Homework Assignment \#2 Due: September 25, 2014 at 4:00 p.m.

1. Instead of binary or decimal, the Kingdom of Leutonia uses an unusual system to represent numbers, based on the Fibonacci sequence. The Fibonacci sequence $F_{0}, F_{1}, F_{2}, \ldots$ is defined recursively as follows.

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2
\end{aligned}
$$

A Leutonian number is a string of 0's and 1's that begins with a 1 and never has two consecutive 1's. If $s=s_{\ell} s_{\ell-1} \ldots s_{1}$ is such a string of length ℓ, where each s_{i} is in $\{0,1\}$, the number represented by s is is $n(s)=\sum_{i=1}^{\ell} s_{i} \cdot F_{i}$.

For example, $n(1000101)=F_{7}+F_{3}+F_{1}=21+3+1=25$.
(a) Write out the Leutonian numbers that represent the first 12 positive integers.
(b) Prove: For every $\ell \geq 1$, if s is a Leutonian number of length $\ell, n(s) \geq F_{\ell}$.
(c) Prove: For every $\ell \geq 1$, if s is a Leutonian number of length $\ell, n(s)<F_{\ell+1}$.
(d) Prove: For every $\ell \geq 1$, every number in $S_{\ell}=\left\{x \in \mathbb{N}: 1 \leq x<F_{\ell+1}\right\}$ can be represented by a Leutonian number of length at most ℓ.
(Remark: this representation is actually unique, but you do not have to prove that.)
(e) Draw the transition diagram of a deterministic finite automaton that accepts an input string if and only if it is a Leutonian number. You need not prove your answer is correct.

