPk, SFDM(Pk), to empty.

It also initializes the maximal and minimal transitional ratios of Pk, denoted byMaxTran(Pk)

andMinTran(Pk), to zero.

After the initializations, the algorithm continues to scanthe databaseD to find the milestones of

Pk within the rangeTξ. At each valid milestoneξck(Pk) during the scan, it calculates the support
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of Pk before ξck(Pk), i.e., supck
− (Pk), and the support ofPk after ξck(Pk), i.e., supck

+ (Pk)
2. If

both of them are greater thants, the algorithm then checks the transitional ratio ofPk. If the

ratio is greater thantt, thenPk is a positive transitional pattern and is added into the setSPTP .

Then, the algorithm checks whether the transitional ratio of Pk is greater than the current

maximal transitional ratio ofPk. If yes, the set of significant frequency-ascending milestones of

Pk, i.e., SFAM(Pk), is set to contain{〈ξck(Pk), tranck(Pk)〉} as its single element. If not but it

is equal to the current maximal transitional ratio ofPk, {〈ξck(Pk), tranck(Pk)〉} is added into

SFAM(Pk).

Similarly, Steps 23-32 are for finding the set of negative transitional patterns and their signif-

icant frequency-descending milestones.

B. Database scan and time complexity

If we do not consider the step for generating frequent patterns (i.e., Step 1), theTP-mine

algorithm scans the database only once to find all the transitional patterns and their significant

milestones with respect to a pattern support threshold and atransitional pattern threshold. Suppose

the number of frequent patterns generated from Step 1 isn, the time complexity of theTP-mine

algorithm from Step 2 to Step 35 isO(‖D‖+n×‖Tξ‖), where‖D‖ is the number of transactions

in D and‖Tξ‖ is maximum number of milestones ofPk (1 ≤ k ≤ n).

The number of database scans and time complexity in Step 1 depends on the algorithm used

for mining frequent patterns. For example, ifFP-growth [16] is used, only two database scans

are needed in Step 1. The total number of scans for mining transitional patterns is thus 3.

Please note that in our design of theTP-minealgorithm, finding transitional patterns is a

separate step after generation of frequent patterns. It might be possible to incorporate transi-

tional pattern mining into a frequent pattern mining process. However, it is not a good idea

to incorporate it into eitherApriori [4] or FP-growth [16], which are the two most popular

algorithms for mining frequent patterns.Apriori finds frequent patterns by multi-level candidate

generation and testing, which involves multiple database scans. Since transitional patterns do not

have the so-calleddownward closure property(i.e., a sub-pattern of a transitional pattern may not

2Note that the two supports,sup
ck

− (Pk) and sup
ck

+ (Pk), can be calculated based on the support count of the pattern before

ξck (Pk), which was collected in Step 2 and Step 11, and the support count of Pk over D computed in Step 1.

February 18, 2009 DRAFT



17

TABLE IV

DATABASE CHARACTERISTICS

Database
number of number of number of number of number of

Tξ
items transactions Frequent Patterns PTPs NTPs

Retail 16,470 88,163 580 21 48
[25%, 75%]

Livelink 38,679 30,586 125 22 22

ts = 0.5% andtt = 0.5

be a transitional pattern), the number of candidates evaluated inApriori cannot be reduced based

on the fact that a frequent pattern is found to be a transitional pattern. Thus, we would need

to compute the transitional ratio for each candidate, resulting in a much higher time complexity

than using the two-phaseTP-minealgorithm. As forFP-growth, since aFP-treedoes not contain

the time information of the transaction database, it is not possible to mine transitional patterns

from theFP-treewithout significant modification of the tree to adapt time information.

Therefore, we choose to design a two-phase algorithm to minetransitional patterns, i.e., mining

transitional patterns after mining frequent patterns. A benefit of such a design is that we can

make use of the existing efficient and scalable frequent pattern mining algorithms, such asFP-

growth, to improve the overall efficiency of the process. In the nextsection, we will show that

the second phase of theTP-minealgorithm is also highly scalable.

VI. EXPERIMENTAL STUDIES

To demonstrate the utility of transitional patterns and theefficiency of theTP-minealgorithm,

we have performed two sets of experiments using datasets from two real-world domains: retail

market basket and web log data. Table IV summaries the parameters of each dataset along with

the threshold values used in our experiments.

A. Retail market basket data

The Retail dataset was obtained from the Frequent Itemset Mining Dataset Repository3. It

contains the (anonymized) retail market basket data from ananonymous Belgian supermarket

3http://fimi.cs.helsinki.fi/data/
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TABLE V

TOP 16 POSITIVE TRANSITIONAL PATTERNS IN RETAIL DATASET

rank
Transitional Pattern supM

− (P ) supM
+ (P ) 〈 ξM(P ), tranM(P ) 〉 sup(P ) support

P (‰) (‰) (%) (‰) rank

1 {R12925} 5.10 32.92 〈 58.52, +84.52〉 16.64 72

2 {R14098} 5.01 29.53 〈 60.71, +83.05〉 14.64 88

3 {R39, R12925} 5.09 22.93 〈 68.88, +77.81〉 10.64 149

4 {R413} 6.24 26.38 〈 25.09, +76.34〉 21.32 49

5 {R48, R12925} 5.0 19.57 〈 70.72, +74.43〉 9.27 180

6 {R12929} 5.01 18.33 〈 74.44, +72.64〉 8.42 221

7 {R48, R413} 5.01 16.56 〈 31.92, +69.74〉 12.87 110

8 {R39, R413} 5.04 16.28 〈 30.81, +69.02〉 12.82 112

9 {R405} 5.09 15.03 〈 50.86, +66.15〉 9.97 160

10 {R39, R48, R413} 5.0 14.05 〈 57.38, +64.41〉 8.86 200

11 {R10515} 5.02 13.68 〈 42.47, +63.30〉 10 159

12 {R649} 5.02 12.54 〈 37.49, +59.94〉 9.72 166

13 {R389} 5.01 12.21 〈 38.71, +58.98〉 9.43 171

14 {R809} 5.22 12.62 〈 74.56, +58.65〉 7.1 305

15 {R49} 6.3 14.86 〈 25.21, +57.62〉 12.7 113

16 {R441} 5.32 11.52 〈 74.40, +53.80〉 6.91 323

store [9]. Over the entire data collection period, approximately 5 months, the supermarket store

carries16, 470 unique SKU’s4, and the total amount of receipts being collected equals88, 163.

Table V shows the first 16 positive transitional patterns in Retail. These patterns are ranked by

the transitional ratios at their significant frequency-ascending milestones. For positive transitional

patterns, the greater the ratio, the higher the rank; while for negative transitional patterns (shown

in Table VI), the less the ratio, the higher the rank.

The first positive transitional pattern, product{R12925}, has a support rank of 72 in the

whole Retail dataset, which represents a mediocre frequency. From its significant milestone,

we notice that before the milestone 58.52%, its frequency isjust a little bit greater than the

minimum support threshold (which is 0.5%); but its frequency increases over 6 times after its

significant milestone, which is twice as much as its frequency over the whole Retail dataset.

4A Stock Keeping Unit, or SKU, is a unique identifier for each distinct product or service that can be ordered from a supplier.
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TABLE VI

TOP 16 NEGATIVE TRANSITIONAL PATTERNS IN RETAIL DATASET

rank
Transitional Pattern supN

− (P ) supN
+ (P ) 〈 ξN (P ), tranN (P ) 〉 sup(P ) support

P (‰) (‰) (%) (‰) rank

1 {R1327} 31.8 5.03 〈 56.89, -84.2〉 20.26 54

2 {R39, R1327} 25.51 5.01 〈 39.52, -80.37〉 13.11 106

3 {R48, R1327} 20.81 5.01 〈 37.77, -75.91〉 10.98 143

4 {R32, R39, R41} 45 13.04 〈 42.93, -71.02〉 26.76 36

5 {R41, R225} 17.22 5.01 〈 40.44, -70.91〉 9.95 161

6 {R32, R41} 60.82 17.92 〈 42.73, -70.53〉 36.25 20

7 {R38, R39, R41} 57.87 17.19 〈 42.81, -70.29〉 34.61 22

8 {R32, R39, R41, R48} 31.07 9.34 〈 42.93, -69.94〉 18.67 63

9 {R38, R39, R41, R48} 37.63 11.34 〈 42.78, -69.87〉 22.58 46

10 {R41, R65} 18.72 5.69 〈 42.97, -69.61〉 11.29 137

11 {R38, R41} 73.31 22.37 〈 42.86, -69.48〉 44.2 17

12 {R1344} 16.35 5.01 〈 31.16, -69.36〉 8.54 215

13 {R32, R41, R48} 38.71 11.89 〈 42.93, -69.29〉 23.4 42

14 {R38, R41, R48} 44.55 13.76 〈 42.78, -69.12〉 26.93 35

15 {R41} 278.53 87.39 〈 42.97, -68.62〉 169.52 6

16 {R39, R41} 212.74 66.77 〈 42.95, -68.62〉 129.47 7

This unusual phenomena might be the result of a special eventaround that time point, such

as a new advertisement or a sale promotion. In order to satisfy customers’ increasing demands

for product {R12925}, the store has to take actions to enhance the supply of this product.

Moreover, the supplies of products{R39} and{R48} need to be enhanced as well because of

their co-occurrences with product{R12925} in the third and fifth positive transitional patterns.

As we can see from Table V, there are 3 itemsR39, R48 and R413 in the tenth positive

transitional pattern. This pattern can be easily ignored bytraditional frequent pattern mining

framework since its support is relatively low (ranked 200 out of 580). However, according to

the corresponding significant milestone, these products appear together more frequently after the

milestone 57.38%. Therefore, putting these products closeto each other or starting a package

promotion for these products might be very useful in sellingmore of these products. This idea

is also backed up by the seventh and eighth positive transitional patterns.

The first 16 negative transitional patterns in Retail are listed in Table VI. The frequency of
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the sixth negative transitional pattern{R32, R41} is very high, ranked 20 out of 580 frequent

itemsets. Its frequency is much higher before the milestone42.73%, almost twice as much as

its frequency over the whole dataset; but it decreases significantly afterwards. This could be the

main reason why the frequencies of the fourth and eighth negative transitional patterns decrease

after almost the same time since product{R39} has the highest frequency in the Retail dataset

and appears in most of the top positive transitional patterns. New marketing strategies should

be planned for products{R32} and{R41}, such as a new advertisement or price dropping, to

resume the sales volume for these two products and other associated products.

Another interesting observation is that the significant milestones of most top negative transi-

tional patterns occur around 40% to 45%. This information will encourage decision makers to

find out the reason and take corresponding actions to preventthe sales of these products from

decreasing further more.

B. Livelink web log data

The Livelink dataset was first used in [19] to discover interesting association rules from

Livelink5 web log data. This data set is not publicly available for proprietary reasons. The log

files contain Livelink access data for a period of two months (April and May 2002). The size of

the raw data is 7GB. The data describe more than 3,000,000 requests made to a Livelink server

from around 5,000 users. Each request corresponds to an entry in the log files. The detail of data

preprocessing, which transformed the raw log data into the data that can be used for learning

association rules, was described in [19]. The resulting session file used in our experiment was

derived from the 10-minute time-out session identificationmethod. The total number of sessions

(transactions) in the dataset is 30,586 and the total numberof objects6 (items) is 38,679.

The top 16 positive and negative transitional patterns in Livelink dataset are shown in Table VII

and Table VIII, respectively. As we can see from the first row of Table VII, the object{L15000}

is visited most frequently after the milestone 44.17% and its frequency increases about 5 times.

This shows that users are very interested in the new information in {L15000} that are updated

5Livelink is a web-based product of Open Text Corporation.

6An object could be a document (such as a PDF file), a project description, a task description, a news group message, a

picture and so on [19].
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TABLE VII

TOP 16 POSITIVE TRANSITIONAL PATTERNS IN L IVELINK DATASET

rank
Transitional Pattern supM

− (P ) supM
+ (P ) 〈 ξM(P ), tranM(P ) 〉 sup(P ) support

P (‰) (‰) (%) (‰) rank

1 {L15000} 5.03 25.12 〈 44.17, +79.96〉 16.25 25

2 {L1375} 5.04 22.72 〈 62.87, +77.79〉 11.61 35

3 {L8106} 5.03 15.6 〈 71.49, +67.75〉 8.04 65

4 {L544} 5.05 15.27 〈 56.96, +66.92〉 9.45 49

5 {L273} 5.58 16.26 〈 57.97, +65.65〉 10.07 41

6 {L1381} 5.04 14.51 〈 72.05, +65.28〉 7.68 68

7 {L1509} 5.03 13.92 〈 45.5, +63.86〉 9.87 44

8 {L545} 5.02 13.8 〈 57.36, +63.65〉 8.76 56

9 {L544, L545} 5.02 13.65 〈 57.37, +63.26〉 8.7 57

10 {L135} 14.88 39.39 〈 74.94, +62.23〉 21.02 14

11 {L135, L136} 12.96 33.92 〈 74.94, +61.81〉 18.21 18

12 {L136} 13.22 34.32 〈 74.94, +61.48〉 18.51 17

13 {L109} 11.39 28.47 〈 43.05, +59.99〉 21.12 13

14 {L1858} 6.75 15.37 〈 73.63, +56.09〉 9.02 55

15 {L2155} 5.04 11.28 〈 73.34, +55.35〉 6.7 81

16 {L1859} 5.39 11.83 〈 49.7, +54.4〉 8.63 58

after the specific time. Therefore, object{L15000} should be upgraded to a higher level so that

it can be more easily accessed by the users.

On the contrary, the frequency of the first negative transitional pattern decreased significantly

from 50.31% to 7.24% after the milestone 40.42%. It is very obvious that the information is

out-of-date or the users are not interested in it any more. Thus, this object should be moved to a

corresponding lower level in order to give room to other important objects, such as{L15000}.

Object{L15000} is also in the sixth negative transitional pattern ({L15000, L15001}) and is

frequently visited together with{L15001} by the users before the milestone 46.81%. However,

after that time, the frequencies of the fifth (L15001) and sixth negative transitional pattern

decrease significantly, which means that most of the users who visit {L15000} do not visit

{L15001} at the same time. Therefore, these two objects should be treated differently.

On the other hand, objects{L135} and{L136} (see the eleventh positive transitional pattern)

should be in the same category and have links for the user to access from one to the other
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TABLE VIII

TOP 16 NEGATIVE TRANSITIONAL PATTERNS IN L IVELINK DATASET

rank
Transitional Pattern supN

− (P ) supN
+ (P ) 〈 ξN (P ), tranN (P ) 〉 sup(P ) support

P (‰) (‰) (%) (‰) rank

1 {L355} 50.31 7.24 〈 40.42, -85.6〉 24.65 9

2 {L384} 26.56 5.01 〈 52.32, -81.15〉 16.28 24

3 {L11034} 18.6 5.03 〈 32.35, -72.97〉 9.42 50

4 {L434} 33.81 9.76 〈 59.47, -71.14〉 24.06 10

5 {L15001} 17.03 5.04 〈 46.84, -70.39〉 10.66 38

6 {L15000, L15001} 16.62 5.04 〈 46.81, -69.68〉 10.46 40

7 {L1735} 22 7.75 〈 60.78, -64.76〉 16.41 22

8 {L396} 14.09 5.07 〈 52.91, -64.03〉 9.84 45

9 {L225, L396} 13.54 5.07 〈 52.9, -62.56〉 9.55 48

10 {L1322} 15.69 5.96 〈 41.26, -62.03〉 9.97 43

11 {L397} 16.78 6.92 〈 60.78, -58.78〉 12.91 31

12 {L225} 87.67 36.8 〈 61.08, -58.03〉 67.87 3

13 {L87} 19.54 8.23 〈 31.29, -57.88〉 11.77 34

14 {L225, L1322} 11.73 5.01 〈 41.26, -57.28〉 7.78 67

15 {L225, L226} 67 30.15 〈 60.75, -55〉 52.54 5

16 {L226} 68.24 31.32 〈 60.75, -54.1〉 53.75 4

more easily because{L135}, {L136} and {L135, L136} are all positive transitional patterns

with similar supports and signifincant milestones.

C. Evaluation on scalability

To study the efficiency and scalability of the proposedTP-minealgorithm, another set of

experiments is conducted on both Retail and Livelink datasets. For each dataset, we generate

a number of subsets with increasing numbers of transactions. On each subset, we run theTP-

mine algorithm with different support thresholds between 0.5% and 2.5%. All the experiments

are performed on a double-processor server, which has 2 Intel Xeon 2.4G CPU and 2G main

memory, running on Linux with kernel version 2.6.

Figure 2 illustrates the execution time of the second phase of the TP-minealgorithm (i.e.,

excluding the time for generating frequent patterns) on thedifferently-sized subsets of the Retail

data set for different support threshold values. Figure 3 shows that for the Livelink data set.
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Fig. 2. Scalability on Retail dataset

As we can see from these figures, the second phase of our algorithm has linear scalability

against the number of transactions in the data set. We useFP-growth to mine frequent patterns

in the first phase, which has been shown to be linearly scalable with the number of transactions

[16].

D. Comparison to Our Earlier Work on Transitional Patterns

We first introduced the concept of transitional patterns andan algorithm for mining transitional

patterns and their significant milestones in [39]. In that algorithm, for each frequent itemset we

calculated two supports of the pattern and the transitionalratio (if the two supports satisfy the

minimum support threshold) at eachtime pointthat corresponds to a time stamp in the transaction

database, while in the new TP-mine algorithm presented in this paper these values are calculated

at eachmilestonethat corresponds to the time point where the itemset occurs.As a result, in

[39] a transitional pattern was defined as a frequent patternwhose transitional ratio satisfies the

transitional pattern threshold at at least one of the time points (i.e., time stamps). While in this

paper, a frequent pattern is a transitional pattern only if its transitional ratio passes the threshold

at at least one of the time points where the pattern occurs. Similarly, the significant milestones

of a transitional pattern defined in this paper only occur at the time points where the pattern
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Fig. 3. Scalability on Livelink dataset

occurs, while in [39] a significant milestone can be at a time point where the pattern does not

occur. The benefits of such a change are as follows. By only checking the time points where the

pattern occurs, the efficiency of transitional pattern mining is improved. In addition, according to

[32] that discusses methods for detecting frequency changepoints in an event sequence, only the

time points where an event occurs can be the optimal change points that maximize the likelihood

of the event sequence when piecewise constant functions areused to model the density of the

event occurrences. Furthermore, the event occurrence timepoints are usually more interesting

when monitoring the event changes. Thus, although the transitional ratio of a pattern may not

always peek at the pattern occurrence time points, focusingon the occurrence time points can

lead to faster, more interesting and potentially optimal solutions.

To show the speed-up of the new transitional pattern mining algorithm, we compared the new

TP-mine algorithm presented in this paper to the one presented in [39] in terms of run-time.

Figures 4 and 5 show the comparison on the Retail and Livelinkdata sets respectively. We can

see that the new TP-mine algorithm is faster than the old TP-mine algorithm. The lower the

support threshold, the more significant the speed-up is. Since the support threshold should usually

be set to a low value for large real data sets, such a speed-up is desirable for real applications.

We also compared the top ten positive/negative transitional patterns generated by the old TP-
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Fig. 4. Run-time comparion on the Retail data set

mine algorithm7 and the ones generated by the new TP-mine algorithm on both the Retail and

Livelink data sets. The transitional patterns on each list are ranked according to the absolute

value of the transitional ratio at the significant milestone. We found that for the Retail data set,

the lists of top ten positive transitional patterns discovered by the two algorithms are the same,

i.e., they contain the same patterns in the same order. Looking into their significant milestones

and the transitional ratios at these milestones, we found that the significant milestone (and its

corresponding transitional ratio) of a pattern identified by one algorithm is either the same or

very close to the one discovered by the other algorithm. The biggest absolute difference in the

significant milestone is0.37% and the biggest absolute difference in the highest transitional

ratio is 0.19%. Comparing the lists of top ten negative transitional patterns discovered by the

two algorithms from the Retail data set, the similarity is even stronger. Not only are the two

lists the same, the significant milestones and their corresponding transitional ratios discovered

by the two algorithms are exactly the same for 9 of the 10 patterns. Only for one pattern,

a minor difference exists. The same observation holds for the two lists of top ten negative

transitional patterns discovered by the two algorithms on the Livelink data set. For the two

7The top ten results from theold TP-mine algorithm were listed in [39]. Here we only describethe differences between the

results from the two algorithms.
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Fig. 5. Run-time comparison on Livelink data set

lists of top ten positive transitional patterns generated by the two algorithms on the Livelink

data set, 9 patterns are common, 7 of which have the exactly same significant milestones and

corresponding transitional ratios and 2 of them have minor differences in these two values. Only

on one pattern which appeared on the top ten list generated bythe old algorithms but does not

appear on the top ten list by the new algorithm, we see significant difference in the significant

milestone and its corresponding transitional ratio. Basedon the above result we can say that in

almost all the cases, the transitional ratio reaches the maximum or minimum values at or near

a time point where the pattern occurs. Thus, the new algorithm speeds up the old one without

significantly losing information in terms of finding the maximum or minimum transitional ratios

and significant milestones of a transitional pattern.

VII. RELATED WORK

In this section, we discuss existing work related to the transitional pattern mining framework

proposed in this paper.

A. Emerging patterns

Emerging patterns proposed in [12] are defined as itemsets whose support increase significantly

from one dataset to another. There are two major differencesbetween transitional patterns and
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emerging patterns. First, emerging patterns are used to capture the significant difference between

two datasets. When applied to time-stamped datasets, emerging patterns are used to find contrasts

between two datasets with different time periods, which is separated by a unchangeable time

point. Theoretically, emerging patterns can be consideredas positive transitional patterns with

the time point set to a constant value. As we can see from the above experimental results, the

significant milestones of transitional patterns can be at different places in one dataset. Thus, at

a specific time point, the transitional ratio of a pattern might not reach its greatest value or even

close to 0. For example, the transitional ratio of patternP4P6 at milestone 50% inTDB is 0 (see

Table III), and the transitional ratio of patternL87 in the Livelink dataset is close to 0 at about

60%. If the constant time point is set to 50% or 60% in these twodatasets respectively, these

two interesting transitional patterns cannot be identified. Second, emerging patterns are itemsets

whose growth rates are larger than a given threshold. The growth rate of a patternX with respect

to datasetsD1 andD2 is defined asGrowthRate(X) = sup(X,D2)
sup(X,D1)

. The value of the growth rate

ranges from 0 to∞, while the transitional ratio used in our method is a normalized measure

that ranges between -1 and 1. In addition, the value of the transitional ratio is symmetric in the

sense that a pattern whose support increases, say, 10 times with respect to a milestone has the

same absolute value of the transitional ratio with the pattern whose support decreases 10 time.

This feature makes it convenient for us to define positive andnegative transitional patterns.

B. Contrast sets

Bay and Pazzani [8] introduced the problem of detecting differences across several contrasting

groups as that of finding all contrast-sets, which are conjunctions of attribute-value pairs, that

have meaningfully different support levels across the contrasting groups. This allows users to

answer queries of the form, “How are History and Computer Science students different?” or

“What has changed from 1993 through 1998?”. They proposed the STUCCO algorithm [8],

which is based on Bayardo’s Max-Miner [31] rule discovery algorithm. In the level-wise search

for contrast sets, formed of conjunctions of attribute-value pairs of lengthi, the interestingness of

the conjunct is estimated by its statistical significance, assessed using aχ2 test with a Bonferroni

correction. In their application, they discovered trends in student admissions to UCI in the years

from 1993 to 1998 by analyzing the frequency differences of apattern across the years. Different

from our approach, their approach focused on finding frequency differences of a pattern (which is
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a conjunction of attribute-value pairs) between two or morecontrasting groups of objects, where

time may or may not be the criterion used to assign the objectsinto different groups. In this

paper we focus on discovering patterns (which can be itemsets or conjunctions of attribute-value

pairs) whose frequency dramatically changes over the period of time in a database.

C. Temporal association rules

Since it was formulated over a decade ago, the problem of association rule mining has

been extended in several ways, among which is the discovery of temporal association rules. A

temporal association rule is an association rule that holdsduring specific time intervals. There are

several kinds of meaningful temporal association rules, including cyclic association rules (i.e., the

association rules that occur periodically over time) [25],calendar-based temporal association rules

(i.e., the association rules w.r.t. precise or fuzzy match for a user-given calendar schema) [22], and

temporal association rules over items’ lifespan (i.e., theperiod between the first and the last time

the item appears in transactions of a database) [6], etc. Compared to these temporal association

rule mining techniques, our proposed research is differentin the following critical aspects. First,

temporal association rules are based on user-defined time intervals, such as months, years, or

other calendar-based constrains, while the transitional pattern mining technique automatically

finds significant milestones of the patterns, which are unknown before the mining process. As

we can see from the experimental results, significant milestones of transitional patterns are

distributed throughout a wide range in the databases, and they can hardly fit into a specific time

interval. Second, very strong rules tend to be strong in almost all time intervals. Thus, they are

usually considered to be valid temporal association rules.But most of them are not interesting

because they can be easily identified by the users with commonsense. Transitional patterns, on

the contrary, usually do not have very high frequency, and can be easily ignored by the users in

the traditional pattern mining model, which has been demonstrated in our experimental results.

D. Sequential Patterns and Frequent Episodes

Many previous studies also consider time stamps in the database when mining frequent

patterns. Representative work includes mining sequentialpatterns [5], [27], [30] and mining

frequent episodes [24]. A sequential pattern, defined first in [5], is a sequence of elements

whose occurrence frequency in a set of sequences (called a sequence database) is no less than

February 18, 2009 DRAFT



29

a minimal support threshold. Early sequential pattern mining algorithms (e.g., in [5], [30]) are

based on a level-wise candidate generation and testing process, in which length-k candidates are

generated from the frequent sequences of lengthk− 1 and then tested by scanning the database

to compute the frequency of each candidate. Some later algorithms improve the efficiency of

sequential pattern mining by, e.g., using a recursive divide-and-conquer procedure that generates

the complete set of frequent sequences without candidate generation and testing [27].

In [24], a framework for discovering frequent episodes in sequential data was proposed. An

episode is a collection of events that occur relatively close to each other in a given partial order.

An episode can beserial, in which events occur in a sequence, orparallel, in which no constraints

are posed on the relative order of the events. In [24], an algorithm was proposed to find all the

frequent episodes in an event sequence, which satisfy a user-specified support threshold. The

paper also presented an algorithm for producing rules that describe the associations between the

discovered frequent episodes.

The above algorithms make use of the time information in the database to find frequent

sequential relationships between events or itemsets. In this paper, we focus on finding the events

or itemsets whose own frequency changes significantly over the time period of the database

without considering the sequential relationships betweendifferent events or itemsets.

E. Change detection in event sequences, time series and datastreams

The problem of finding the significant milestones of a transitional pattern is related to the

problem of finding the optimal k-partition of an event sequence discussed in [32]. An event

sequence is a list of events ordered according to their occurrence times. It is often useful to

detect changes in the frequency or density of event occurrences. In [32], approaches to detecting

optimal change points in a sequence of events of a single typewere proposed and compared.

Their approaches, based on dynamic programming or Markov chain Monte Carlo methods,

partition an event sequence intok subsequences by findingk − 1 change points that maximize

the Poisson likelihood of the data, and then compute a piecewise constant function to model

the intensity of the event, which expresses the instantaneous probability of occurrence of an

event as a function of time. Our problem of finding the significant milestones of a transitional

pattern can be considered as that of partitioning a transaction database (i.e., a sequence of

transactions) intok partitions wherek = 2. The major differences between our approach and
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the approaches in [32] are as follows. First, we use the transitional ratio defined in Section 3

to evaluate time points and identify the ones whose frequency changes the most significantly

based on the transitional ratio, while the approaches in [32] find the change points by dynamic

programming or stochastic simulation that optimizes the likelihood of the data. Second, we

focus on analyzing frequent patterns and finding all the transitional patterns and their significant

milestones from a transaction database. Since each pattern(represented by an itemset) in our

approach can be considered as an event type in the problem setting in [32], our approach deals

with multiple event types. In comparison, the approaches in[32] focus on findingk − 1 change

points in an event sequence that consists of events of a single type, which may or may not be

frequent.

Methods have also been proposed for change point detection in a time series in both statistical

and data mining literature. Standard methods include the ones in [14], [17], [18], [35]. These

methods worked under the assumptions that the number of change points is known apriori and

that a stationary known model can be used to fit the subsequence between successive change

points. In [13], these assumptions are removed and change points are found in a hierarchical

way by repeatedly splitting the time series that maximizes the statistical likelihood of the change

points. The splitting process is stopped when the likelihood becomes stable or starts to increase

according to a user-defined stability threshold. Our methoddiffers from these methods in that we

are not dealing with time series data although the data we deal with may be converted into a set

of time series data (i.e., one time series for one frequent itemset) if a good frequency function can

be found for each frequent itemset. In addition, we focus on finding the significant milestones

for all the transitional patterns, which correspond to finding the most significant change points

in the multiple sequences instead of a single sequence.

Change detection is also an important issue in data stream mining. A data stream is a

continuous flow of data often generated at a high speed in a dynamic, time-changing environment.

It is often required that a data stream be quickly analyzed inan online fashion with only one pass

of data. A framework for diagnosing frequency changes in theevolution of fast data streams was

presented in [2], in which velocity density estimation is used to create both temporal velocity

profiles and spatial velocity profiles at periodic instants in time. The velocity density estimates

the rate at which the changes in the data density are occurring at each spatial location based

on some user-defined temporal window. Kernel density estimation [33] is used in the definition
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of the velocity density. In contrast to the approach we present, the framework was applied to

understand changes in multi-dimensional data streams using differential kernel density estimation

functions with various window sizes. In evolving data streams the same data spaces are used

at different points in time while the data items change. Another approach to analyzing the

distribution changes in data streams was proposed in [20]. The approach was based on a two-

window paradigm, in which the data in some reference window is compared to the data in a

current window which slides forward with each incoming data. The method passes the data once

and provides proven guarantees on the statistical significance of detected change. Different from

data stream mining, we focus on detecting changes on historical and static data without real

time constraints.

F. Histogram

Our work can also be compared with the histogram technique used in statistics. Although a

histogram can illustrate the frequency distribution of a variable over a time period, it is only a

graphic tool for human to look at the distribution of a variable. When applying to analyzing the

frequency distributions of frequent itemsets in a transaction database, we would need to draw a

histogram for each of the frequent pattern. When the number of frequent patterns is large (which

is usually the case for real applications), the amount of work involved is huge and the user can

be easily overwhelmed by too many graphs.

In comparison, with the transitional pattern mining technique proposed in this paper, patterns

with interesting distributions can be identified easily. Ifthe user would like to see the distribution

of such patterns, he/she can use histograms to look at them indetails. But without first identifying

such patterns, the user may not have an idea as to which patterns should be looked at.

In addition, when applying histograms to the transaction database, the user needs to discretize

the time variable into intervals. Without knowing how the patterns are evolving, it is not an easy

job to choose a good discretization. With our technique, we do not need to split the time period

into intervals.

VIII. C ONCLUSIONS AND FUTURE WORK

A limitation of existing frequent itemset mining frameworkis that it does not consider the

time stamps associated with the transactions in the database. As a result, dynamic behavior of
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frequent itemsets cannot be discovered. In this paper, we introduced a novel type of patterns,

positive and negative transitional patterns, to representfrequent patterns whose frequency of

occurrences changes significantly at some points of time in atransaction database. We also

defined the concepts of significant frequency-ascending milestones and significant frequency-

descending milestones to capture the time points at which the frequency of patterns changes

most significantly. To discover transitional patterns, we proposed theTP-minealgorithm to mine

the set of positive and negative transitional patterns withrespect to a pattern support threshold

and a transitional pattern threshold. Our algorithms takesone database scan after mining frequent

patterns to find the transitional patterns and their significant milestones. Our experimental results

showed that the proposed algorithm is highly scalable.

In our experimental study, we demonstrated the usefulness of transitional patterns in two real-

world domains and showed that what is revealed by the transitional patterns and their significant

milestones would not be found by the standard frequent pattern mining framework. As there are

concerns about the practical usefulness of data mining techniques, we hope that the research

presented in this paper brings a promising avenue to look at the data from a new angle, which

allows us to find new, surprising, useful and actionable patterns from data.

In the future, we would like to extend this work in the following directions. First, we would

like to investigate whether other designs of the transitional ratio would lead to better discovery

of transitional patterns and their milestones. Second, we would like to identify other types of

patterns (such as periodical patterns) by analyzing the discovered milestones. Moreover, finding

sequential transitional patterns is another interesting topic that we would like work on in the

future.
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