
Bisection method
 we can implement the bisection method using:

 a loop to iterate until 𝑓(𝑐) is close to zero

 a function handle to the function 𝑓

1

2

function [root] = bisect(f, a, b, tol)

%BISECT Root finding by bisection method

% ROOT = BISECT(F, A, B, TOL) finds a root of

% the function F known to lie in the range [A, B].

% The root satisfies the inequality

% ABS(F(ROOT)) <= TOL

if a == b

 error('range is zero');

elseif a > b

 tmp = a;

 a = b;

 b = tmp;

end

% continued on next slide

3

c = mean([a b]);

fc = f(c);

while abs(fc) > tol

 if sign(f(a)) ~= sign(fc) % root is to the left

 b = c;

 else % root is to the right?

 a = c;

 end

 c = mean([a b]);

 fc = f(c);

end

root = c;

end

Bisection method
 an alternate approach to implement the bisection

method is to observe the following:

 the bisection method repeatedly solves the same problem
until it reaches the solution; i.e., finding a root via bisection
looks something like:

1. bisect(original range)

2. bisect(smaller range)

3. bisect(smaller range)
...

n) bisect(smaller range), done!

 can we have our bisection function call itself?

 yes, we can make bisection be a recursive function

4

Recursive definitions
 in mathematics, a recursive definition is a definition

that is defined in terms of itself

 if you define something only in terms of itself, you end up
with a circular definition; e.g.,

 hill—a usually rounded natural elevation of land lower than a
mountain

 mountain—a landmass that projects conspicuously above its
surroundings and is higher than a hill

 to prevent circular reasoning, a recursive definition
requires one or more stopping points called base cases

5

Recursive definitions
 many mathematical entities can be defined

recursively:

 integer multiplication (positive 𝑚)

 exponentiation (positive 𝑛)

 factorial (positive 𝑛)

6

0 × 𝑛 = 0
𝑚 × 𝑛 = 𝑚 + 𝑚 − 1 × 𝑛

𝑥0 = 1
𝑥𝑛 = 𝑥 × 𝑥𝑛−1

0! = 1
𝑛! = 𝑛 × 𝑛 − 1 !

base case
recursive definition

base case
recursive definition

base case
recursive definition

Factorial
 recursive definitions naturally lead to recursive

implementations in functions:

function f = fact(n)

%FACT Factorial of n

% F = FACT(N) is the product of all of the integers

% from 1 to N. N must be a positive integer.

if n == 0

 f = 1;

else

 f = n * fact(n - 1);

end

7

Rabbits

8

Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs

Fibonacci numbers
 the sequence of additional pairs

 0, 1, 1, 2, 3, 5, 8, 13, ...

 are called Fibonacci numbers

 base cases
 F(0) = 0

 F(1) = 1

 recursive definition
 F(n) = F(n – 1) + F(n – 2)

9

Fibonacci numbers
 the recursive definition of the Fibonacci numbers

leads naturally to a recursive implementation:

function fib = fibonacci(n)

% FIBONACCI nth Fibonacci number

% FIB = FIBONACCI(N) computes the nth Fibonacci number

if n == 0

 fib = 0;

elseif n == 1

 fib = 1;

else

 fib = fibonacci(n - 1) + fibonacci(n - 2);

end

10

Bisection as a recursive function
function [root] = bisect2(f, a, b, tol)

%BISECT2 Root finding by recursive bisection method

% ROOT = BISECT(F, A, B, TOL) finds a root of

% the function F known to lie in the range [A, B].

% The root satisfies the inequality

% ABS(F(ROOT)) <= TOL

if a == b

 error('range is zero');

elseif a > b

 tmp = a;

 a = b;

 b = tmp;

end % continued on next slide

11

Bisection as a recursive function

c = mean([a b]);

fc = f(c);

if abs(fc) <= tol

 root = c;

elseif sign(f(a)) ~= sign(fc)

 root = bisect2(f, a, c, tol); % root is to the left

else

 root = bisect2(f, c, b, tol); % root is to the right?

end

end

12

Recursion

 any problem that can be solved using recursion can
also be solved using iteration

 however, the recursive solution is often easier to implement

13

Towers of Hanoi

 move the stack of n disks from A to C

 can move one disk at a time from the top of one stack onto
another stack

 cannot move a larger disk onto a smaller disk

14

A B C

Towers of Hanoi
 legend says that the world will end when a 64 disk

version of the puzzle is solved

 several appearances in pop culture

 Doctor Who

 Rise of the Planet of the Apes

 Survior: South Pacific

15

Towers of Hanoi
 n = 1

 move disk from A to C

16

A B C

Towers of Hanoi
 n = 1

17

A B C

Towers of Hanoi
 n = 2

 move disk from A to B

18

A B C

Towers of Hanoi
 n = 2

 move disk from A to C

19

A B C

Towers of Hanoi
 n = 2

 move disk from B to C

20

A B C

Towers of Hanoi
 n = 2

21

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

22

A B C

Towers of Hanoi
 n = 3

 move disk from A to B

23

A B C

Towers of Hanoi
 n = 3

 move disk from C to B

24

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

25

A B C

Towers of Hanoi
 n = 3

 move disk from B to A

26

A B C

Towers of Hanoi
 n = 3

 move disk from B to C

27

A B C

Towers of Hanoi
 n = 3

 move disk from A to C

28

A B C

Towers of Hanoi
 n = 3

29

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from A to B using C

30

A B C

Towers of Hanoi
 n = 4

 move disk from A to C

31

A B C

Towers of Hanoi
 n = 4

 move (n – 1) disks from B to C using A

32

A B C

Towers of Hanoi
 n = 4

33

A B C

 base case n = 1

1. move disk from A to C

 recursive case

1. move (n – 1) disks from A to B

2. move 1 disk from A to C

3. move (n – 1) disks from B to C

34

35

function [] = hanoi(n)

%HANOI Towers of Hanoi with n discs

% HANOI(N) prints a solution for the Towers

% of Hanoi problem for N discs.

move(n, 'A', 'C', 'B');

end

function [] = move(n, from, to, using)

%MOVE Recursive solution for Towers of Hanoi

if n == 1

 s = sprintf('move disc from %s to %s', from, to);

 disp(s);

else

 move(n - 1, from, using, to);

 move(1, from, to, using);

 move(n - 1, using, to, from);

end

end

Root finding in MATLAB
 MATLAB provides a function named fzero for root

finding

 “The fzero command is a function file. The algorithm, which

was originated by T. Dekker, uses a combination of bisection,

secant, and inverse quadratic interpolation methods.”

 fzero requires an initial estimate for the root and then

finds a suitable interval to search for the root

fzero(@myf, 0.1)

ans =

 0.1421

36

