CS345 Notes for Lecture 10/14/96

Conjunctive Queries

= safe, datalog rules:

$$H : - G_1 \& \cdots \& G_n$$

- Most common form of query; equivalent to select-project-join queries.
- Useful for optimization of active elements ("triggers," constraints, instantiated views).
- Useful for information integration.

Containment

 $Q_1 \subseteq Q_2$ iff for every database D, $Q_1(D) \subseteq Q_2(D)$.

- Remember, Q(D) is what we get by making all possible substitutions for variables of Q. If a substitution turns all subgoals of Q's body to facts in D, then the head of Q, with this substitution, is in Q(D).
- Containment problem for CQ's is central. Problem is NP-complete, but not a "hard" problem in practical situations (short queries, few pairs of subgoals with same predicate).
- Function symbols do not make problems more difficult.
- Adding negated subgoals and/or arithmetic subgoals, e.g., X < Y, makes things more complex, but important special cases.

Example:

$$A: p(X,Y) := r(X,W) & b(W,Z) & r(Z,Y)$$

 $B: p(X,Y) := r(X,W) & b(W,W) & r(W,Y)$

 $B \subseteq A$. In proof, suppose p(x,y) is in B(D). Then there is some w such that r(x,w), b(w,w), and r(w,y) are in D. In A, make the substitution

$$X \to x, Y \to y, W \to w, Z \to w$$

Thus, the head of A becomes p(x, y), and all subgoals of A are in D. Thus, p(x, y) is also in A(D), proving $B \subseteq A$.

Testing Containment of CQ's

- 1. Containment mappings.
- 2. Canonical databases.
- Similar for basic CQ case, but (2) is useful for more general cases like negated subgoals.

Containment Mappings

Mapping from variables of CQ Q_2 to variables of CQ Q_1 such that

- 1. Head of Q_2 becomes head of Q_1 .
- 2. Each subgoal of Q_2 becomes a subgoal of Q_1 .
- It is not necessary that every subgoal of Q_1 is the target of some subgoal of Q_2 .

Example: A, B as above. Containment mapping from A to $B: X \to X, Y \to Y, W \to W, Z \to W$.

No containment mapping from B to A. Subgoal b(W, W) in B can only go to b(W, Z) in A. That would require both $W \to W$ and $W \to Z$.

Example:

$$C_1$$
: p(X) :- a(X,Y) & a(Y,Z) & a(Z,W) C_2 : p(X) :- a(X,Y) & a(Y,X)

Containment mapping $C_1 \to C_2$:

$$X \to X, Y \to Y, Z \to X, W \to Y$$

- No containment mapping $C_2 \to C_1$. Proof:
 - a) $X \to X$ required for head.
 - b) Thus, first subgoal of C_2 must map to first subgoal of C_1 ; Y must map to Y.
 - c) Similarly, 2nd subgoal of C_2 must map to 2nd subgoal of C_1 , so X must map to Z.
 - d) But we already found X maps to X.

Containment Mapping Theorem

 $Q_1 \subseteq Q_2$ iff there exists a containment mapping from Q_2 to Q_1 .

Proof (If)

Let $\mu: Q_2 \to Q_1$ be a containment mapping. Let D be any DB.

- Every tuple t in $Q_1(D)$ is produced by some substitution σ on the variables of Q_1 that makes Q_1 's subgoals all become facts in D.
- Claim: $\sigma \circ \mu$ is a substitution for variables of Q_2 that produces t.
 - 1. $\sigma \circ \mu(F_i) = \sigma(\text{some } G_j)$. Therefore, it is in D.
 - $2. \quad \sigma \circ \mu(H_2) = \sigma(H_1) = t.$
- Thus, every t in $Q_1(D)$ is also in $Q_2(D)$; i.e., $Q_1 \subseteq Q_2$.

Proof (Only If)

Key idea: frozen CQ.

- 1. Create a unique constant for each variable of the CQ Q.
- 2. Frozen Q is a database consisting of all the subgoals of Q, with the chosen constants substituted for variables.

Example:

$$p(X) := a(X,Y) & a(Y,Z) & a(Z,W)$$

Let x be the constant for X, etc. The relation for predicate a consists of the three tuples (x, y), (y, z), and (z, w).

The proof: Let $Q_1 \subseteq Q_2$. Let database D be the frozen Q_1 .

• $Q_1(D)$ contains t, the "frozen" head of Q_1 (sounds gruesome, but the reason is that we can use the substitution in which each variable of Q_1 is replaced by its corresponding constant).

- Since $Q_1 \subseteq Q_2$, $Q_2(D)$ must also contain t.
- Let σ be the substitution of constants from D for the variables of Q_2 that makes each subgoal of Q_2 a tuple of D and yields t as the head.
- Let σ' be the substitution that maps each variable X of Q_2 to the variable of Q_1 that corresponds to the constant $\sigma(X)$.
- σ' is a containment mapping from Q_2 to Q_1 because:
 - a) The head of Q_2 is mapped by σ to t, and t is the frozen head of Q_1 , so σ' maps the head of Q_2 to the "unfrozen" t, that is, the head of Q_1 .
 - b) Each subgoal F_i of Q_2 is mapped by σ to some tuple of D, which is a frozen version of some subgoal G_j of Q_1 . Then σ' maps F_i to the unfrozen tuple, that is, to G_j itself.

Dual View of Containment Mappings

A containment mapping, defined as a mapping on variables, induces a mapping on subgoals.

- Therefore, we can alternatively define a containment mapping as a function on subgoals, thus inducing a mapping on variables.
- The containment mapping condition becomes: the subgoal mapping does not cause a variable to be mapped to two different variables or constants, nor cause a constant to be mapped to a variable or a constant other than itself.

Example: Again consider

$$A: p(X,Y) := r(X,W) & b(W,Z) & r(Z,Y)$$

 $B: p(X,Y) := r(X,W) & b(W,W) & r(W,Y)$

Previously, we found the containment mapping $X \to X$, $Y \to Y$, $W \to W$, $Z \to W$ from A to B.

• We could as well describe this mapping as $r(X,W) \to r(X,W), \ b(W,Z) \to b(W,W),$ and $r(Z,Y) \to r(W,Y).$

Method of Canonical Databases

Instead of looking for a containment mapping from Q_2 to Q_1 in order to test $Q_1 \subseteq Q_2$, we can apply the following test:

- 1. Create a canonical database D that is the frozen body of Q_1 .
- 2. Compute $Q_2(D)$.
- 3. If $Q_2(D)$ contains the frozen head of Q_1 , then $Q_1 \subseteq Q_2$; else not.
- The proof that this method works is essentially the same as the argument for containment mappings.
 - \square The only way the frozen head of Q_1 can be in $Q_2(D)$ is for there to be a containment mapping $Q_2 \to Q_1$.

Example:

- Test $C_2 \subseteq C_1$.
- Choose constants $X \to 0, Y \to 1$.
- Canonical DB from C_1 is

$$D = \{a(0,1), a(1,0)\}$$

- $C_1(D) = \{p(0), p(1)\}.$
- Since the frozen head of C_2 is p(0), which is in $C_1(D)$, we conclude $C_2 \subseteq C_1$.
- Note that the instantiation of C_1 that shows p(0) is in $C_1(D)$ is $X \to 0, Y \to 1, Z \to 0$, and $W \to 1$.
 - ☐ If we replace 0 and 1 by the variables X and Y they stand for, we have the containment mapping from C_1 to C_2 .