Bisection method

- we can implement the bisection method using:
- a loop to iterate until $f(c)$ is close to zero
- a function handle to the function f

```
function [root] = bisect(f, a, b, tol)
%BISECT Root finding by bisection method
% ROOT = BISECT(F, A, B, TOL) finds a root of
% the function F known to lie in the range [A, B].
% The root satisfies the inequality
% ABS(F(ROOT)) <= TOL
```

if $\mathrm{a}=\mathrm{b}$
error('range is zero');
elseif a > b
tmp $=a ;$
$\mathrm{a}=\mathrm{b}$;
b = tmp;
end
\% continued on next slide

```
c = mean([a b]);
fc = f(c);
while abs(fc) > tol
    if sign(f(a)) ~= sign(fc) % root is to the left
    b = c;
    else
                                    % root is to the right?
end
    c = mean([a b]);
    fc = f(c);
end
root = c;
end
```


Bisection method

- an alternate approach to implement the bisection method is to observe the following:
- the bisection method repeatedly solves the same problem until it reaches the solution; i.e., finding a root via bisection looks something like:

1. bisect(original range)
2. bisect(smaller range)
3. bisect(smaller range)
...
n) bisect(smaller range), done!

- can we have our bisection function call itself?
- yes, we can make bisection be a recursive function

Recursive definitions

- in mathematics, a recursive definition is a definition that is defined in terms of itself
- if you define something only in terms of itself, you end up with a circular definition; e.g.,
- hill—a usually rounded natural elevation of land lower than a mountain
- mountain-a landmass that projects conspicuously above its surroundings and is higher than a hill
- to prevent circular reasoning, a recursive definition requires one or more stopping points called base cases

Recursive definitions

- many mathematical entities can be defined recursively:
- integer multiplication (positive m)

$$
\begin{aligned}
0 \times n & =0 & & \text { base case } \\
m \times n & =m+(m-1) \times n & & \text { recursive definition }
\end{aligned}
$$

- exponentiation (positive n)

$$
\begin{aligned}
& x^{0}=1 \\
& x^{n}=x \times x^{n-1}
\end{aligned}
$$

base case
recursive definition

- factorial (positive n)

$$
\begin{aligned}
0! & =1 \\
n! & =n \times(n-1)!
\end{aligned}
$$

base case
recursive definition

Factorial

- recursive definitions naturally lead to recursive implementations in functions:

```
function f = fact(n)
%FACT Factorial of n
% F = FACT(N) is the product of all of the integers
% from 1 to N. N must be a positive integer.
if n == 0
    f = 1;
else
    f = n * fact(n - 1);
end
```


Rabbits

Month o: 1 pair
o additional pairs

Month 1: first pair 1 additional pair makes another pair
 Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

2 additional pairs

Month 3: each pair makes another pair; oldest pair dies

Fibonacci numbers

- the sequence of additional pairs
- $0,1,1,2,3,5,8,13, \ldots$
are called Fibonacci numbers
- base cases
- $F(0)=0$
- $F(1)=1$
- recursive definition
- $F(n)=F(n-1)+F(n-2)$

Fibonacci numbers

- the recursive definition of the Fibonacci numbers leads naturally to a recursive implementation:

```
function fib = fibonacci(n)
% FIBONACCI nth Fibonacci number
% FIB = FIBONACCI(N) computes the nth Fibonacci number
if n == 0
    fib = 0;
elseif n == 1
    fib = 1;
else
    fib = fibonacci(n - 1) + fibonacci(n - 2);
end
```


Bisection as a recursive function

```
function [root] = bisect2(f, a, b, tol)
%BISECT2 Root finding by recursive bisection method
% ROOT = BISECT(F, A, B, TOL) finds a root of
% the function F known to lie in the range [A, B].
% The root satisfies the inequality
% ABS (F (ROOT)) <= TOL
if a == b
    error('range is zero');
elseif a > b
    tmp = a;
    a = b;
    b = tmp;
end
                                % continued on next slide
```


Bisection as a recursive function

```
c = mean([a b]);
fc = f(c);
if abs(fc) <= tol
    root = c;
elseif sign(f(a)) ~= sign(fc)
    root = bisect2(f, a, c, tol); % root is to the left
else
    root = bisect2(f, c, b, tol); % root is to the right?
end
end
```


Recursion

- any problem that can be solved using recursion can also be solved using iteration
- however, the recursive solution is often easier to implement

Towers of Hanoi

- move the stack of n disks from A to C
- can move one disk at a time from the top of one stack onto another stack
- cannot move a larger disk onto a smaller disk

Towers of Hanoi

- legend says that the world will end when a 64 disk version of the puzzle is solved
- several appearances in pop culture
- Doctor Who
- Rise of the Planet of the Apes
- Survior: South Pacific

Towers of Hanoi

- $\mathrm{n}=1$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=1$

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from A to B

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=2$

- move disk from B to C

Towers of Hanoi

- $\mathrm{n}=2$

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to B

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from C to B

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from B to A

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from B to C

Towers of Hanoi

- $\mathrm{n}=3$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=3$

Towers of Hanoi

- $\mathrm{n}=4$

- move ($\mathrm{n}-1$) disks from A to B using C

Towers of Hanoi

- $\mathrm{n}=4$

- move disk from A to C

Towers of Hanoi

- $\mathrm{n}=4$

- move ($n-1$) disks from B to C using A

Towers of Hanoi

- $\mathrm{n}=4$

- base case $n=1$

1. move disk from A to C

- recursive case

1. move ($n-1$) disks from A to B
2. move 1 disk from A to C
3. move $(n-1)$ disks from B to C
```
function [] = hanoi(n)
%HANOI Towers of Hanoi with n discs
% HANOI(N) prints a solution for the Towers
% of Hanoi problem for N discs.
move(n, 'A', 'C', 'B');
end
function [] = move(n, from, to, using)
%MOVE Recursive solution for Towers of Hanoi
if n == 1
    s = sprintf('move disc from %s to %s', from, to);
    disp(s);
else
    move(n - 1, from, using, to);
    move(1, from, to, using);
    move(n - 1, using, to, from);
end
end
```


Root finding in MATLAB

- MATLAB provides a function named fzero for root finding
" "The fzero command is a function file. The algorithm, which was originated by T. Dekker, uses a combination of bisection, secant, and inverse quadratic interpolation methods."
- fzero requires an initial estimate for the root and then finds a suitable interval to search for the root

```
fzero(@myf, 0.1)
ans =
    0.1421
```

