
Root finding

1

Root finding
 suppose you have a mathematical function f(x) and

you want to find x0 such that f(x0) = 0
 why would you want to do this?
 many problems in computer science, science, and

engineering reduce to optimization problems
 find the shape of an automobile that minimizes aerodynamic drag
 find an image that is similar to another image (minimize the

difference between the images)
 find the sales price of an item that maximizes profit

 if you can write the optimization criteria as a function g(x)
then its derivative f(x) = dg/dx = 0 at the minimum
or maximum of g (as long as g has certain properties)

2

Roots of polynomials
 for roots of polynomials MATLAB has a function

named roots
 roots finds all of the roots of a polynomial defined by

its coefficients vector; e.g.,
 the roots of the polynomial 𝑥3 − 6𝑥2 − 72𝑥 − 27:

p = [1 -6 -72 -27];

r = roots(p)

r =

 12.1229

 -5.7345

 -0.3884

3

Roots of non-polynomials
 we've already seen Newton's method for root finding

(Day 12)

1. start with an initial estimate of the root 𝑥0
2. 𝑖 = 0
3. while 𝑓 𝑥𝑖 > 𝜖

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖
𝑓′ 𝑥𝑖

 𝑖 = 𝑖 + 1

 this requires computation of both 𝑓(𝑥) and 𝑓𝑓(𝑥)

4

Newton's method
 our previous implementation used local functions to

represent both 𝑓(𝑥) and 𝑓𝑓(𝑥)
 the problem with this approach is that we can only

find roots of the local function that defines 𝑓(𝑥)
 e.g., our previous implementation can only find the roots of
𝑓 𝑥 = 𝑥2 − 1

5

6

function [root, xvals] = newton(x0, epsilon)
%NEWTON Newton's method for x^2 - 1
% ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using
% Newton's method starting from an initial estimate X0 and a tolerance EPSILON
%
% [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates
% in XVALS

xvals = x0;
xi = x0;
while abs(f(xi)) > epsilon
 xj = xi - f(xi) / fprime(xi);
 xi = xj;
 xvals = [xvals xi];
end
root = xi;

end

function [y] = f(x)
y = x * x - 1;
end

function [yprime] = fprime(x)
yprime = 2 * x;
end

can only find the root of this function

Function handles
 it would be nice if we could tell our implementation of

Newton's method what function to use for 𝑓(𝑥) and
𝑓𝑓(𝑥)

 MATLAB does not allow you to pass a function directly
to another function
 instead you must pass a function handle to the function

 a function handle is a value that you can use to call a
function (instead of using the name of the function)
 because it is a value, you can store it in a variable!

7

Function handles
 you can create a handle for any function by using @

before the function name

linspaceHandle = @linspace; % handle for linspace

cosHandle = @cos; % handle for cos

plotHandle = @plot; % handle for plot

8

Function handles
 you can use the handle to call the function exactly the

same way that you would use the function name to call
the function

% use handle to call linspace

x = linspaceHandle(-1, 1, 50);

% use handle to call cos

y = cosHandle(2 * pi * x);

% use handle to call plot

plotHandle(x, y, 'b:');

9

Function functions
 by using function handles, we can modify our

implementation of Newton's method to find the root
of any function
 we just have to supply two function handles, one for 𝑓(𝑥)

and a second for 𝑓𝑓(𝑥)
 we also need MATLAB functions that implement 𝑓(𝑥) and
𝑓𝑓(𝑥)

10

11

function [root, xvals] = newton(f, fprime, x0, epsilon)
%NEWTON Newton's method for root finding
% ROOT = NEWTON(F, FPRIME, X0, EPSILON) finds a root of the
% function F having derivative FPRIME using Newton's method
% starting from an initial estimate X0 and a tolerance EPSILON
%
% [ROOT, XVALS] = NEWTON(F, FPRIME, X0, EPSILON) also returns
% the iterative estimates in XVALS

xvals = x0;
xi = x0;
while abs(f(xi)) > epsilon
 xj = xi - f(xi) / fprime(xi);
 xi = xj;
 xvals = [xvals xi];
end
root = xi;

end

function handles

local functions have been removed

Function functions
 let’s find a root of

which has the derivative

12

𝑓 𝑥 = 𝑥 tan 𝜋 𝑥 − 1 − 𝑥

𝑓′ 𝑥 =
1
2

1
1 − 𝑥

+
tan 𝜋 𝑥

𝑥
+ 𝜋 sec2 𝜋 𝑥

13

plot of 𝑓(𝑥)

14

function [y] = myf(x)

%MYF Function to find the root of

y = sqrt(x) .* tan(pi * sqrt(x)) - sqrt(1 - x);

end

15

function [y] = myfprime(x)

%MYFPRIME Derivative of MYF

sqrtx = sqrt(x);

a = 1 / sqrt(1 - x);

b = tan(pi * sqrtx) / sqrtx;

c = pi * (sec(pi * sqrtx))^2;

y = 0.5 * (a + b + c);

end

Function functions
 we can now use our Newton’s method implementation

by passing in function handles for f and fprime

newton(@myf, @myfprime, 0.1, 1e-6)

16

Bracketing methods
 Newton’s method requires an initial estimate of the

root and the derivative of the function that we want to
find the roots for

 bracketing methods do not require the derivative

17

Bracketing methods
 bracketing methods require two estimates 𝑥1 = 𝑎 and
𝑥2 = 𝑏 such that the root lies between the two
estimates

18

x

f(x)

𝑓 𝑥 = 0

𝑓 𝑎

𝑓 𝑏

𝑎
𝑏

Bisection method
 the bisection method repeatedly evaluates 𝑓 at the

midpoint 𝑐𝑖 of the interval [𝑎𝑖 , 𝑏𝑖]
 𝑐𝑖 becomes one of the new interval endpoints [𝑎𝑖+1, 𝑏𝑖+1]

depending of the sign of 𝑓(𝑐𝑖)

19

Bisection Method
 evaluate f(x) at two points x = a and x = b such

that
 f(a) > 0
 f(b) < 0

20

x

f(x)
𝑓 𝑎

𝑓 𝑏

𝑎
𝑏

Bisection method
 evaluate f(c) where c is halfway between a and b
 if f(c) is not close to zero, repeat the bisection using c as

one of the new endpoints

21

x

f(x)
𝑓 𝑎

𝑓 𝑏

𝑎
𝑏 𝑐

Bisection method
 in this example, the value of f(c) is not yet close

enough to zero
 c becomes the new b (because the sign of f(c) is negative)

and the process repeats

22

x

f(x)
𝑓 𝑎

𝑓 𝑏

𝑎
𝑏

Bisection method
 the method stops when f(c) becomes close enough to zero,

and c is the estimate of the root of f

23

x

f(x)
𝑓 𝑎

𝑓 𝑏

𝑎
𝑏 𝑐

	Root finding
	Root finding
	Roots of polynomials
	Roots of non-polynomials
	Newton's method
	Slide Number 6
	Function handles
	Function handles
	Function handles
	Function functions
	Slide Number 11
	Function functions
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Function functions
	Bracketing methods
	Bracketing methods
	Bisection method
	Bisection Method
	Bisection method
	Bisection method
	Bisection method

