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Logicals 
 

 a logical expression is an expression that evaluates to 
either true or false 

 a logical variable is a variable whose value is either true 
or false 
 

 logical variables are usually called Boolean variables in 
computer science 
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Logicals in MATLAB 
 MATLAB uses the numbers 1 and 0 to represent true 

and false 
 that is, every logical expression will evaluate to either 

exactly 1 (true) or 0 (false), and the value of every logical 
variable will be either exactly 1 or 0  

 however, MATLAB will convert any non-zero, non-
NaN numeric value to logical 1  
 only values equal to exactly 0 are converted to logical 0  
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Creating a logical variable 
 the literals for logical true and false are the non-

keywords true and false  
 however, these are rarely used (most people use 1 and 0) 
 

>> x = true 

x = 

     1 

 

>> y = false 

y = 

     0 
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Relational operators 
 more commonly, logical values arise from logical 

expressions usually involving a relational operator 
 relational operators produce logical values by 

comparing two numbers 
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operator name 
> greater than 
>= greater than or equal to 
< less than 
<= less than or equal to 
== equal to 
~= not equal to 



Relational operators 
 
 
 

 the relational operators will operate in an element by 
element fashion for arrays 

 you can also compare a scalar versus an array 
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>> ones(3, 3) > zeros(3, 3) 

ans = 

     1     1     1 

     1     1     1 

     1     1     1 

 

>> 5 < ones(2, 2) 

ans = 

     0     0 

     0     0 



Relational operators 
 great care must be taken when comparing floating-

point values for equality (or non-equality) 
 

>> x = 0.1 + 0.1 + 0.1; 

>> x == 0.3 

ans = 

     0 

 

>> x = 0.5 - 0.4 - 0.1; 

>> x ~= 0 

ans = 

     1 
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Logical operators 
 logical operators operate on logical values 
 there are 5 logical operators and 1 function 
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Operator  name 
~ not 
& elementwise and 
&& short-circuit scalar and 
| elementwise or 
|| short-circuit scalar or 
xor elementwise exclusive or 



not ~ 
 ~ is Boolean negation (often called 'NOT') 
 NOT true is equal to false 
 NOT false is equal to true 
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expression result 
NOT true false 

NOT false true 
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>> x = 1:5 

x = 

     1     2     3     4     5 

 

>> ~(x > 2)      % parentheses needed (precedence) 

ans = 

     1     1     0     0     0 

 

>> exist('x') 

ans = 

     1 

 

>> ~exist('x') 

ans = 

     0 
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>> x = 1:5 

x = 

     1     2     3     4     5 

 

>> any(x > 5) 

ans = 

     0 

 

>> ~any(x > 5) 

ans = 

     1 



& elementwise and 
 & is Boolean conjunction (often called 'AND') applied 

elementwise 
 

13 

expression result 
true AND true true 

true AND false false 

false AND true false 

false AND false false 
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>> x = [1 1 0 0]; 

>> y = [1 0 1 0]; 

>> x & y 

ans = 

     1     0     0     0 

 

>> I = imread('cameraman.tif'); 

>> imshow(I); 

>> figure; 

>> imhist(I); 

>> figure; 

>> imshow(I > 64 & I < 192); 



| elementwise or 
 | is Boolean disjunction (often called 'OR') applied 

elementwise 
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expression result 
true OR true true 

true OR false true 

false OR true true 

false OR false false 
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>> x = [1 1 0 0]; 

>> y = [1 0 1 0]; 

>> x | y 

ans = 

     1     1     1     0 

 

>> I = imread('cameraman.tif'); 

>> imshow(I); 

>> figure; 

>> imhist(I); 

>> figure; 

>> imshow(I < 64 | I > 192); 



Scalar AND and OR 
 the scalar versions of AND and OR try to minimize the 

number of comparisons that are computed 
 consider the logical expression 

 
(x > 0) AND (x < 10)  

 
 if (x > 0) is false then there is no need to evaluate 
(x < 10) 
 because the overall expression must also be false   
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Scalar AND and OR 
 similary, consider the logical expression 

 
(x < 0) OR (x > 10)  

 
 if (x < 0) is true then there is no need to evaluate 
(x > 10)  
 because the overall expresssion must also be true  
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Scalar AND and OR 
 the scalar versions of AND and OR ensure that the 

extra comparison is never performed 
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Logical indexing 
 you can use a logical array to perform indexing on 

another array 
 MATLAB extracts the array elements corresponding to the 

nonzero values in the logical array 
 the output is always in the form of a column vector unless the 

array is a vector 
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>> x = 1:5 

x = 

     1     2     3     4     5 

 

>> I = x > 3 

I = 

     0     0     0     1     1 

 

>> x(I) 

ans = 

     4     5 
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>> X = pascal(5) 

X = 

     1     1     1     1     1 

     1     2     3     4     5 

     1     3     6    10    15 

     1     4    10    20    35 

     1     5    15    35    70 

 

>> I = 

 

     0     0     0     0     0 

     0     0     0     0     0 

     0     0     0     0     1 

     0     0     0     1     1 

     0     0     1     1     1 
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>>  X(I) 

ans = 

    15 

    20 

    35 

    15 

    35 

    70 
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>> % rectify a sine wave 

>> t = 0:0.05:1; 

>> y = sin(t); 

>> plot(t, y, 'b'); hold on; 

>> I = y < 0; 

>> y(I) = -y(I); 

>> plot(t, y, 'r'); 

 

>> % replace all spaces with – 

>> s = 'a string with some spaces in it'; 

>> s(isspace(s)) = '-' 

s = 

a-string-with-some-spaces-in-it 
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