Vectors and Matrices II

Matrices

- a maxtrix is a 2-dimensional array where the size of the dimensions is usually larger than 1

Creating matrices

- a matrix of size $m \times n$ can be created by entering m row vectors of length n separated by semi-colons inside square brackets

$$
\begin{aligned}
\gg & I=\left[\begin{array}{lll}
{\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] ;} & I \text { is the } 3 \times 3 \text { identity matrix } \\
& {\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] ;} & \\
& {\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

I =
1
0
0
0
0
1
0
0
1

Creating matrices

- the square brackets around the individual row vectors are actually unnecessary
>> I = [100;
01 0; no square brackets around the row vectors

I =

1	0	0
0	1	0
0	0	1

Creating matrices

- a matrix of size $m \times n$ can be created by entering n column vectors of length m separated by spaces or commas inside square brackets

Indexing elements of a matrix

- the elements of the matrix are usually accessed by using a pair of integer indices
- textbook calls this subscripted indexing
- for a matrix named \mathbf{A}, subscripted indexing has the form:
A(row, col)
where row is the row index and col is the column index of the desired element
> $A=\operatorname{magic}(3)$

$A=$| | | |
| :--- | :--- | :--- |
| | 8 | 1 |
| 3 | 5 | 7 |
| | 6 | 9 |

$\left[\begin{array}{lll}A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3)\end{array}\right]$
>> $A(1,1)$
ans = 8
> $A(3,1)$
ans =
4
$\gg A(2,3)$
ans =
7

Indexing elements of a matrix

- when the colon : is used an index it means all rows or columns
- this is often very useful
$\gg A=\operatorname{magic}(3)$

$A=$| | | |
| :--- | :--- | :--- |
| | 8 | 1 |
| 3 | 5 | 7 |
| | 7 | 9 |

> $A(:, 2)$
ans =
1
5
9
>> $A(3,:)$
ans =
4
9
2

$$
\left[\begin{array}{l|l|l}
A(1,1) & A(1,2) & A(1,3) \\
A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3)
\end{array}\right]
$$

$\left[\begin{array}{lll}A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3)\end{array}\right]$

Indexing elements of a matrix

- a submatrix of a matrix can be obtained by using vectors of indices
$\gg A=\operatorname{magic}(3)$

$A=$| | | |
| :--- | :--- | :--- |
| | 8 | 1 |
| 3 | 5 | 7 |
| | 4 | 9 |

>> $A(1: 2,1: 2)$
ans =

8	1
3	5

$$
\left[\begin{array}{lll}
A(1,1) & A(1,2) & A(1,3) \\
A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3)
\end{array}\right]
$$

>> A(:, 2:end)
ans =

1	6
5	7
9	2

$\left[\begin{array}{l|ll}A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3)\end{array}\right]$

Indexing elements of a matrix

- you can replace elements of a matrix using indexing
$\gg A=\operatorname{magic}(3)$
A =

8	1	6
3	5	7
4	9	2

$\gg A(3,3)=1$ ans =

8	1	6
3	5	7
4	9	1

$$
\left[\begin{array}{lll}
A(1,1) & A(1,2) & A(1,3) \\
A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3)
\end{array}\right]
$$

$\gg A=\operatorname{magic}(3)$
A =

8	1	6
3	5	7
4	9	2

$\gg A(1,:)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]$ ans =

0	0	0
3	5	7
4	9	2

$$
\left[\begin{array}{lll}
A(1,1) & A(1,2) & A(1,3) \\
\hline A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3)
\end{array}\right]
$$

$\gg A=\operatorname{magic}(3)$
A =

8	1	6
3	5	7
4	9	2

>> $A(1: 2,1: 2)=[10 ; 01]$ ans =

1	0	6
0	1	7
4	9	2

$$
\left[\begin{array}{lll}
A(1,1) & A(1,2) & A(1,3) \\
A(2,1) & A(2,2) & A(2,3) \\
A(3,1) & A(3,2) & A(3,3)
\end{array}\right]
$$

Creating matrices

- any function that returns a vector can be exploited to create rows of the matrix
$\gg \mathrm{p}=[\operatorname{cosd}(0: 10: 360) ;$ sind(0:10:360)]; column is a point on a circle
>> plot(p(1, :), p(2, :));
>> axis equal
- axis equal scales the plot axes so that 1 unit in x has the same length as 1 unit in y when drawn on the plot
- i.e., so that a circle will look like a circle instead of an ellipse

Creating matrices

- there are many functions that can be used to create matrices
>> help eye
>> help zeros
>> help ones
>> help diag

Adding elements to an array

- you can add new elements to an array as long as the dimension of new elements are compatible with the existing array

$$
\begin{aligned}
& \text { >> v = [1]; } \\
& \text { >> v = [l 2] } \\
& \text { v = } \\
& 12 \\
& \begin{aligned}
& \gg v=[1] ; \\
& \gg=[-1 ; 0 ; v] \\
& v= \\
& \\
&-1 \\
& 0
\end{aligned} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \gg v=\left[\begin{array}{cc}
1 & 2
\end{array}\right] ; \\
& \gg v=\left[\begin{array}{cc}
v ; & 3
\end{array}\right] \\
& v= \\
& 1
\end{aligned}
$$

>> v = [1 5];
$\gg v=\left[v(1)\left[\begin{array}{lll}2 & 3 & 4] \\ v(2)]\end{array}\right.\right.$
insert in the middle of the vector
v =
$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
>> v = [1 5];
>> v = [v(1) [2; 3; 4] v(2)]
Error using horzcat
CAT arguments dimensions are not consistent.

example continued on next slide

$\begin{aligned} & \gg A=[v ; A] \\ & A= \end{aligned}$				add a new row to the top of the matrix
1	1	1	1	
1	0	0	1	
1	0	0	1	
$\begin{aligned} & \gg A=[A ; \\ & A= \end{aligned}$	v]			add a new row to the bottom of the matrix
1	1	1	1	
1	0	0	1	
1	0	0	1	
1	1	1	1	

example continued on next slide
>> v = ones(1, 4);
$\gg A=[A(1: 2,:) ;$
v;
add a new row to the middle of the matrix

A(3:4, :)]
$\mathrm{A}=$

1	1	1	1
1	0	0	1
1	1	1	1
1	0	0	1
1	1	1	1

Adding elements to an array

- what is the output of the following MATLAB statements?
>> A = [1];
>> $A(2: 3,2: 3)=$ ones(2, 2)

Deleting elements from an array

- to delete elements from an array replace the elements with the empty array []
- the size of the array will decrease
- you can select the elements using indexing

$$
\begin{aligned}
& \text { >> v = 1:6 } \\
& \text { v = } \\
& \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \gg v(1)=[] \\
& \text { v = } \\
& 234 \\
& 5 \\
& 6 \\
& \gg v(\text { end })=[] \\
& \text { v = } \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& \text { v = }
\end{aligned}
$$

>> $A(1,1)=[]$
Subscripted assignment dimension mismatch.

