Matrix operations Scripts

Matrix transpose

- if A is an $m x n$ matrix then the transpose of A is an $n \mathrm{x} m$ matrix where the row vectors of A are written as column vectors

$$
\begin{aligned}
& \text { >> u = [1 } 2 \text { 3]; } \\
& \text { >> v = u' } \\
& \text { v = } \\
& 1 \\
& 2 \\
& 3 \\
& \gg A=\left[\begin{array}{lll}
1 & 2 & 3 ;
\end{array}\right. \\
& 4 \text { 6]; } \\
& \text { >> } B=A^{\prime} \\
& \text { B = }
\end{aligned}
$$

Arithmetic operations with arrays

- you can perform element-by-element arithmetic with two arrays of the same size

operator	name
$\mathbf{+}$	addition
-	subtraction
. *	multiplication
.$/$	right array division
.	left array division

$$
\begin{aligned}
& \gg \mathrm{u}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \\
& \text { >> v = [lll } 8 \text { 9 }] \text {; } \\
& \text { >> w = u + v } \\
& \text { w = } \\
& 81012 \\
& \gg A=\left[\begin{array}{ll}
1 & 2
\end{array}\right. \text { 3; } \\
& 45 \text { 6]; } \\
& \text { >> } B=\left[\begin{array}{lll}
6 & 5 & 4 ;
\end{array}\right. \\
& 32 \text { 1]; } \\
& \text { > } \mathrm{C}=\mathrm{A}+\mathrm{B} \\
& \text { C = }
\end{aligned}
$$

$$
\begin{aligned}
& \gg \mathrm{u}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \\
& \text { >> v = [lll } 8 \text { 9 }] \text {; } \\
& \text { >> w = u - v } \\
& \text { w = } \\
& \begin{array}{lll}
-6 & -6 & -6
\end{array} \\
& \gg A=\left[\begin{array}{ll}
1 & 2
\end{array} 3 ;\right. \\
& 45 \text { 6]; } \\
& \text { >> } B=\left[\begin{array}{ll}
6 & 5 \\
4 & \text {; }
\end{array}\right. \\
& 32 \text { 1]; } \\
& \gg C=A-B \\
& \text { C = } \\
& \begin{array}{rrr}
-5 & -3 & -1 \\
1 & 3 & 5
\end{array}
\end{aligned}
$$

$\gg A=\left[\begin{array}{lll}1 & 2 & 3 ;\end{array}\right.$ 45 6]; (5 4;

$$
32 \text { 1]; }
$$

$$
\gg C=A .{ }^{*} B
$$

C =

$\gg \mathrm{u}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$		
$\gg \mathrm{v}=\left[\begin{array}{lll}7 & 8 & 9\end{array}\right] ;$		
$>\mathrm{w}=\mathrm{u} .1 \mathrm{v}$		
W =		
0.1429	0.2500	0.3333

right array division
the elements in \mathbf{u} divided by the elements in \mathbf{V}
> $\left.\mathrm{A}=\begin{array}{rll}1 & 2 & 3 ; \\ 4 & 5 & 6\end{array}\right] ;$
>> $B=\left[\begin{array}{lll}6 & 5 & 4 ;\end{array}\right.$
3 11];
>> C = A ./ B
C =

0.1667	0.4000	0.7500
1.3333	2.5000	6.0000

$$
>A=\left[\begin{array}{lll}
1 & 2 & 3 ;
\end{array}\right.
$$

$$
45 \text { 6]; }
$$

$$
\gg B=\left[\begin{array}{lll}
6 & 5 & 4 ;
\end{array}\right.
$$

$$
3 \text { 2 1]; }
$$

$$
\gg C=A . \ B
$$

$$
c=
$$

6.0000	2.5000	1.3333
0.7500	0.4000	0.1667

$$
\begin{aligned}
& \gg \mathrm{u}=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] ; \\
& \text { >> v = [7 } 8 \text { 9]; } \\
& \text { >> w = u . } \mathrm{l} \text { v } \\
& \text { w = } \\
& \begin{array}{lll}
7 & 4 & 3
\end{array}
\end{aligned}
$$

Arithmetic operations with arrays

- you can perform element-by-element arithmetic with an array and a scalar

operator	name
$\mathbf{+}$	addition
-	subtraction
$\boldsymbol{*}$	multiplication
$\boldsymbol{\text { / }}$	right division
$\boldsymbol{\Lambda} \boldsymbol{\wedge}$	left division

$$
\begin{aligned}
& \text { >> u = [1 } 2 \text { 3]; } \\
& \text { >> w = } 2 \text { + u } \\
& \text { w = } \\
& 3 \quad 45 \\
& \text { >> } A=\left[\begin{array}{ll}
1 & 2
\end{array} 3 ;\right. \\
& 4 \text { 6]; } \\
& \text { >> } C=A+10 \\
& \text { C = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { >> u = [1 } 2 \text { 3]; } \\
& \text { >> w = } 2 \text { - u } \\
& \text { w = } \\
& 1 \quad 0 \quad-1 \\
& \text { >> } A=\left[\begin{array}{lll}
1 & 2 & 3 ;
\end{array}\right. \\
& 4 \text { 6]; } \\
& \text { >> C = A - } 10 \\
& \text { C = } \\
& \begin{array}{lll}
-9 & -8 & -7 \\
-6 & -5 & -4
\end{array}
\end{aligned}
$$

>> w = u / 2		
w =		
0.5000	1.0000	1.5000
$\gg A=\left[\begin{array}{lll}1 & 2 & 3 ;\end{array}\right.$		
$456] ;$		
>> C $=10 \backslash \mathrm{~A}$		
$\mathrm{C}=$		
0.1000	0.2000	0.3000
0.4000	0.5000	0.6000

$\gg u=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$			array power
> w = u .^ 2			
w =			
1	4	9	

$$
\begin{aligned}
& \text { >> } A=\left[\begin{array}{lll}
1 & 2 & 3 ;
\end{array}\right. \\
& 4 \text { 6]; } \\
& \text { >> } C=A . \wedge 2 \\
& \text { C = } \\
& \begin{array}{rrr}
1 & 4 & 9 \\
16 & 25 & 36
\end{array}
\end{aligned}
$$

Example: Gaussian elimination

- See http://en.wikipedia.org/wiki/Gaussian elimination\#Example of the algorithm

$$
\begin{aligned}
& \gg A=\left[\begin{array}{lll}
2 & 1 & -1 ;
\end{array}\right. \\
& \text {-3-1 2; } \\
& \text {-2 } 112] \\
& A=\begin{array}{rrr}
& & \\
2 & 1 & -1 \\
-3 & -1 & 2 \\
-2 & 1 & 2
\end{array} \\
& >x=[8 ;-11 ;-3] \\
& x= \\
& 8 \\
& \text {-11 } \\
& \text {-3 }
\end{aligned}
$$

>> B = [A x] \% the augmented matrix [A | x]

B =

2	1	-1	8
-3	-1	2	-11
-2	1	2	-3

> $B(2,:)=B(2,:)+(3 / 2)$ * $B(1,:)$

B =

2.0000	1.0000	-1.0000	8.0000
0	0.5000	0.5000	1.0000
-2.0000	1.0000	2.0000	-3.0000

$\gg B(3,:)=B(3,:)+B(1,:)$

$B=$| | | | |
| ---: | ---: | ---: | ---: |
| 2.0000 | 1.0000 | -1.0000 | 8.0000 |
| 0 | 0.5000 | 0.5000 | 1.0000 |
| 0 | 2.0000 | 1.0000 | 5.0000 |

$\gg B(3,:)=B(3,:)-4$ * $B(2,:)$

B =

2.0000	1.0000	-1.0000	8.0000
0	0.5000	0.5000	1.0000
0	0	-1.0000	1.0000

Example: Gaussian elimination

- you could also use the MATLAB function rref
>> rref(B) \% row reduced echelon form of B
ans =

1	0	0	2
0	1	0	3
0	0	1	-1

Scripts

MATLAB Scripts

- a script is text file containing a sequence of MATLAB commands
- each command usually occurs on a separate line of the file
- MATLAB can run the commands in a script by reading the file and interpreting the text as MATLAB commands
- commands are run in order that they appear in the script file

MATLAB Scripts

- the filename of a MATLAB script always has the following form:

yourScriptName.m

where yourScriptName must be a valid MATLAB variable name

- i.e., must begin with a letter and may only contain letters and spaces and underscores
- no spaces or symbols!

Script example

- an undamped spring-mass system is an example of a simple harmonic oscillator
- the position of the mass is given by

$$
x(t)=A \sin \left(\sqrt{\frac{k}{m}} t-\frac{\pi}{2}\right)
$$

MATLAB Scripts

- MATLAB will "run" the script if you type in the name of the script in the command window
- the script must saved in a folder that is on the current MATLAB path
- the current MATLAB path always includes the current working folder shown the MATLAB address bar
- you will find it useful to organize all of your scripts and functions in a common folder
- see the path command (and its related functions)

MATLAB Scripts

- a script can create new variables, or it can re-use existing variables in the workspace
- note: this means that a script can overwrite an existing variable in the workspace, too

