
Logicals

1

Logicals

 a logical expression is an expression that evaluates to
either true or false

 a logical variable is a variable whose value is either true
or false

 logical variables are usually called Boolean variables in
computer science

2

Logicals in MATLAB
 MATLAB uses the numbers 1 and 0 to represent true

and false
 that is, every logical expression will evaluate to either

exactly 1 (true) or 0 (false), and the value of every logical
variable will be either exactly 1 or 0

 however, MATLAB will convert any non-zero, non-
NaN numeric value to logical 1
 only values equal to exactly 0 are converted to logical 0

3

Creating a logical variable
 the literals for logical true and false are the non-

keywords true and false
 however, these are rarely used (most people use 1 and 0)

>> x = true

x =

 1

>> y = false

y =

 0

4

Relational operators
 more commonly, logical values arise from logical

expressions usually involving a relational operator
 relational operators produce logical values by

comparing two numbers

5

operator name
> greater than
>= greater than or equal to
< less than
<= less than or equal to
== equal to
~= not equal to

Relational operators

 the relational operators will operate in an element by
element fashion for arrays

 you can also compare a scalar versus an array

6

7

>> ones(3, 3) > zeros(3, 3)

ans =

 1 1 1

 1 1 1

 1 1 1

>> 5 < ones(2, 2)

ans =

 0 0

 0 0

Relational operators
 great care must be taken when comparing floating-

point values for equality (or non-equality)

>> x = 0.1 + 0.1 + 0.1;

>> x == 0.3

ans =

 0

>> x = 0.5 - 0.4 - 0.1;

>> x ~= 0

ans =

 1

8

Logical operators
 logical operators operate on logical values
 there are 5 logical operators and 1 function

9

Operator name
~ not
& elementwise and
&& short-circuit scalar and
| elementwise or
|| short-circuit scalar or
xor elementwise exclusive or

not ~
 ~ is Boolean negation (often called 'NOT')
 NOT true is equal to false
 NOT false is equal to true

10

expression result
NOT true false

NOT false true

11

>> x = 1:5

x =

 1 2 3 4 5

>> ~(x > 2) % parentheses needed (precedence)

ans =

 1 1 0 0 0

>> exist('x')

ans =

 1

>> ~exist('x')

ans =

 0

12

>> x = 1:5

x =

 1 2 3 4 5

>> any(x > 5)

ans =

 0

>> ~any(x > 5)

ans =

 1

& elementwise and
 & is Boolean conjunction (often called 'AND') applied

elementwise

13

expression result
true AND true true

true AND false false

false AND true false

false AND false false

14

>> x = [1 1 0 0];

>> y = [1 0 1 0];

>> x & y

ans =

 1 0 0 0

>> I = imread('cameraman.tif');

>> imshow(I);

>> figure;

>> imhist(I);

>> figure;

>> imshow(I > 64 & I < 192);

| elementwise or
 | is Boolean disjunction (often called 'OR') applied

elementwise

15

expression result
true OR true true

true OR false true

false OR true true

false OR false false

16

>> x = [1 1 0 0];

>> y = [1 0 1 0];

>> x | y

ans =

 1 1 1 0

>> I = imread('cameraman.tif');

>> imshow(I);

>> figure;

>> imhist(I);

>> figure;

>> imshow(I < 64 | I > 192);

Scalar AND and OR
 the scalar versions of AND and OR try to minimize the

number of comparisons that are computed
 consider the logical expression

(x > 0) AND (x < 10)

 if (x > 0) is false then there is no need to evaluate
(x < 10)
 because the overall expression must also be false

17

Scalar AND and OR
 similary, consider the logical expression

(x < 0) OR (x > 10)

 if (x < 0) is true then there is no need to evaluate
(x > 10)
 because the overall expresssion must also be true

18

Scalar AND and OR
 the scalar versions of AND and OR ensure that the

extra comparison is never performed

19

Logical indexing
 you can use a logical array to perform indexing on

another array
 MATLAB extracts the array elements corresponding to the

nonzero values in the logical array
 the output is always in the form of a column vector unless the

array is a vector

20

21

>> x = 1:5

x =

 1 2 3 4 5

>> I = x > 3

I =

 0 0 0 1 1

>> x(I)

ans =

 4 5

22

>> X = pascal(5)

X =

 1 1 1 1 1

 1 2 3 4 5

 1 3 6 10 15

 1 4 10 20 35

 1 5 15 35 70

>> I =

 0 0 0 0 0

 0 0 0 0 0

 0 0 0 0 1

 0 0 0 1 1

 0 0 1 1 1

23

>> X(I)

ans =

 15

 20

 35

 15

 35

 70

24

>> % rectify a sine wave

>> t = 0:0.05:1;

>> y = sin(t);

>> plot(t, y, 'b'); hold on;

>> I = y < 0;

>> y(I) = -y(I);

>> plot(t, y, 'r');

>> % replace all spaces with –

>> s = 'a string with some spaces in it';

>> s(isspace(s)) = '-'

s =

a-string-with-some-spaces-in-it

	Logicals
	Logicals
	Logicals in MATLAB
	Creating a logical variable
	Relational operators
	Relational operators
	Slide Number 7
	Relational operators
	Logical operators
	not ~
	Slide Number 11
	Slide Number 12
	& elementwise and
	Slide Number 14
	| elementwise or
	Slide Number 16
	Scalar AND and OR
	Scalar AND and OR
	Scalar AND and OR
	Logical indexing
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

