
Root finding 
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Root finding 
 suppose you have a mathematical function f(x) and 

you want to find x0 such that f(x0) = 0 
 why would you want to do this? 
 many problems in computer science, science, and 

engineering reduce to optimization problems 
 find the shape of an automobile that minimizes aerodynamic drag 
 find an image that is similar to another image (minimize the 

difference between the images) 
 find the sales price of an item that maximizes profit 

 if you can write the optimization criteria as a function g(x) 
then its derivative f(x) = dg/dx = 0 at the minimum 
or maximum of g (as long as g has certain properties) 
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Roots of polynomials 
 for roots of polynomials MATLAB has a function 

named roots  
 roots finds all of the roots of a polynomial defined by 

its coefficients vector; e.g., 
 the roots of the polynomial 𝑥3 − 6𝑥2 − 72𝑥 − 27: 

 
p = [1 -6 -72 -27]; 

r = roots(p) 

r = 

    12.1229 

    -5.7345 

    -0.3884 
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Roots of non-polynomials 
 we've already seen Newton's method for root finding 

(Day 12) 
 

1. start with an initial estimate of the root 𝑥0 
2.  𝑖 = 0 
3. while 𝑓 𝑥𝑖 > 𝜖 

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖
𝑓′ 𝑥𝑖

  

 𝑖 = 𝑖 + 1 
 

 this requires computation of both 𝑓(𝑥) and 𝑓𝑓(𝑥) 
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Newton's method 
 our previous implementation used local functions to 

represent both 𝑓(𝑥) and 𝑓𝑓(𝑥) 
 the problem with this approach is that we can only 

find roots of the local function that defines 𝑓(𝑥)  
 e.g., our previous implementation can only find the roots of 
𝑓 𝑥 = 𝑥2 − 1 
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function [ root, xvals ] = newton(x0, epsilon) 
%NEWTON Newton's method for x^2 - 1 
%   ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using 
%   Newton's method starting from an initial estimate X0 and a tolerance EPSILON 
% 
%   [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates 
%   in XVALS 
  
xvals = x0; 
xi = x0; 
while abs(f(xi)) > epsilon 
   xj = xi - f(xi) / fprime(xi); 
   xi = xj; 
   xvals = [xvals xi]; 
end 
root = xi; 
  
end 
  
function [ y ] = f(x) 
y = x * x - 1; 
end 
  
function [ yprime ] = fprime(x) 
yprime = 2 * x; 
end 
 

can only find the root of this function 



Function handles 
 it would be nice if we could tell our implementation of 

Newton's method what function to use for 𝑓(𝑥) and 
𝑓𝑓(𝑥) 

 MATLAB does not allow you to pass a function directly 
to another function 
 instead you must pass a function handle to the function 
 

 a function handle is a value that you can use to call a 
function (instead of using the name of the function) 
 because it is a value, you can store it in a variable! 
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Function handles 
 you can create a handle for any function by using @ 

before the function name 
 

linspaceHandle = @linspace; % handle for linspace 

cosHandle = @cos;           % handle for cos 

plotHandle = @plot;         % handle for plot 
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Function handles 
 you can use the handle to call the function exactly the 

same way that you would use the function name to call 
the function 
 

% use handle to call linspace 

x = linspaceHandle(-1, 1, 50); 

 

% use handle to call cos 

y = cosHandle(2 * pi * x); 

 

% use handle to call plot 

plotHandle(x, y, 'b:'); 
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Function functions 
 by using function handles, we can modify our 

implementation of Newton's method to find the root 
of any function 
 we just have to supply two function handles, one for 𝑓(𝑥) 

and a second for 𝑓𝑓(𝑥) 
 we also need MATLAB functions that implement 𝑓(𝑥) and  
𝑓𝑓(𝑥) 
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function [ root, xvals ] = newton(f, fprime, x0, epsilon) 
%NEWTON Newton's method for root finding 
%   ROOT = NEWTON(F, FPRIME, X0, EPSILON) finds a root of the 
%   function F having derivative FPRIME using Newton's method 
%   starting from an initial estimate X0 and a tolerance EPSILON 
% 
%   [ROOT, XVALS] = NEWTON(F, FPRIME, X0, EPSILON) also returns 
%   the iterative estimates in XVALS 
  
xvals = x0; 
xi = x0; 
while abs(f(xi)) > epsilon 
   xj = xi - f(xi) / fprime(xi); 
   xi = xj; 
   xvals = [xvals xi]; 
end 
root = xi; 
  
end 
 

function handles 

local functions have been removed 



Function functions 
 let’s find a root of 

 
 
 
which has the derivative 
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𝑓 𝑥 = 𝑥 tan 𝜋 𝑥 − 1 − 𝑥 

𝑓′ 𝑥 =
1
2

1
1 − 𝑥

+
tan 𝜋 𝑥

𝑥
+ 𝜋 sec2 𝜋 𝑥  
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plot of 𝑓(𝑥) 
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function [y] = myf(x) 

%MYF Function to find the root of 

  

y = sqrt(x) .* tan(pi * sqrt(x)) - sqrt(1 - x); 

  

end 
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function [y] = myfprime(x) 

%MYFPRIME Derivative of MYF 

  

sqrtx = sqrt(x); 

a = 1 / sqrt(1 - x); 

b = tan(pi * sqrtx) / sqrtx; 

c = pi * (sec(pi * sqrtx))^2; 

y = 0.5 * (a + b + c); 

  

end 

 

 



Function functions 
 we can now use our Newton’s method implementation 

by passing in function handles for f and fprime  
 
 

newton(@myf, @myfprime, 0.1, 1e-6) 
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Bracketing methods 
 Newton’s method requires an initial estimate of the 

root and the derivative of the function that we want to 
find the roots for 

 bracketing methods do not require the derivative 
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Bracketing methods 
 bracketing methods require two estimates 𝑥1 = 𝑎 and 
𝑥2 = 𝑏 such that the root lies between the two 
estimates 
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Bisection method 
 the bisection method repeatedly evaluates 𝑓 at the 

midpoint 𝑐𝑖 of the interval [𝑎𝑖, 𝑏𝑖] 
 𝑐𝑖 becomes one of the new interval endpoints [𝑎𝑖+1, 𝑏𝑖+1]  

depending of the sign of 𝑓(𝑐𝑖)  
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Bisection Method 
 evaluate f(x) at two points x = a and x = b such 

that 
 f(a) > 0 
 f(b) < 0  
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Bisection method 
 evaluate f(c) where c is halfway between a and b  
 if f(c) is not close to zero, repeat the bisection using c as 

one of the new endpoints 
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Bisection method 
 in this example, the value of f(c) is not yet close 

enough to zero 
 c becomes the new b (because the sign of f(c) is negative) 

and the process repeats 
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Bisection method 
 the method stops when f(c) becomes close enough to zero, 

and c is the estimate of the root of f  
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