Computing for the Physical
 Sciences
 CSE1541M

Who Am I?

- Dr. Burton Ma
- office
- Lassonde 2046
- hours : see syllabus on course web page
- email
- burton@cse.yorku.ca

Course Format

- everything you need to know is on the course website - http://www.eecs.yorku.ca/course/1541
- labs start next Tuesday (Jan 14)

CSE1541 Overview

- an introductory programming course using MATLAB
- examples and problems drawn from physics

What is MATLAB?

- a numerical computing environment that has its own programming language
- interactive: the user can enter commands and "stuff" happens
- visualization: rich set of plotting functionality
- programmable: the user can create programs that can be run within the MATLAB environment

A Quick Tour of MATLAB

- the equation of a non-vertical line in 2 D is:

$$
y=m x+b
$$

- plot the line

$$
y=\frac{1}{2} x-1
$$

on the domain $-1<=\mathrm{x}<=5$

A MATLAB R2012a

Shortcuts $₫$ How to Add \llbracket What's New

$$
\gg x=-1: 5
$$

$$
\mathrm{x}=
$$

$$
\gg y=0.5 * x-1
$$

$$
\mathrm{y}=
$$

Columns 1 through 5
$\begin{array}{lllll}-1.5000 & -1.0000 & -0.5000 & 0 & 0.5000\end{array}$
Columns 6 through 7

$$
1.0000 \quad 1.5000
$$

4 Start

A Quick Tour of MATLAB

- find the intersection of the two lines:

$$
\begin{gathered}
y=\frac{1}{2} x-1 \\
y=-\frac{1}{3} x+2
\end{gathered}
$$

A MATLAB R2012a

A Quick Tour of MATLAB

- it looks like the intersection point is somewhere around

$$
\left[\begin{array}{l}
3.7 \\
0.7
\end{array}\right]
$$

- can we find the exact intersection point?

A Quick Tour of MATLAB

- rewrite the equations of the lines as:

$$
\begin{aligned}
& \frac{1}{2} x-y=1 \\
& \frac{1}{3} x+y=2
\end{aligned}
$$

- this system of two equations can be written in matrix form as:

$$
\left[\begin{array}{cc}
\frac{1}{2} & -1 \\
\frac{1}{3} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

A Quick Tour of MATLAB

- elite basketball players seemingly defy gravity by hanging in the air
- in his prime, Michael Jordan's (MJ) vertical leap was approximately 1.2 m . Assuming g $=9.8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{MJ}$ would have to jump vertically with an initial velocity $\mathrm{v}_{\mathrm{o}}=4.8497 \mathrm{~m} / \mathrm{s}$ to achieve a maximum height of 1.2 m

- explain why elite jumpers appear to hang in midair

A Quick Tour of MATLAB

- from the equations of projectile motion, we know that the vertical displacement of the jumper is given by:

$$
y(t)=v_{0} t-\frac{1}{2} g t^{2}
$$

- let's plot $y(t)$ for $0<=t<=1$

A MATLAB R2012a

File Edit Debug Parallel Desktop Window Help

A Quick Tour of MATLAB

- this still doesn't really explain why the jumper seems to hang mid-air
- what fraction of the total time spent in the air is the jumper at a height of im or more?
- we could solve this exactly using the quadratic equation
- we could estimate this by counting the number of values of y where $y>=1$

A MATLAB R2012a

A Quick Tour of MATLAB

- Monte Carlo integration is a technique for numerical integration that uses random numbers
- a classic example is calculating the area of a circle of radius 1

A MATLAB R2012a

A Quick Tour of MATLAB

- if you repeat the process, you will probably get a different answer
- because the points are chosen at random

A Quick Tour of MATLAB

- we might want to repeat the calculation many times to find out:
- how much the estimate varies for a given value of n
- how accurate the estimate is for a given value of n
- how the precision and accuracy vary as a function of n
- to repeat a calculation made up of several commands you can put the commands in a user-defined function
- you (or anyone else) can then call the function with a single command

