Vectors and Matrices I

Arrays

- an array is a multidimensional table
- the size of an array of dimension k is $d_{1} \times d_{2} \times \ldots \times d_{k}$
- in MATLAB
- d_{1} is the number rows and d_{2} is the number of columns

$$
5 \times 1
$$

$$
4 \times 2
$$

$$
2 \times 3 \times 5
$$

Arrays

- all MATLAB variables are multidimensional arrays
- the size of array in MATLAB:
>> help size
- the notion of an empty array exists
>> size([])

Scalars

- a scalar in MATLAB is an array of size 1×1

Vectors

- a vector is a 2-dimensional array where one of the size of one of the dimensions is 1
row vector
1×3

column vector

5×1

Creating row vectors

- a row vector can be created directly by entering the values of the vector inside a pair of square brackets with the values separated by spaces or commas
$\gg v=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right]$
v =
$\begin{array}{llll}1 & 2 & 3 \\ =[1, & 2, & 3, & 4\end{array}$
v =
$\begin{array}{llll}1 & 2 & 3\end{array}$

Creating row vectors

- the colon operator can be used to create row vectors having values that are equally spaced
>> $\mathrm{v}=1: 4$
v =
1
2
3
4

Creating row vectors

- you can specify the spacing of values using the colon operator
>> v = 1:2:9
v =

13
35
7
9
>> v = 1:2:8
>> v = 8:1
what does this result in?
and this?

Creating row vectors

- you can specify the spacing of values using the colon operator
>> start = 5;
>> step = 5;
>> stop = 25;
>> v = start:step:stop
v =
$\begin{array}{lllll}5 & 10 & 15 & 20 & 25\end{array}$

Creating row vectors

- the step size can be negative if start > stop
>> start = 25;
>> step $=-5 ;$
>> stop = 5;
>> v = start:step:stop
v =
25
20
15
10
5

Creating row vectors

- observe that the stop value is not guaranteed to be at the end of the vector
>> start = 25;
>> step = -5;
>> stop = 6;
>> v = start:step:stop
v =
$\begin{array}{llll}25 & 20 & 15 & 10\end{array}$

Creating row vectors

- the function linspace will generate a linearly spaced vector that includes the start and end values by calculating the step size for you
>> help linspace
linspace Linearly spaced vector.
linspace(X1, X2) generates a row vector of 100 linearly equally spaced points between X1 and X2.
linspace(X1, X2, N) generates N points between X1 and X2.
For $N=1$, linspace returns X2.

Creating column vectors

- a column vector can be created directly by entering the values of the vector inside a pair of square brackets with the values separated by semi-colons
>> v = [1; 2; 3; 4]
v =
1
2
3
4

Creating column vectors

- a column vector can be created from a row vector by transposing the row vector

\gg	$\mathbf{v}=$ [start:step:stop] $]$
$\mathbf{v}=$	the single quote after after avector or matrix will compute the transpose* of the vector or matrix

25
20
15
10

*strictly speaking, the single
quote is conjugate transpose
operator
. ' is the transpose operator

Creating column vectors

- a column vector can be created from a row vector by using the colon notation like so
>> v = 1:4;
>> $w=v(:)$

notice that the colon has
two different uses in this
example

W =
1
2
3
4

Number of elements in a vector

- the function length will return the number of elements in the vector

$$
\begin{aligned}
& \text { >> v = [llll} \left.1 \begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right] ; \\
& \gg \text { length(v) }
\end{aligned}
$$

```
the function length does
not compute the Euclidean
length of a vector!
```

ans $=$

4

Magnitude of a vector

- the magnitude of a vector is what mathematicians call the norm of the vector
- there are many different norms
- Euclidean norm (Euclidean length, L^{2} norm, L^{2} distance)
- taxicab norm (Manhattan norm, Manhattan distance, L^{1} norm)
- and more...

Magnitude of a vector

- use the norm function to compute the vector norm
- by default norm computes the Euclidean norm

```
>> v = [1 1];
>> norm(v)
```

ans =
1.4142

Indexing elements of a vector

- the elements of the vector can be accessed by using an integer value called an index
- MATLAB uses a 1-based index
- the first element of the vector has index 1
- the second element has index 2 , etc.
- use an index inside of () after the vector name to access an element of the vector

Indexing elements of a vector

```
>> v = -5:3
v =
    -5 [-4 
>> v(1)
    get the value of the first element in v
ans =
    -5
```


Indexing elements of a vector

$$
\begin{aligned}
& >v=-5: 3 \\
& \text { v = } \\
& \begin{array}{lllll}
-5 & -4 & -3 & -2 & -1
\end{array} \\
& 0 \quad 1 \\
& 12 \\
& 3 \\
& \text { >> } \mathrm{v}(2) \\
& \text { ans = }
\end{aligned}
$$

Indexing elements of a vector

$$
\begin{aligned}
& >v=-5: 3 \\
& \text { v = } \\
& \begin{array}{lllll}
-5 & -4 & -3 & -2 & -1
\end{array} \\
& 01 \\
& 12 \\
& \text { v = } \\
& \begin{array}{lllll}
-5 & -4 & 100 & -2 & -1
\end{array} \\
& 0 \\
& 1 \\
& 2
\end{aligned}
$$

Indexing elements of a vector

- the keyword end can be used to access the last element of the vector

```
>> v = -5:3
v =
    -5 -4 -4 -3 -2 -1
    get the value of the last element in v
ans =
```

3

Indexing elements of a vector

- you can use arithmetic with end

```
>> v = -5:3
v =
    -5 -4 -3 -2
                        -2
                            -1
                                0
                                1
                                    2
                                    3
>>v(end - 1) get the value of the second last element in v
ans =
```

2

Indexing elements of a vector

- the index does not need to be a scalar
- it can also be a vector of indices!
$>v=-5: 3$
v =
$-5 \quad-4$
-3
-2
-1
0
1
2
$\gg v\left(\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)$
get a vector of the first, third and fifth elements of v
ans $=$
$\begin{array}{lll}-5 & -3 & -1\end{array}$

Indexing elements of a vector

- the index does not need to be a scalar
- it can also be a vector of indices!
$>v=-5: 3$
v =
$\begin{array}{lllll}-5 & -4 & -3 & -2 & -1\end{array}$
$\gg v\left(\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)=\left[\begin{array}{lll}7 & 8 & 9\end{array}\right]$
set the first, third and fifth elements of v
v =
$7 \quad-4$
8 -2
9
0
1
2
3

