
Bisection method 
 we can implement the bisection method using: 

 a loop to iterate until 𝑓(𝑐) is close to zero 

 a function handle to the function 𝑓 
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function [root] = bisect(f, a, b, tol) 

%BISECT Root finding by bisection method 

%   ROOT = BISECT(F, A, B, TOL) finds a root of 

%   the function F known to lie in the range [A, B]. 

%   The root satisfies the inequality 

%   ABS(F(ROOT)) <= TOL  

  

if a == b 

    error('range is zero'); 

elseif a > b 

    tmp = a; 

    a = b; 

    b = tmp; 

end 

% continued on next slide 
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c = mean([a b]); 

fc = f(c); 

while abs(fc) > tol 

    if sign(f(a)) ~= sign(fc) % root is to the left 

        b = c; 

    else                      % root is to the right? 

        a = c; 

    end 

    c = mean([a b]); 

    fc = f(c); 

end 

root = c; 

  

end 

 



Bisection method 
 an alternate approach to implement the bisection 

method is to observe the following: 

 the bisection method repeatedly solves the same problem 
until it reaches the solution; i.e., finding a root via bisection 
looks something like: 
 

1. bisect(original range) 

2. bisect(smaller range) 

3. bisect(smaller range) 
... 

n) bisect(smaller range), done! 
 

 can we have our bisection function call itself? 

 yes, we can make bisection be a recursive function 
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Recursive definitions 
 in mathematics, a recursive definition is a definition 

that is defined in terms of itself 

 if you define something only in terms of itself, you end up 
with a circular definition; e.g., 
 

 hill—a usually rounded natural elevation of land lower than a 
mountain   

 mountain—a landmass that projects conspicuously above its 
surroundings and is higher than a hill  

 

 to prevent circular reasoning, a recursive definition 
requires one or more stopping points called base cases  
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Recursive definitions 
 many mathematical entities can be defined 

recursively: 

 integer multiplication (positive 𝑚) 

 

 

 exponentiation (positive 𝑛) 

 

 

 factorial (positive 𝑛) 
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0 × 𝑛 = 0 
𝑚 × 𝑛 = 𝑚 + 𝑚 − 1 × 𝑛 

𝑥0 = 1 
𝑥𝑛 = 𝑥 × 𝑥𝑛−1 

0! = 1 
𝑛! = 𝑛 × 𝑛 − 1 ! 

base case 
recursive definition 

base case 
recursive definition 

base case 
recursive definition 



Factorial 
 recursive definitions naturally lead to recursive 

implementations in functions: 

 
function f = fact(n) 

%FACT Factorial of n 

%   F = FACT(N) is the product of all of the integers 

%   from 1 to N. N must be a positive integer. 

if n == 0 

    f = 1; 

else 

    f = n * fact(n - 1); 

end 
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Rabbits 
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Month 0: 1 pair 0 additional pairs 

Month 1: first pair 
makes another pair 

1 additional pair 

Month 2: each pair 
makes another pair; 
oldest pair dies 

1 additional pair 

Month 3: each pair 
makes another pair; 
oldest pair dies 

2 additional pairs 



Fibonacci numbers 
 the sequence of additional pairs 

 0, 1, 1, 2, 3, 5, 8, 13, ... 

 are called Fibonacci numbers 

 

 base cases 
 F(0) = 0 

 F(1) = 1 

 recursive definition 
 F(n) = F(n – 1) +  F(n – 2) 

9 



Fibonacci numbers 
 the recursive definition of the Fibonacci numbers 

leads naturally to a recursive implementation: 

 
function fib = fibonacci(n) 

% FIBONACCI nth Fibonacci number 

%    FIB = FIBONACCI(N) computes the nth Fibonacci number 

if n == 0 

  fib = 0; 

elseif n == 1 

  fib = 1; 

else 

  fib = fibonacci(n - 1) + fibonacci(n - 2); 

end 
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Bisection as a recursive function 
function [root] = bisect2(f, a, b, tol) 

%BISECT2 Root finding by recursive bisection method 

%   ROOT = BISECT(F, A, B, TOL) finds a root of 

%   the function F known to lie in the range [A, B]. 

%   The root satisfies the inequality 

%   ABS(F(ROOT)) <= TOL  

  

if a == b 

    error('range is zero'); 

elseif a > b 

    tmp = a; 

    a = b; 

    b = tmp; 

end                          % continued on next slide 
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Bisection as a recursive function 
 

c = mean([a b]); 

fc = f(c); 

if abs(fc) <= tol 

    root = c; 

elseif sign(f(a)) ~= sign(fc) 

    root = bisect2(f, a, c, tol); % root is to the left 

else 

    root = bisect2(f, c, b, tol); % root is to the right? 

end 

  

end 
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Recursion 
 

 

 

 any problem that can be solved using recursion can 
also be solved using iteration 

 however, the recursive solution is often easier to implement  
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Towers of Hanoi 
 

 

 

 

 

 

 

 move the stack of n disks from A to C 

 can move one disk at a time from the top of one stack onto 
another stack 

 cannot move a larger disk onto a smaller disk 
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A B C 



Towers of Hanoi 
 legend says that the world will end when a 64 disk 

version of the puzzle is solved 

 several appearances in pop culture 

 Doctor Who 

 Rise of the Planet of the Apes 

 Survior: South Pacific 
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Towers of Hanoi 
 n = 1 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 1 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 2 

 

 

 

 

 

 

 

 

 move disk from B to C 
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A B C 



Towers of Hanoi 
 n = 2 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from C to B 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to A 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from B to C 
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A B C 



Towers of Hanoi 
 n = 3 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 3 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from A to B using C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move disk from A to C 
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A B C 



Towers of Hanoi 
 n = 4 

 

 

 

 

 

 

 

 

 move (n – 1) disks from B to C using A 
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A B C 



Towers of Hanoi 
 n = 4 
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A B C 



 base case n = 1  

1. move disk from A to C 

 recursive case 

1. move (n – 1) disks from A to B 

2. move 1 disk from A to C 

3. move (n – 1) disks from B to C 
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function [] = hanoi(n) 

%HANOI Towers of Hanoi with n discs 

%   HANOI(N) prints a solution for the Towers 

%   of Hanoi problem for N discs. 

move(n, 'A', 'C', 'B'); 

end 

 

function [] = move(n, from, to, using) 

%MOVE Recursive solution for Towers of Hanoi 

if n == 1 

    s = sprintf('move disc from %s to %s', from, to); 

    disp(s); 

else 

    move(n - 1, from, using, to); 

    move(1, from, to, using); 

    move(n - 1, using, to, from); 

end 

end 

 



Root finding in MATLAB 
 MATLAB provides a function named fzero for root 

finding 

 “The fzero command is a function file. The algorithm, which 

was originated by T. Dekker, uses a combination of bisection, 

secant, and inverse quadratic interpolation methods.” 

 fzero requires an initial estimate for the root and then 

finds a suitable interval to search for the root 

 
fzero(@myf, 0.1) 

ans = 

    0.1421 
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