Numerical differentiation

Announcement

- there is a script and some functions available for this lecture on the course web site

Numerical differentiation

- numerical differentiation attempts to estimate the value of the derivative of a function without computing the analytic form of the derivative
- why would you want to do this?
- the function is difficult or impossible to differentiate
- the derivative is expensive to compute
- you don't actually know the function that you are trying to differentiate

Differentiating polynomials

- polynomials are often used in numerical calculations, and MATLAB provides a function polyder that computes the derivative of a polynomial
- also computes the derivative of a product of polynomials or a quotient of polynomials

Differentiating polynomials

```
poly1 = [3 6 9];
    % 3x^2 + 6x + 9
d = polyder(poly1)
d =
    6 6
poly2 = [1 2 0]; % x^2 + 2x + 0
d = polyder(poly1, poly2) % derivative of product
d =
    12 36 42 18
```


Forward finite difference

- the mathematical definition of a derivative is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

which suggests the approximation

$$
f_{\mathrm{f}}^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- $f_{\mathrm{f}}^{\prime}(x)$ is called the forward finite difference approximation of the function $f(x)$

Forward finite difference

Forward finite difference

```
function fprime = fdiff(f, x, h)
%FDIFF Forward finite difference derivative.
% FPRIME = FDIFF(F, X, H) computes the derivative FPRIME of the
% function F at all values in X using a step size of H.
```

fplus $=f(x+h)$;
fx = $f(x)$;
fprime $=(f p l u s ~-~ f x) ~ / ~ h ; ~$

Forward finite difference

- see day21.m for demonstration

Backward finite difference

- if we choose a negative value for h our approximation becomes

$$
\begin{aligned}
f_{\mathrm{b}}^{\prime}(x) & \approx \frac{f(x-h)-f(x)}{-h} \\
& =\frac{f(x)-f(x-h)}{h}
\end{aligned}
$$

- $f_{\mathrm{b}}{ }^{\prime}(x)$ is called the backward finite difference approximation of the function $f(x)$

Backward finite difference

Backward finite difference

```
function fprime = bdiff(f, x, h)
%BDIFF Backward finite difference derivative.
% FPRIME = BDIFF(F, X, H) computes the derivative FPRIME of the
% function F at all values in X using a step size of H.
```

fminus $=f(x-h)$;
fx = $f(x)$;
fprime $=(f x-f m i n u s) / h ;$

Backward finite difference

- see day21.m for demonstration

Central finite difference

- if we average the forward and backward difference approximations we get

$$
\begin{aligned}
f_{\mathrm{c}}^{\prime}(x) & \approx \frac{f_{\mathrm{f}}^{\prime}(x)+f_{\mathrm{b}}^{\prime}(x)}{2} \\
& =\frac{f(x+h)-f(x)}{2 h}+\frac{f(x)-f(x-h)}{2 h} \\
& =\frac{f(x+h)-f(x-h)}{2 h}
\end{aligned}
$$

- $f_{\mathrm{c}}{ }^{\prime}(x)$ is called the central finite difference approximation of the function $f(x)$

Forward finite difference

Central finite difference

```
function fprime = cdiff(f, x, h)
%CDIFF Central finite difference derivative.
% FPRIME = CDIFF(F, X, H) computes the derivative FPRIME of the
% function F at all values in X using a step size of H.
```

```
fminus = f(x - h);
fplus = f(x + h);
fprime = (fplus - fminus) / (2 * h);
```


Central finite difference

- see day21.m for demonstration

The effect of noise

- a significant problem with computing derivatives using finite differences is that finite differences are very sensitive to noise
- e.g., consider a sine function with a small amount of additive Gaussian noise
function $y=$ noisysin(x)
$y=\sin (x)+\operatorname{randn}(\operatorname{size}(x)) * 0.001 ;$
end
- see day21 . m for demonstration

Higher order derivatives

- higher order derivatives can be obtained by computing the finite difference of a finite difference
- e.g., the second-order forward finite difference

$$
\begin{aligned}
f_{\mathrm{f}^{\prime}} & \approx \frac{\frac{f(x+2 h)-f(x+h)}{h}-\frac{f(x+h)-f(x)}{h}}{h} \\
& =\frac{f(x+2 h)-2 f(x+h)-f(x)}{h^{2}}
\end{aligned}
$$

