Representing numbers and Basic MATLAB

Representing numbers

- numbers used by computers do not behave the same as numbers used in mathematics
- e.g., try the following in MATLAB:

```
help intmax
x = intmax;
x + 1
```


Representing numbers

- numbers used by computers do not behave the same as numbers used in mathematics
- e.g., try the following in MATLAB:

Binary numbers

- both of the previous examples are a consequence of how numbers are typically represented in software
- for most software applications, numbers are represented using a base-2 (or binary) numeral system
- a binary digit is called a bit
- a bit can have one of two possible values
- true or false
- on or off
- 1 or 0

Binary numbers

- how many different values can you represent using 1 bit?

0
1

Binary numbers

- how many different values can you represent using 2 bits?

00
01
10
11

Binary numbers

- how many different values can you represent using 3 bits?

000
001
010
011
100
101
110
111

Binary numbers

- using n bits we can represent 2^{n} distinct values

Base-10 (decimal) integers

- humans typically use a base-10 number system
- the way we normally write numbers is a just a compact way to represent the underlying mathematical meaning:

4937

is shorthand for

$$
4 * 10^{3}+9 * 10^{2}+3 * 10^{1}+7 * 10^{0}
$$

Converting binary to decimal integers

- in a similar fashion, the binary integer

101

is shorthand for

$$
1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{0}
$$

which equals
5

Converting binary to decimal integers

- using this convention, we get the unsigned binary integers

binary		decimal
000	0* $\mathbf{2}^{2}+0^{*} \mathbf{2}^{1}+0^{*} \mathbf{2}^{0}$	0
001	0* $\mathbf{2}^{2}+0^{*} 2^{1}+1^{*} 2^{0}$	1
010	$0^{*} \mathbf{2}^{2}+1^{*} \mathbf{2}^{1}+0^{*} \mathbf{2}^{0}$	2
011	$0{ }^{*} 2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$	3
100	$1^{*} \mathbf{2}^{2}+0^{*} 2^{1}+0^{*} 2^{0}$	4
101	$1^{*} 2^{2}+0 * 2^{1}+1^{*} 2^{0}$	5
110	$1^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}$	6
111	$1^{*} \mathbf{2}^{2}+1^{*} 2^{1}+1^{*} \mathbf{2}^{0}$	7

Converting binary to decimal

- to get negative numbers we can change $\mathbf{2}^{\mathbf{2}}$ to $\mathbf{- 2}^{\mathbf{2}}$; this gives us the signed binary integers

binary		decimal
000	0*-2 ${ }^{2}+0{ }^{\text {a }}{ }^{1}+0{ }^{*}{ }^{0}$	0
001	$0^{*}-2^{2}+0^{*} \mathbf{2}^{1}+1^{*} 2^{0}$	1
010	$0^{*}-2^{2}+1^{*} 2^{1}+02^{0}$	2
011	$0^{*}-2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$	3
100	$1^{*}-2^{2}+0{ }^{*}{ }^{1}+0 * 2^{0}$	-4
101	$1^{*}-2^{2}+0^{*} \mathbf{2}^{1}+1^{*} 2^{0}$	-3
110	$1^{*}-2^{2}+1^{*} 2^{1}+0{ }^{*}{ }^{0}$	-2
111	$1^{*}-2^{2}+1^{*} 2^{1}+1^{*} 2^{0}$	-1

Converting binary to decimal

- using n bits, the range of unsigned binary integers in decimal is

$$
0 \text { to } 2^{n}-1
$$

- using n bits, the range of signed binary integers in decimal is

$$
-2^{n-1} \text { to } 2^{n-1}-1
$$

Integers in MATLAB

- MATLAB supports $8,16,32$, and 64 bit integers
- unsigned
- uint8, uint16, uint32, uint64
- signed
- int8, int16, int32, int64
- the names uint8, uint16, uint32, uint64, int8, int16, int 32 , int 64 are all examples of types
- a type defines what values can be represented and what operations can be performed

Integers in MATLAB

- we can now explain why the first example produces an unusual result:
x = intmax;
x + 1
- line 1 means:
- store the value intmax in the variable named \mathbf{x}
- line 2 means:
- calculate the value $\mathbf{x}+\mathbf{1}$

Integers in MATLAB

- we can now explain why the first example produces an unusual result:

```
x = intmax;
x + 1
```

- the value $\mathbf{x}+\mathbf{1}$ is the same value as \mathbf{x} because \mathbf{x} is already the maximum value that an int 32 can hold

Integers in MATLAB

- you get a similar result if you try to subtract 1 from intmin

```
x = intmin;
x - 1
```


Integers in MATLAB

- these are examples of saturation arithmetic
- if the result of an integer arithmetic operation is greater than the maximum value, then the result is the maximum value
- if the result of an integer arithmetic operation is less than the minimum value, then the result is the minimum value
- occurs because we use a fixed number of bits to represent each integer type

Real numbers

- most MATLAB applications deal with real numbers (as opposed to integer numbers)
- if you type a plain number into MATLAB then MATLAB will interpret that number to be a real number of type double
- short for "double precision"

Binary real numbers

- the representation of double precision binary real numbers is complicated
- http://en.wikipedia.org/wiki/Double precision floating-point format
- some facts:
- 64 bits
- smallest positive value $\approx 2.225 * 10^{-308}$
- largest positive value $\approx 1.798 * 10^{308}$
- between 15-17 significant digits

Real numbers in MATLAB

- any plain number that you type into MATLAB is treated as a double; e.g.,
$\begin{array}{lllll} & 1 & -1 & \mathbf{~} 2 & 0.01 \\ 532.03857173\end{array}$
- you can also use the letter \mathbf{e} or \mathbf{E} for scientific notation

scientific notation	meaning	value
1 e 2	$1{ }^{*} 10^{2}$	100
$1 \mathrm{e}-2$	$1{ }^{*} 10^{-2}$	0.01
$53 \mathrm{e}+4$	$53^{*} 10^{4}$	530000
$73.22 \mathrm{e}-3$	$73.22{ }^{*} 10^{-3}$	0.07322
1 e 2.2	error	

Arithmetic operators

- for numbers you can use the following arithmetic operators:

operation	operator	example	result
addition	+	$1.1+2$	3.1
subtraction	-	$7-5.3$	1.7
multiplication	$*$	$9.1 * 4$	36.4
division	$/$	pi / 2	1.5707963267949
exponentiation	\wedge	$5 \wedge 2$	25

Variables

- except for trivial calculations, you will almost always want to store the result of a computation
- a variable is a name given to a stored value; the statement:

$$
z=1+2
$$

causes the following to occur:

Note: The statement

$$
1+2=z
$$

is an error in MATLAB

1. compute the value $\mathbf{1}+\mathbf{2}$
2. store the result in the variable named \mathbf{z}

- MATLAB automatically creates \mathbf{z} if it does not already exist

Variables

- the = operator is the assignment operator
- the statement:

$$
z=1+2
$$

means:

1. evaluate the expression on the right-hand side of $=$
2. store the result in the variable on the left-hand size of $=$

Note: The statement

$$
1+2=z
$$

is an error in MATLAB
can you explain why $\mathbf{1}+\mathbf{2}=\mathbf{z}$ is an error in MATLAB?

Variable names

- a variable name must start with a letter
- the rest of the name can include letters, digits, or underscores
- names are case sensitive, so \mathbf{A} and \mathbf{a} are two different variables
- MATLAB has some reserved words called keywords that cannot be used as variable names
- use the command iskeyword to get a list of keywords

Variable names

valid variable names	invalid variable names	reason invalid
\mathbf{x}	$\mathbf{\$}$	\bullet does not begin with a letter \bullet \$ is not allowed in variable names
x6	$\mathbf{6 x}$	• does not begin with a letter
lastValue	$\mathbf{i f}$	• if is a keyword
pi_over_2	pi/2	$\bullet /$ is not allowed in variable names

