
Bisection method
 we can implement the bisection method using:

 a loop to iterate until 𝑓(𝑐) is close to zero

 a function handle to the function 𝑓

1

2

function [root] = bisect(f, a, b, tol)

%BISECT Root finding by bisection method

% ROOT = BISECT(F, A, B, TOL) finds a root of

% the function F known to lie in the range [A, B].

% The root satisfies the inequality

% ABS(F(ROOT)) <= TOL

if a == b

 error('range is zero');

elseif a > b

 tmp = a;

 a = b;

 b = tmp;

end

% continued on next slide

3

c = mean([a b]);

fc = f(c);

while abs(fc) > tol

 if sign(f(a)) ~= sign(fc) % root is to the left

 b = c;

 else % root is to the right?

 a = c;

 end

 c = mean([a b]);

 fc = f(c);

end

root = c;

end

Bisection method
 an alternate approach to implement the bisection

method is to observe the following:

 the bisection method repeatedly solves the same problem
until it reaches the solution; i.e., finding a root via bisection
looks something like:

1. bisect(original range)

2. bisect(smaller range)

3. bisect(smaller range)
...

n) bisect(smaller range), done!

 can we have our bisection function call itself?

 yes, we can make bisection be a recursive function

4

Recursive definitions
 in mathematics, a recursive definition is a definition

that is defined in terms of itself

 if you define something only in terms of itself, you end up
with a circular definition; e.g.,

 hill—a usually rounded natural elevation of land lower than a
mountain

 mountain—a landmass that projects conspicuously above its
surroundings and is higher than a hill

 to prevent circular reasoning, a recursive definition
requires one or more stopping points called base cases

5

Recursive definitions
 many mathematical entities can be defined

recursively:

 integer multiplication (positive 𝑚)

 exponentiation (positive 𝑛)

 factorial (positive 𝑛)

6

0 × 𝑛 = 0
𝑚 × 𝑛 = 𝑚 + 𝑚 − 1 × 𝑛

𝑥0 = 1
𝑥𝑛 = 𝑥 × 𝑥𝑛−1

0! = 1
𝑛! = 𝑛 × 𝑛 − 1 !

base case
recursive definition

base case
recursive definition

base case
recursive definition

Factorial
 recursive definitions naturally lead to recursive

implementations in functions:

function f = fact(n)

%FACT Factorial of n

% F = FACT(N) is the product of all of the integers

% from 1 to N. N must be a positive integer.

if n == 0

 f = 1;

else

 f = n * fact(n - 1);

end

7

Rabbits

8

Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs

Fibonacci numbers
 the sequence of additional pairs

 0, 1, 1, 2, 3, 5, 8, 13, ...

 are called Fibonacci numbers

 base cases
 F(0) = 0

 F(1) = 1

 recursive definition
 F(n) = F(n – 1) + F(n – 2)

9

Fibonacci numbers
 the recursive definition of the Fibonacci numbers

leads naturally to a recursive implementation:

function fib = fibonacci(n)

% FIBONACCI nth Fibonacci number

% FIB = FIBONACCI(N) computes the nth Fibonacci number

if n == 0

 fib = 0;

elseif n == 1

 fib = 1;

else

 fib = fibonacci(n - 1) + fibonacci(n - 2);

end

10

Bisection as a recursive function
function [root] = bisect2(f, a, b, tol)

%BISECT2 Root finding by recursive bisection method

% ROOT = BISECT(F, A, B, TOL) finds a root of

% the function F known to lie in the range [A, B].

% The root satisfies the inequality

% ABS(F(ROOT)) <= TOL

if a == b

 error('range is zero');

elseif a > b

 tmp = a;

 a = b;

 b = tmp;

end % continued on next slide

11

Bisection as a recursive function

c = mean([a b]);

fc = f(c);

if abs(fc) <= tol

 root = c;

elseif sign(f(a)) ~= sign(fc)

 root = bisect2(f, a, c, tol); % root is to the left

else

 root = bisect2(f, c, b, tol); % root is to the right?

end

end

12

Recursion

 any problem that can be solved using recursion can
also be solved using iteration

 however, the recursive solution is often easier to implement

13

Towers of Hanoi

 move the stack of n disks from A to C

 can move one disk at a time from the top of one stack onto
another stack

 cannot move a larger disk onto a smaller disk

14

A B C

Towers of Hanoi
 legend says that the world will end when a 64 disk

version of the puzzle is solved

 several appearances in pop culture

 Doctor Who

 Rise of the Planet of the Apes

 Survior: South Pacific

15

Towers of Hanoi
 n = 1

 move disk from A to C

16

A B C

Towers of Hanoi
 n = 1

17

A B C

Towers of Hanoi
 n = 2

 move disk from A to B

18

A B C

Towers of Hanoi
 n = 2

 move disk from A to C

19

A B C

Towers of Hanoi
 n = 2

 move disk from B to C

20

A B C

Towers of Hanoi
 n = 2

21

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

22

A B C

Towers of Hanoi
 n = 3

 move disk from A to B

23

A B C

Towers of Hanoi
 n = 3

 move disk from C to B

24

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

25

A B C

Towers of Hanoi
 n = 3

 move disk from B to A

26

A B C

Towers of Hanoi
 n = 3

 move disk from B to C

27

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

28

A B C

Towers of Hanoi
 n = 3

29

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from A to B using C

30

A B C

Towers of Hanoi
 n = 4

 move disk from A to C

31

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from B to C using A

32

A B C

Towers of Hanoi
 n = 4

33

A B C

 base case n = 1

1. move disk from A to C

 recursive case

1. move (n – 1) disks from A to B

2. move 1 disk from A to C

3. move (n – 1) disks from B to C

34

35

function [] = hanoi(n)

%HANOI Towers of Hanoi with n discs

% HANOI(N) prints a solution for the Towers

% of Hanoi problem for N discs.

move(n, 'A', 'C', 'B');

end

function [] = move(n, from, to, using)

%MOVE Recursive solution for Towers of Hanoi

if n == 1

 s = sprintf('move disc from %s to %s', from, to);

 disp(s);

else

 move(n - 1, from, using, to);

 move(1, from, to, using);

 move(n - 1, using, to, from);

end

end

Root finding in MATLAB
 MATLAB provides a function named fzero for root

finding

 “The fzero command is a function file. The algorithm, which

was originated by T. Dekker, uses a combination of bisection,

secant, and inverse quadratic interpolation methods.”

 fzero requires an initial estimate for the root and then

finds a suitable interval to search for the root

fzero(@myf, 0.1)

ans =

 0.1421

36

