Homework Assignment \#3

Due: October 2, 2014 at 4:00 p.m.

1. Draw the transition diagram of a deterministic finite automaton that accepts the language of all binary strings that contain an even number of 0 's and end with a 1.

You do not have to prove your answer is correct, but you should state, for each state of your automaton, a precise description in English of exactly which strings can take the automaton to that state.
2. Consider the deterministic finite automaton $\left(Q, \Sigma, \delta, q_{0}, F\right)$ given in the following diagram.

Note that the input alphabet Σ is $\left\{\binom{0}{0},\binom{0}{1},\binom{1}{0},\binom{1}{1}\right\}$.
We extend the definition of δ to strings recursively as follows:

$$
\begin{aligned}
\delta^{*}(q, \varepsilon) & =q \text { for all } q \in Q \\
\delta^{*}(q, x a) & =\delta\left(\delta^{*}(q, x), a\right) \text { for all } q \in Q, x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Recall the Leutonian representation of numbers used in Assignment 2. Given a string $s \in \Sigma^{*}$, we define $\operatorname{top}(s)$ and $\operatorname{bottom}(s)$ to be the numbers represented in Leutonian notation by the reverse of the top and bottom row of bits in s. For example, if

$$
s=\binom{1}{0}\binom{0}{0}\binom{0}{1}\binom{1}{0}\binom{0}{0}\binom{1}{1}
$$

then $\operatorname{top}(s)=n(101001)=19$ and $\operatorname{bottom}(s)=n(100100)=16$ where n is the function defined in Assignment 2. Here, we allow leading 0's in the Leutonian representation of a number, which do not affect the value represented. For example, $n(00101)=4$.
(a) If s is a string of length ℓ and $\delta^{*}(A, s)=B$, state a very simple arithmetic expression (in terms of ℓ) for top (s).
(b) If s is a string of length ℓ and $\delta^{*}(A, s)=C$, state a very simple arithmetic expression (in terms of ℓ) for $\operatorname{top}(s)$.
(c) Claim: For all $\ell \geq 1$, and every string s of length ℓ, my answers to part (a) and (b) are correct.

Prove this claim by induction on n.
(d) Give a simple relationship between $\operatorname{top}(s)$ and $\operatorname{bottom}(s)$ that is true if and only if s accepted by the automaton. You do not have to prove your answer is correct.

