Vectors and Matrices II

Matrices

a maxtrix is a 2-dimensional array where the size of the dimensions is usually larger than 1

2 x 3

 a matrix of size m x n can be created by entering m row vectors of length n separated by semi-colons inside square brackets

>>	Ι	=	[[1	0	0];
			[0	1	0];
			[0	0	1]]

I is the 3 x 3 identity matrix

 $I = 1 0 \\
 0 1 \\
 0 0$

 the square brackets around the individual row vectors are actually unnecessary

>> I =
$$\begin{bmatrix} 1 & 0 & 0; \\ 0 & 1 & 0; \\ 0 & 0 & 1 \end{bmatrix}$$

no square brackets around the row vectors

 $I = 1 0 0 \\
 0 1 0 \\
 0 0 1$

 a matrix of size m x n can be created by entering n column vectors of length m separated by spaces or commas inside square brackets

Indexing elements of a matrix

- the elements of the matrix are usually accessed by using a pair of integer indices
 - textbook calls this subscripted indexing
- for a matrix named A, subscripted indexing has the form:

where row is the **row** index and **col** is the column index of the desired element

 $\begin{bmatrix} A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3) \end{bmatrix}$

Indexing elements of a matrix

- when the colon : is used an index it means all rows or columns
 - this is often very useful

$$\begin{bmatrix} A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3) \end{bmatrix}$$

 $\begin{bmatrix} A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ \hline A(3,1) & A(3,2) & A(3,3) \end{bmatrix}$

Indexing elements of a matrix

 a submatrix of a matrix can be obtained by using vectors of indices

$\int A(1,1)$	A(1, 2)	A(1, 3)
A(2, 1)	<i>A</i> (2, 2)	<i>A</i> (2, 3)
A(3,1)	A(3, 2)	A(3, 3)

$$\begin{bmatrix} A(1,1) & A(1,2) & A(1,3) \\ A(2,1) & A(2,2) & A(2,3) \\ A(3,1) & A(3,2) & A(3,3) \end{bmatrix}$$

Indexing elements of a matrix

you can replace elements of a matrix using indexing

$\int A(1,1)$	A(1, 2)	A(1,3)
<i>A</i> (2, 1)	A(2, 2)	<i>A</i> (2, 3)
A(3,1)	A(3, 2)	A(3,3)

>> A = magic(3)
A =
$$\begin{pmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}$$

>> A(1, :) = [0 0 0]
ans =
 $\begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{pmatrix}$

$\int A(1,1)$	<i>A</i> (1, 2)	A(1,3)
A(2, 1)	A(2, 2)	A(2,3)
A(3,1)	A(3, 2)	A(3,3)

>> A = ma	agic(3	3)
A =		
8	1	6
3	5	7
4	9	2
>> A(1:2,	1:2)	= [1 0;
ans =		
1	0	6
0	1	7
4	9	2

0 1]

A(1, 1)	A(1, 2)	A(1,3)
<i>A</i> (2, 1)	<i>A</i> (2, 2)	
	A(3, 2)	

 any function that returns a vector can be exploited to create rows of the matrix

```
p is an array where each
column is a point on a circle
```

```
>> plot(p(1, :), p(2, :));
```

- >> axis equal
- axis equal scales the plot axes so that 1 unit in x has the same length as 1 unit in y when drawn on the plot
 i.e., so that a circle will look like a circle instead of an ellipse

- there are many functions that can be used to create matrices
 - >> help eye
 - >> help zeros
 - >> help ones
 - >> help diag

Adding elements to an array

 you can add new elements to an array as long as the dimension of new elements are compatible with the existing array

>> v = [1 2];
>> $\mathbf{v} = [\mathbf{v}; 3 4]$ add a new row to the end of the vector
v =
1 2
3 4
>> v = [1 5];
>> $\mathbf{v} = [\mathbf{v}(1) [2 3 4] \mathbf{v}(2)]$ insert in the middle of the vector
v =
1 2 3 4 5
>> v = [1 5];
>> v = $[v(1) [2; 3; 4] v(2)]$
Error using horzcat
CAT arguments dimensions are not consistent.

>> A = z	zeros(2,	2)		
A =				
0	0			
0	0			
>> A = [ones(2,	1) A]		add a new column to the front
A =				of the matrix
1	0	0		
1	0	0		
>> A = [A ones(2, 1)]		add a new column to the end
A =				of the matrix
1	0	0	1	
1	0	0	1	

example continued on next slide

// V	= one	es(1,	4);	
>> A	= [v;	A]		
A =				
	1	1	1	1
	1	0	0	1
	1	0	0	1
~~ 7	- _			
>> A	= [A;	• v]		
>> A A =	= [A;	; v]		
	= [A; 1	• v] 1	1	1
			1 0	1 1
	1	1	_	
~~ 7		-	-	-

add a new row to the top of the matrix

add a new row to the bottom of the matrix

example continued on next slide

>>	v	=	ones(1,	4);	
>>	Α	=	[A(1:2,	:);	
			V;		
			A(3:4,	:)]	
A =	=				
		1	1	1	1
		1	0	0	1
		1	1	1	1
		1	0	0	1
		1	1	1	1

add a new row to the middle of the matrix

Adding elements to an array

what is the output of the following MATLAB statements ?

>> A =
$$[1];$$

>> A(2:3, 2:3) = ones(2, 2)

Deleting elements from an array

- to delete elements from an array replace the elements with the empty array []
 - the size of the array will decrease
- you can select the elements using indexing

>> v = 1:6 v =						
• –	1	2	3	4	5	6
>> v =	v(1) =	[]				delete first element
• –	2	3	4	5	6	
>> v =	v(end)	= []				delete last element
• —	2	3	4	5		
>> v v =	v([2 4]) = []]			delete second and last elements
	2	4				

Subscripted assignment dimension mismatch.