Review Questions

1. Prove that $\neg(\neg p \Leftrightarrow(r \vee p))$ is logically equivalent to $r \Rightarrow p$.
2. Use a proof by contradiction to show that if n is an integer and n^{2} is even, then n is even.
3. Is the following statement true or false?
$\forall x$ in $\mathbb{R}, \exists y$ in \mathbb{R} such that $y \geq 0 \wedge(y=x \vee y=-x)$.
Explain why your answer is correct.
4. Is the following statement true or false?

For all sets A, B and $C, A-(B \cup C) \subseteq(A-B) \cap(A-C)$.
Prove your answer is correct.
5. Let $f: B \rightarrow C$ and $g: A \rightarrow B$. Prove that if $f \circ g$ is onto then f is onto.
6. Prove that for every positive integer $n, \sum_{k=1}^{n} k 2^{k}=(n-1) 2^{n+1}+2$.
7. Yark University has 40000 students. Each student takes 5 classes each term. The University offers 1000 classes each term. The largest classroom at Yark holds 180 students. Is this a problem? Explain why.
8. Consider the domain of all people.

Let $P(x, y)$ represent the statement " x is the parent of y ".
(a) Translate the following formulas into clear and precise English.
$\exists x \forall y P(x, y)$
$\forall y \exists x P(x, y)$
(b) Express the statement "Somebody has no grandchildren" using only the predicate P.
9. Prove that for all integers a, b and c, the product of some pair of the three integers is non-negative. (In other words, show that $a b \geq 0$ or $a c \geq 0$ or $b c \geq 0$.)
10. Let $A=\{0,1,2\}$ and $B=\{1,3\}$. List the elements of each of the following sets.
(a) $A-B=$
(b) $A \times B=$
11. Let $f: A \rightarrow B$. Let S and T be subsets of A.
(a) Prove that $f(S \cap T) \subseteq f(S) \cap f(T)$.
(b) Give an example of a function f and sets S and T such that $f(S \cap T) \neq f(S) \cap f(T)$. Briefly explain why your answer is correct.
12. Prove $n^{2} \leq 2^{n}$ for all natural numbers $n \geq 4$.
13. Let $f: A \rightarrow B$ be a function. For any set $C \subseteq B$, define $f^{-1}(C)$ to be the set $\{a \in A: f(a) \in C\}$. Prove that for every $f: A \rightarrow B$ and subsets S and T of B we have $f^{-1}(S) \cap f^{-1}(T)=f^{-1}(S \cap T)$.
14. Show that if 51 distinct numbers are chosen among $\{1,2,3, \ldots, 100\}$ then there must be two numbers among them whose sum is 101 .

