Basic statistics

- suppose that you perform multiple measurements of some phenomenon
- the "average" measurement
- the amount of variation in the measurements
- the order of the measurements

Average

- the arithmetic average is an estimate of the mean
- for N measurements x_{i} the sample mean is

$$
\bar{x}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Average

- easy to implement using a for loop

```
function mu = average(x)
N = length(x);
sumN = 0;
for i = 1:N
    sumN = sumN + x(i);
end
mu = sumN / N;
```


Average

- you should use the function mean instead

```
>> mean([[-1 0 1])
ans =
    0
>> X = [\begin{array}{lll}{1}&{2}&{3;}\end{array}]
    3 8 11];
    mean computes the average of each
    column for a matrix
>> mean(X)
ans =
    2 5 7
```


Mean

- one problem with the mean is that it is sensitive to erroneous measurements

```
>> x = randn(1, 20);
>> x(21) = 100;
>> hist(x, 20);
>> mean(x)
```


Trimmed mean

- one solution is to use the trimmed mean
- to compute the trimmed mean
- remove the smallest and largest $\alpha \%$ of the values then compute the mean
>> trimmean(x, 5)

Median

- the median is the middle value
- for N measurements x_{i} in sorted order
- if N is odd, the median is the value of the element with index $(N+1) / 2$
- if N is even, the median is the average of the elements with indices $N / 2$ and $(N / 2)+1$
>> median(x)

Variance

- the variance is a measure of spread around the mean
- for N measurements x_{i} the sample variance is

$$
s^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}
$$

```
>> x = randn(1, 100);
\% "low" variance
>> hist(x, 20);
>> var(x)
>> x = 10 * randn(1, 100); \% "high" variance
>> hist(x, 20);
>> \(\operatorname{var}(x)\)
```


Standard deviation

- the standard deviation is the square root of the variance
- for N measurements x_{i} the sample standard deviation is often calculated as

$$
s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}
$$

>> std(x)

