## while loop

- a while loop repeats a block of code as long as a logical condition is true
- unlike a for loop
- there is no loop variable
- the number of times that the loop runs is not necessarily determined ahead of time


## while loop

while $\square$

end
iflogical_condition is true then the loop body is run once
after the loop body is run, the loop restarts by checking the logical_condition
\% repeat a loop until the user inputs 'y'

```
repeat = 1;
while (repeat)
    %
    % some code here that you want to repeat
    %
    % ask the user if they want to repeat again
    answer = input('Continue? (y / n)');
    repeat = strcmp(answer, 'y');
end
```


## while loop: infinte loops

- observe that it is very easy to create an infinite loop using a while loop
- you must ensure that whatever happens in the loop body eventually causes the logical condition to become false
- if you encounter an infinite loop in your program you can press Ctrl + C to stop your program
- unfortunately this stops your entire program and not just your loop
\% infinite loop example

```
repeat = 1;
while (repeat)
    %
    % some code here that you want to repeat
    %
    % ask the user if they want to repeat again
    answer = input('Continue? (y / n)');
```

    \% comment out next line
    \% repeat = strcmp(answer, 'y');
    end

## while loop: computing square root

- Hero's method
- named after Hero of Alexandria ( $1^{\text {st }}$ century Greek mathematician)
- to compute the square root of $s$

1. choose a starting value $x_{0}$
2. let $x_{1}$ be the average of $x_{0}$ and $s / x_{0}$
3. let $x_{2}$ be the average of $x_{1}$ and $s / x_{1}$
4. let $x_{3}$ be the average of $x_{2}$ and $s / x_{2}$, and so on

- how do you know when to stop?


## while loop: computing square root

- Hero's method can be described mathematically as

$$
\begin{aligned}
& x_{0} \approx \sqrt{s} \\
& x_{i+1}=\frac{1}{2}\left(x_{i}+\frac{s}{x_{i}}\right) \\
& \sqrt{s}=\lim _{i \rightarrow \infty} x_{i}
\end{aligned}
$$

\% compute the square root of $s$

```
epsilon = 1e-9;
delta = Inf;
x = 0.5 * x;
while abs(delta) > epsilon
    xi = mean([x, s / x]);
    delta = xi - x;
    x = xi;
end
```


## while loop: roots of functions

- Hero's method is a special case of Newton's method for finding roots of a real-valued function
- given a real-valued function

$$
f(x)
$$

find

$$
x \text { such that } f(x)=0
$$

## while loop: Newton's method

- Newton's method can be described as

1. start with an initial estimate of the root $x_{0}$
2. $\quad i=0$
3. while $\left|f\left(x_{i}\right)\right|>\epsilon$

$$
\begin{aligned}
& x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \\
& i=i+1
\end{aligned}
$$

```
function [ root, xvals ] = newton(x0, epsilon)
%NEWTON Newton's method for x^2 - 1
% ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using
% Newton's method starting from an initial estimate X0 and a tolerance EPSILON
%
% [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates
% in XVALS
xvals = x0;
xi = x0;
while abs(f(xi)) > epsilon
    xj = xi - f(xi) / fprime(xi);
    xi = xj;
    xvals = [xvals xi];
end
root = xi;
end
function [ y ] = f(x)
y = x * x - 1;
end
```


## local function: usable only inside newton.m

```
\begin{tabular}{l|l} 
function \(\left[\begin{array}{l}\text { yprime }]\end{array}\right]=\) fprime \((x)\) \\
yprime \(=2{ }^{*} x ;\) \\
end
\end{tabular}\(\quad\)\begin{tabular}{l} 
local function: usable only inside \\
newton. \(m\)
\end{tabular}
```


## while loop: Newton's method

- what happens if you call Newton's method with:
- $x_{0}=1$
- $x_{0}=-1$
- $x_{0}=2$
- $x_{0}=-2$
- $x_{0}=100$
- $x_{0}=-100$
- $x_{0}=0$
- $x_{0}=1 e-6$


## while loop: Newton's method

- the main idea in Newton's method
- we cannot easily find a root of $f(x)$
- we can approximate $f(x)$ around $x_{i}$ by using the tangent line at $x_{i}$
- we can easily compute the root of the tangent line as the $x$ intercept of the tangent line
- we can use the root of the tangent line as an improved estimate of the root of $f(x)$


## while loop: Newton's method

- the main idea in Newton's method
- we cannot easily find a root of $f(x)$
- we can approximate $f(x)$ around $x_{i}$ by using the tangent line at $x_{i}$
- we can easily compute the root of the tangent line as the $x$ intercept of the tangent line
- we can use the root of the tangent line as an improved estimate of the root of $f(x)$
- see plotnewton.m


## Nested loops

- a nested loop is a loop inside a loop
- often encountered when working with arrays of values
- consider matrix-vector multiplication

$$
\begin{gathered}
A x=b \\
{\left[\begin{array}{cccc}
A(1,1) & A(1,2) & & A(1, n) \\
A(2,1) & A(2,2) & & A(2, n) \\
& \vdots & \ddots & \vdots \\
A(m, 1) & A(m, 2) & \cdots & A(m, n)
\end{array}\right]\left[\begin{array}{c}
x(1) \\
x(2) \\
\vdots \\
x(m)
\end{array}\right]=\left[\begin{array}{c}
b(1) \\
b(2) \\
\vdots \\
b(m)
\end{array}\right]}
\end{gathered}
$$

- to compute $b$ we need to compute $m \times n$ multiplications
\% for some (m x n) matrix $A$ and ( $n \times 1$ ) vector $x$
[m, n] = size(A);
b = zeros(m, 1);
for row = 1:m
for col = 1:n
$b($ row $)=b($ row $)+A($ row, col) * $x($ col $) ;$
end
end


## Nested loops: dipole electric potential

- the dipole electric potential at some point $p$ is proportional to:

$$
V \propto \frac{q_{+}}{r_{+}}+\frac{q_{-}}{r_{-}}
$$



## Nested loops: dipole electric potential

- the lines of equipotential



## Nested loops: dipole electric potential

- to draw the lines of equipotential, we need to compute the dipole electric potential at discrete points ( $x_{i}, y_{i}$ )
- we can make a grid of equally spaced points using the meshgrid function
>> [X, Y] = meshgrid(-2:2);
>> [X, Y] = meshgrid(-2:2, 0:4);

```
%% electric dipole potential
% charge 1 (negative)
p1 = [-0.995; 0];
q1 = -1;
% charge 2 (positive)
p2 = [0.995; 0];
q2 = 1;
% the grid to compute the potential on
[X, Y] = meshgrid([-2:0.01:2]);
% the electric potential
V = zeros(size(X));
for row = 1:size(X, 1)
    for col = 1:size(X, 2)
        p = [X(row, col); Y(row, col)];
        v1 = q1 / norm(p - p1);
        v2 = q2 / norm(p - p2);
        V(row, col) = v1 + v2;
    end
end
% show the electric potential
c = -1:0.05:1;
contourf(X, Y, V, c)
```

