Root finding

Root finding

- suppose you have a mathematical function $f(x)$ and you want to find x_{0} such that $f\left(x_{0}\right)=0$
, why would you want to do this?
- many problems in computer science, science, and engineering reduce to optimization problems
- find the shape of an automobile that minimizes aerodynamic drag
- find an image that is similar to another image (minimize the difference between the images)
- find the sales price of an item that maximizes profit
- if you can write the optimization criteria as a function $\mathbf{g}(\mathbf{x})$ then its derivative $\mathbf{f}(\mathbf{x})=\mathbf{d g} / \mathbf{d x}=\mathbf{0}$ at the minimum or maximum of \mathbf{g} (as long as \mathbf{g} has certain properties)

Roots of polynomials

- for roots of polynomials MATLAB has a function named roots
- roots finds all of the roots of a polynomial defined by its coefficients vector; e.g.,
- the roots of the polynomial $x^{3}-6 x^{2}-72 x-27$:

$$
\begin{aligned}
& p=\left[\begin{array}{llll}
1 & -6 & -72 & -27
\end{array}\right] ; \\
& r=\operatorname{roots}(p) \\
& r=
\end{aligned}
$$

$$
12.1229
$$

$$
-5.7345
$$

$$
\text { -0. } 3884
$$

Roots of non-polynomials

- we've already seen Newton's method for root finding (Day 12)

1. start with an initial estimate of the root x_{0}
2. $\quad i=0$
3. while $\left|f\left(x_{i}\right)\right|>\epsilon$
$x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
$i=i+1$

- this requires computation of both $f(x)$ and $f^{\prime}(x)$

Newton's method

- our previous implementation used local functions to represent both $f(x)$ and $f^{\prime}(x)$
- the problem with this approach is that we can only find roots of the local function that defines $f(x)$
- e.g., our previous implementation can only find the roots of $f(x)=x^{2}-1$

```
function [ root, xvals ] = newton(x0, epsilon)
%NEWTON Newton's method for x^2 - 1
% ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using
% Newton's method starting from an initial estimate X0 and a tolerance EPSILON
%
% [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates
% in XVALS
xvals = x0;
xi = x0;
while abs(f(xi)) > epsilon
    xj = xi - f(xi) / fprime(xi);
    xi = xj;
    xvals = [xvals xi];
end
root = xi;
end
function [ y ] = f(x)
can only find the root of this function
y = x * x - 1;
end
function [ yprime ] = fprime(x)
yprime = 2 * x;
end
```


Function handles

- it would be nice if we could tell our implementation of Newton's method what function to use for $f(x)$ and $f^{\prime}(x)$
- MATLAB does not allow you to pass a function directly to another function
- instead you must pass a function handle to the function
- a function handle is a value that you can use to call a function (instead of using the name of the function)
- because it is a value, you can store it in a variable!

Function handles

- you can create a handle for any function by using @ before the function name

linspaceHandle = @linspace; \% handle for linspace
cosHandle = @cos;
plotHandle = @plot;
\% handle for cos
\% handle for plot

Function handles

- you can use the handle to call the function exactly the same way that you would use the function name to call the function
\% use handle to call linspace
x = linspaceHandle(-1, 1, 50);
\% use handle to call cos
y = cosHandle(2 * pi * x);
\% use handle to call plot
plotHandle(x, y, 'b:');

Function functions

- by using function handles, we can modify our implementation of Newton's method to find the root of any function
- we just have to supply two function handles, one for $f(x)$ and a second for $f^{\prime}(x)$
- we also need MATLAB functions that implement $f(x)$ and $f^{\prime}(x)$
function handles

```
function [ root, xvals ] = newton(f, fprime, x0, epsilon)
%NEWTON Newton's method for root finding
% ROOT = NEWTON(F, FPRIME, X0, EPSILON) finds a root of the
% function F having derivative FPRIME using Newton's method
% starting from an initial estimate X0 and a tolerance EPSILON
%
% [ROOT, XVALS] = NEWTON(F, FPRIME, X0, EPSILON) also returns
% the iterative estimates in XVALS
xvals = x0;
xi = x0;
while abs(f(xi)) > epsilon
    xj = xi - f(xi) / fprime(xi);
    xi = xj;
    xvals = [xvals xi];
end
root = xi;
end local functions have been removed
```


Function functions

- let's find a root of

$$
f(x)=\sqrt{x} \tan (\pi \sqrt{x})-\sqrt{1-x}
$$

which has the derivative

$$
f^{\prime}(x)=\frac{1}{2}\left(\frac{1}{\sqrt{1-x}}+\frac{\tan (\pi \sqrt{x})}{\sqrt{x}}+\pi \sec ^{2}(\pi \sqrt{x})\right)
$$

plot of $f(x)$

function [y] = myf(x)
\%MYF Function to find the root of
$y=\operatorname{sqrt}(x) . * \tan \left(p i{ }^{*} \operatorname{sqrt}(x)\right)-\operatorname{sqrt(1-x);~}$
end
function [y] = myfprime(x)
\%MYFPRIME Derivative of MYF

sqrtx = sqrt(x);

a = 1 / sqrt(1 - x);
b = tan(pi * sqrtx) / sqrtx;
c = pi * (sec(pi * sqrtx))^2;
$y=0.5$ * (a + b + c);
end

Function functions

- we can now use our Newton's method implementation by passing in function handles for f and fprime
newton(@myf, @myfprime, 0.1, 1e-6)

Bracketing methods

- Newton's method requires an initial estimate of the root and the derivative of the function that we want to find the roots for
- bracketing methods do not require the derivative

Bracketing methods

- bracketing methods require two estimates $x_{1}=a$ and $x_{2}=b$ such that the root lies between the two estimates

Bisection method

- the bisection method repeatedly evaluates f at the midpoint c_{i} of the interval $\left[a_{i}, b_{i}\right]$
- c_{i} becomes one of the new interval endpoints $\left[a_{i+1}, b_{i+1}\right.$] depending of the sign of $f\left(c_{i}\right)$

Bisection Method

- evaluate $\mathbf{f}(\mathbf{x})$ at two points $\mathbf{x}=\mathbf{a}$ and $\mathbf{x}=\mathbf{b}$ such that
- $f(a)>0$
- $f(b)<0$

Bisection method

- evaluate $\mathbf{f}(\mathbf{c})$ where \mathbf{c} is halfway between \mathbf{a} and \mathbf{b}
- if $\mathbf{f}(\mathbf{c})$ is not close to zero, repeat the bisection using \mathbf{c} as one of the new endpoints

Bisection method

- in this example, the value of $\mathbf{f}(\mathbf{c})$ is not yet close enough to zero
- \mathbf{c} becomes the new \mathbf{b} (because the sign of $f(\mathbf{c})$ is negative) and the process repeats

Bisection method

- the method stops when $\mathbf{f}(\mathbf{c})$ becomes close enough to zero, and \mathbf{c} is the estimate of the root of \mathbf{f}

