Random variables (continued)

Repeated measurements

- student scientists are taught to perform multiple measurements and average the results
- one reason is to increase the precision of the estimated value
- if taking multiple measurements increases the precision then surely taking even more measurements would be better?
- how does the precision of the average behave as a function of the number of measurements n ?

Variance of the mean

- precision = variance (or standard deviation)
- assume the measurement is contaminated with additive Gaussian noise with mean zero and variance 1
- write a simulation to study the behavior of the sample mean as a function of the number of measurements

Variance of the mean

\%\% Variance of the mean for $n=1,2, \ldots, 64$
N = 64;
VAR $=$ ones(1, N);
for $n=1: N$
X = randn(n, 10000);
if $n=\mathbf{1}$
$\operatorname{VAR}(\mathrm{n})=\operatorname{var}(X) ;$
else
$\operatorname{VAR}(\mathrm{n})=\operatorname{var}(\operatorname{mean}(\mathrm{X})) ;$
end
end
plot(VAR)

Variance of the mean

- variance of the mean

$$
\operatorname{var}(\bar{x}) \propto \frac{1}{n}
$$

- standard deviation of the mean

$$
\operatorname{stddev}(\bar{x}) \propto \frac{1}{\sqrt{n}}
$$

Gaussian random walk

- a Gaussian random walk is a random walk where the step size is drawn from a Gaussian distribution with mean variance

Gaussian random walk

\%\% Gaussian random walk for $\mathrm{n}=100$ steps
n = 100;
w = zeros(1, n);
for step $=2: n$
w(step) = w(step - 1) + randn(1);
end
plot(w)

Gaussian random walk

- after n steps what does the walk look like?

```
%% Many Gaussian random walks
TRIALS = 100000;
W = zeros(TRIALS, n);
tic
for t = 1:TRIALS % there is faster way to do this...
    for step = 2:n
        W(t, step) = W(t, step - 1) + randn(1);
    end
end
toc
plot(var(W))
```


Differential drive

- two independently driven wheels mounted on a

(a) Differential Drive

(b) Khepera Robot

Differential drive

- velocity constraint defines the wheel ground velocities

(a) Differential Drive instantaneous linear velocity of left wheel
$v_{l}=\stackrel{-}{\left(R+\frac{\ell}{2}\right)}$
$v_{r}=\omega\left(R-\frac{\ell}{2}\right)$
instantaneous linear velocity of right wheel

Differential drive

- given the wheel ground velocities it is easy to solve for the radius, R, and angular velocity ω

$$
\begin{aligned}
& R=\frac{\ell}{2} \frac{\left(v_{r}+v_{\ell}\right)}{\left(v_{r}-v_{\ell}\right)} \\
& \omega=\frac{\left(v_{r}-v_{\ell}\right)}{\ell}
\end{aligned}
$$

- given the radius and angular velocity it is possible to estimate the path of the robot
- but let's look at a simpler model of the motion instead

Differential drive

- assume at time t the robot has position $\quad \mathbf{p}_{t}=\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]$ orientation θ_{t}
and forward velocity
v_{t}
- then after 1 unit of time has passed the new position of the robot is

$$
\mathbf{p}_{t+1}=\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]+v_{t}\left[\begin{array}{c}
\cos \theta_{t} \\
\sin \theta_{t}
\end{array}\right]
$$

Differential drive

- suppose that the robot starts at the origin facing right
- suppose that the true values of $\theta_{t}=0$ and $v_{t}=1$ are constant but the robot has an uncertain estimate of its velocity $\hat{v}_{t}=v_{t}+\mathcal{N}\left(0,0.25^{2}\right)$
normal random variable with mean 0 and variance 0.25^{2}
- what is the robot's estimate of its position after $t=1,2,3$, ..., 10 time steps?

Differential drive

```
%% Differential drive (1 trial)
theta = 0;
v = 1;
P = zeros(2, 11);
for t = 2:11
    vhat = v + 0.25*randn(1);
    P(:, t) = P(:, t-1) + vhat * [cos(theta); sin(theta)];
end
plot(P(1, :), P(2, :), '.');
```


Differential drive

```
%% Differential drive (many trials)
TRIALS = 1000;
theta = 0;
v = 1;
Px = zeros(TRIALS, 11);
Py = zeros(TRIALS, 11);
for trial = 1:TRIALS
    for t = 2:11
        pprev = [Px(trial, t - 1); Py(trial, t - 1)];
        vhat = v + 0.25*randn(1);
        p = pprev + vhat*[cos(theta); sin(theta)];
        Px(trial, t) = p(1);
        Py(trial, t) = p(2);
    end
end
hist(Px(:, 11))
```


Differential drive

- suppose that the robot starts at the origin facing right
- suppose that the true values of $\theta_{t}=0$ and $v_{t}=1$ are constant but the robot has an uncertain estimate of its orientation $\hat{\theta}_{t}=\theta_{t}+\mathcal{N}\left(0,(10 \mathrm{deg})^{2}\right)$
- what is the robot's estimate of its position after $t=1,2,3$, ..., 10 time steps?

Differential drive

```
%% Differential drive (many trials)
TRIALS = 1000;
theta = 0;
v = 1;
Px = zeros(TRIALS, 11);
Py = zeros(TRIALS, 11);
for trial = 1:TRIALS
    for t = 2:11
        pprev = [Px(trial, t - 1); Py(trial, t - 1)];
        thetahat = theta + (10 * pi/180)*randn(1);
        p = pprev + v*[cos(thetahat); sin(thetahat)];
        Px(trial, t) = p(1);
        Py(trial, t) = p(2);
    end
end
plot(Px(:, 11), Py(:,11), '.')
```

