Numerical integration

Numerical integration

- numerical integration attempts to estimate the value of a definite integral without solving for the indefinite integral; i.e.,
- estimate the value of $I=\int_{a}^{b} f(x) d x$
without solving for $\quad F(x)=\int f(x) d x$
- recall the first fundamental theorem of calculus

$$
I=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Numerical integration

- why would you want to do this?
- many indefinite integrals cannot be written in terms of elementary functions; e.g., the error function

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

- the function $f(x)$ is not known; e.g., you only have measurements of some unknown function $f(x)$
- inertial measurement units (IMU) measure accelerations, the acceleration measurements are integrated to obtain velocity estimates, and the velocities are integrated to obtain position
- the indefinite integral is known, but difficult or computationally expensive to evaluate

Aside

- many symbolic math programs can solve for the indefinite integral if the integral can be expressed in terms of elementary functions
- how do they do this?
- http://en.wikipedia.org/wiki/Risch algorithm

Numerical integration

Rectangle (or midpoint) rule

- replaces $f(x)$ with a constant over the interval $[a, b]$
- this approximates the area under $f(x)$ with a rectangle
- height of the rectangle

$$
f\left(\frac{a+b}{2}\right)
$$

- width of the rectangle

$$
b-a
$$

- area of the rectangle

$$
(b-a) \times f\left(\frac{a+b}{2}\right)
$$

Rectangle (or midpoint) rule

Trapezoid rule

- replaces $f(x)$ with a line over the interval $[a, b]$
- this approximates the area under $f(x)$ with a trapezoid
- sides of the trapezoid

$$
f(a) \text { and } f(b)
$$

- width of the trapezoid

$$
b-a
$$

- area of the trapezoid

$$
(b-a) \times \frac{f(a)+f(b)}{2}
$$

Trapezoid rule

Simpson's rule

- replaces $f(x)$ with a quadratic over the interval $[a, b]$
- this approximates the area under $f(x)$ as the area under a parabola
- parabola passes through the points

$$
f(a) \text { and } f\left(\frac{a+b}{2}\right) \text { and } f(b)
$$

- area under the parabola

$$
\left(\frac{b-a}{6}\right)\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)
$$

Simpson's rule

Composite rules

- the midpoint, trapezoid, and Simpson's rules are called basic rules
- the composite rule subdivides the range $[a, b]$ using n points to form $(n-1)$ panels
- a basic rule is then applied to each panel
- the value of the integral is the sum of the area of the panels

Composite rectangle (or midpoint) rule

Composite rectangle (or midpoint) rule

Composite trapezoid rule

Composite trapezoid rule

Composite Simpson's rule

In class exercise

- implement composite rectangle, trapezoid, and Simpson's rule
- test implementations using known integrals

Numerical integration in MATLAB

- MATLAB provides functions for integration using
- the trapezoidal rule
- trapz
- a more sophisticated composite rule (global adaptive quadrature)
- integral, integral2, integral3

