Line and curve fitting

Line and curve fitting

- a very common procedure in data analysis is fitting a line or curve to measured data points
- useful for many reasons
- visualize measurements
- find a functional relationship between two or more variables
- infer results between data points (interpolation)
- infer results outside of the range of data points (extrapolation)

Line and curve fitting

Computing the best fit line

- many undergraduate physics experiments involve linear relationships, or relationships that can be converted to linear relationships
- in such experiments you end up trying to find the best fit line to a set of measurements

$$
y=a+b x
$$

- the y-intercept a and slope b are typically found by software or through a pair of equations

Computing the best fit line

- for n data points $\left(x_{i}, y_{i}\right)$

$$
\begin{gathered}
a=\frac{\bar{y}\left(\sum_{i=1}^{n} x_{i}^{2}\right)-\bar{x} \sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}} \\
b=\frac{\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}
\end{gathered}
$$

where \bar{x} and \bar{y} are the average values of the x_{i} and y_{i}

- where did these come from?

Computing the best fit line

Computing the best fit line

- Gauss determined that the best fit line minimizes the sum of the squared residual errors, i.e.,
- find a and b that minimizes

$$
S=\sum_{i=1}^{n} r_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)^{2}
$$

- this is the principle of least-squares (Gauss-Markov theorem)
- from calculus you know that the minimum occurs when the partial derivatives are equal to zero

Computing the best fit line

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=-2 \sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right)=0 \\
& \frac{\partial S}{\partial b}=-2 \sum_{i=1}^{n}\left(y_{i}-\left(a+b x_{i}\right)\right) x_{i}=0
\end{aligned}
$$

Computing the best fit line

- a little bit of algebra yields

$$
\begin{aligned}
n a+b \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
a \sum_{i=1}^{n} x_{i}+b \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

which can be written in matrix form as

$$
\left[\begin{array}{cc}
n & \Sigma x_{i} \\
\Sigma x_{i} & \Sigma x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right]
$$

Computing the best fit line

- if you compute

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{cc}
n & \Sigma x_{i} \\
\Sigma x_{i} & \Sigma x_{i}{ }^{2}
\end{array}\right]^{-1}\left[\begin{array}{c}
\Sigma y_{i} \\
\Sigma x_{i} y_{i}
\end{array}\right]
$$

you will get the equations on slide 5

- see Question 3 from Test 1-afternoon

Line fitting in MATLAB

- MATLAB provides a function for performing leastsquares polynomial fitting
- a line is a polynomial of degree 1

```
>> x = [-4; 3.7; 0; 2.5; 1.2; -2.8; -1.4];
>> y = [-37; 38; 0; 29; 21; -21; -8];
>> polyfit(x, y, 1)
ans =
9.7436 4.2564
```

