
while loop
 a while loop repeats a block of code as long as a

logical condition is true
 unlike a for loop

 there is no loop variable
 the number of times that the loop runs is not necessarily

determined ahead of time

1

while loop

while

end

2

loop body: a sequence of
MATLAB statements

if logical_condition is true
then the loop body is run once logical_condition

after the loop body is run, the
loop restarts by checking the
logical_condition

3

% repeat a loop until the user inputs 'y'

repeat = 1;

while (repeat)

 %

 % some code here that you want to repeat

 %

 % ask the user if they want to repeat again

 answer = input('Continue? (y / n)');

 repeat = strcmp(answer, 'y');

end

while loop: infinte loops
 observe that it is very easy to create an infinite loop

using a while loop
 you must ensure that whatever happens in the loop body

eventually causes the logical condition to become false

 if you encounter an infinite loop in your program you
can press Ctrl + c to stop your program
 unfortunately this stops your entire program and not just

your loop

4

5

% infinite loop example

repeat = 1;

while (repeat)

 %

 % some code here that you want to repeat

 %

 % ask the user if they want to repeat again

 answer = input('Continue? (y / n)');

 % comment out next line

 % repeat = strcmp(answer, 'y');

end

while loop: computing square root
 Hero's method
 named after Hero of Alexandria (1st century Greek

mathematician)
 to compute the square root of 𝑠
1. choose a starting value 𝑥0
2. let 𝑥1 be the average of 𝑥0 and 𝑠/𝑥0
3. let 𝑥2 be the average of 𝑥1 and 𝑠/𝑥1
4. let 𝑥3 be the average of 𝑥2 and 𝑠/𝑥2, and so on

 how do you know when to stop?

6

while loop: computing square root
 Hero's method can be described mathematically as

7

𝑥0 ≈ 𝑠

𝑥𝑖+1 =
1
2

𝑥𝑖 +
𝑠
𝑥𝑖

𝑠 = lim
𝑖→∞

𝑥𝑖

8

% compute the square root of s

epsilon = 1e-9;

delta = Inf;

x = 0.5 * x;

while abs(delta) > epsilon

 xi = mean([x, s / x]);

 delta = xi – x;

 x = xi;

end

while loop: roots of functions
 Hero's method is a special case of Newton's method

for finding roots of a real-valued function
 given a real-valued function

find

9

𝑓 𝑥

𝑥 such that 𝑓 𝑥 = 0

while loop: Newton's method
 Newton's method can be described as

1. start with an initial estimate of the root 𝑥0
2. 𝑖 = 0
3. while 𝑓 𝑥𝑖 > 𝜖

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖
𝑓′ 𝑥𝑖

 𝑖 = 𝑖 + 1

10

11

function [root, xvals] = newton(x0, epsilon)

%NEWTON Newton's method for x^2 - 1

% ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using

% Newton's method starting from an initial estimate X0 and a tolerance EPSILON

%

% [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates

% in XVALS

xvals = x0;

xi = x0;

while abs(f(xi)) > epsilon

 xj = xi - f(xi) / fprime(xi);

 xi = xj;

 xvals = [xvals xi];

end

root = xi;

end

function [y] = f(x)

y = x * x - 1;

end

function [yprime] = fprime(x)

yprime = 2 * x;

end

local function: usable only inside
newton.m

local function: usable only inside
newton.m

while loop: Newton's method
 what happens if you call Newton's method with:
 𝑥0 = 1
 𝑥0 = −1
 𝑥0 = 2
 𝑥0 = −2
 𝑥0 = 100
 𝑥0 = −100
 𝑥0 = 0
 𝑥0 = 1𝑒 − 6

12

while loop: Newton's method
 the main idea in Newton's method
 we cannot easily find a root of 𝑓(𝑥)
 we can approximate 𝑓(𝑥) around 𝑥𝑖 by using the tangent

line at 𝑥𝑖
 we can easily compute the root of the tangent line as the x-

intercept of the tangent line
 we can use the root of the tangent line as an improved

estimate of the root of 𝑓(𝑥)

13

while loop: Newton's method
 the main idea in Newton's method
 we cannot easily find a root of 𝑓(𝑥)
 we can approximate 𝑓(𝑥) around 𝑥𝑖 by using the tangent

line at 𝑥𝑖
 we can easily compute the root of the tangent line as the x-

intercept of the tangent line
 we can use the root of the tangent line as an improved

estimate of the root of 𝑓(𝑥)

 see plotnewton.m

14

Nested loops
 a nested loop is a loop inside a loop
 often encountered when working with arrays of values
 consider matrix-vector multiplication

 to compute 𝑏 we need to compute 𝑚 × 𝑛
multiplications

15

𝐴𝑥 = 𝑏
𝐴(1, 1) 𝐴(1, 2)
𝐴(2, 1) 𝐴(2, 2) ⋯ 𝐴(1,𝑛)

𝐴(2,𝑛)
⋮ ⋱ ⋮

𝐴(𝑚, 1) 𝐴(𝑚, 2) ⋯ 𝐴(𝑚,𝑛)

𝑥(1)
𝑥(2)
⋮

𝑥(𝑚)

=

𝑏(1)
𝑏(2)
⋮

𝑏(𝑚)

16

% for some (m x n) matrix A and (n x 1) vector x

[m, n] = size(A);

b = zeros(m, 1);

for row = 1:m

 for col = 1:n

 b(row) = b(row) + A(row, col) * x(col);

 end

end

Nested loops: dipole electric potential
 the dipole electric potential at some point 𝑝 is

proportional to:

17

+ -

r-
r+

p

𝑉 ∝
𝑞+
𝑟+

+
𝑞−
𝑟−

Nested loops: dipole electric potential
 the lines of equipotential

18

Nested loops: dipole electric potential
 to draw the lines of equipotential, we need to compute

the dipole electric potential at discrete points 𝑥𝑖 ,𝑦𝑖
 we can make a grid of equally spaced points using the
meshgrid function

>> [X, Y] = meshgrid(-2:2);

>> [X, Y] = meshgrid(-2:2, 0:4);

19

20

%% electric dipole potential

% charge 1 (negative)

p1 = [-0.995; 0];

q1 = -1;

% charge 2 (positive)

p2 = [0.995; 0];

q2 = 1;

% the grid to compute the potential on

[X, Y] = meshgrid([-2:0.01:2]);

% the electric potential

V = zeros(size(X));

for row = 1:size(X, 1)

 for col = 1:size(X, 2)

 p = [X(row, col); Y(row, col)];

 v1 = q1 / norm(p - p1);

 v2 = q2 / norm(p - p2);

 V(row, col) = v1 + v2;

 end

end

% show the electric potential

c = -1:0.05:1;

contourf(X, Y, V, c)

	while loop
	while loop
	Slide Number 3
	while loop: infinte loops
	Slide Number 5
	while loop: computing square root
	while loop: computing square root
	Slide Number 8
	while loop: roots of functions
	while loop: Newton's method
	Slide Number 11
	while loop: Newton's method
	while loop: Newton's method
	while loop: Newton's method
	Nested loops
	Slide Number 16
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Slide Number 20

