
Utilities (Part 2)

Implementing static features

1

Goals for Today

2

 learn about preventing class instantiation
 learn what a utility is in Java
 learn about implementing methods
 static methods
 pass-by-value

 Javadoc

Puzzle 2

3

 what does the following program print?

public class Puzzle02
{
 public static void main(String[] args)
 {
 final long
 MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;
 final long
 MILLIS_PER_DAY = 24 * 60 * 60 * 1000;
 System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);
 }
}

4

 prints 5
 the problem occurs because the expression

 24 * 60 * 60 * 1000 * 1000

 evaluates to a number bigger than int can hold
 86,400,000,000 > 2,147,483,647 (Integer.MAX_VALUE)

 called overflow
 notice that the numbers in the expression are of type int

 Java will evaluate the expression using int even though the
constant MICROS_PER_DAY is of type long

 solution: make sure that the first value matches the
destination type

 24L * 60 * 60 * 1000 * 1000

Overflow
 several well known problems caused by issues related

to overflow
 Year 2000 problem
 Year 2038 problem
 Ariane 5 Flight 501

5

http://en.wikipedia.org/wiki/Year_2000_problem
http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

new Yahtzee Objects

6

 our Yahtzee API does not expose a constructor
 but

Yahtzee y = new Yahtzee();

 is legal

 if you do not define any constructors, Java will generate a
default no-argument constructor for you
 e.g., we get the public constructor

public Yahtzee() { }

even though we did not implement it

 our Yahtzee API exposes only static constants
(and methods later on)
 its state is constant

 there is no benefit in instantiating a Yahtzee object
 a client can access the constants (and methods) without

creating a Yahtzee object

 boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

 can prevent instantiation by declaring a private
constructor

Preventing Instantiation

7

Version 2 (prevent instantiation)

8

public class Yahtzee {
 // fields

 public static final int NUMBER_OF_DICE = 5;

 // constructors

 // suppress default ctor for non-instantiation

 private Yahtzee() {

 }

}

[notes 1.2.3]

Version 2.1 (even better)

9

public class Yahtzee {
 // fields

 public static final int NUMBER_OF_DICE = 5;

 // constructors

 // suppress default ctor for non-instantiation

 private Yahtzee() {

 throw new AssertionError();

 }

}

[notes 1.2.3]

private

10

 private fields, constructors, and methods cannot
be accessed by clients
 they are not part of the class API

 private fields, constructors, and methods are
accessible only inside the scope of the class

 a class with only private constructors indicates to
clients that they cannot use new to create instances of
the class

Utilities

11

 in Java, a utility class is a class having only static fields
and static methods

 uses:
 group related methods on primitive values or arrays

 java.lang.Math or java.util.Arrays

 group static methods for objects that implement an
interface
 java.util.Collections

 [notes 1.6.1–1.6.3]
 group static methods on a final class

 more on this when we talk about inheritance

12

public class Yahtzee {
 // fields

 public static final int NUMBER_OF_DICE = 5;

 // constructors

 // suppress default ctor for non-instantiation

 private Yahtzee() {

 throw new AssertionError();

 }

 public static boolean isThreeOfAKind(List<Die> dice) {
 Collections.sort(dice);
 boolean result =
 dice.get(0).getValue() == dice.get(2).getValue() ||
 dice.get(1).getValue() == dice.get(3).getValue() ||
 dice.get(2).getValue() == dice.get(4).getValue();
 return result;
 }
}

Method Signatures

13

public static boolean isThreeOfAKind(List<Die> dice)

 a method is a member that performs an action
 a method has a signature (name + number and types of the

parameters)

 isThreeOfAKind(List<Die>)

 all method signatures in a class must be unique

name number and types of parameters

signature

Method Signatures
 what happens if we try to introduce a second method

public static boolean

 isThreeOfAKind(Collection<Integer> dice) ?

 what about

public static boolean

 isThreeOfAKind(List<Integer> dice) ?

14

Methods

15

public static boolean isThreeOfAKind(List<Die> dice)

 a method returns a typed value or void

 boolean

 use return to indicate the value to be returned

 public static boolean isThreeOfAKind(List<Die> dice) {
 Collections.sort(dice);
 boolean result =
 dice.get(0).getValue() == dice.get(2).getValue() ||
 dice.get(1).getValue() == dice.get(3).getValue() ||
 dice.get(2).getValue() == dice.get(4).getValue();
 return result;
 }

Parameters

16

 sometimes called formal parameters
 for a method, the parameter names must be unique
 but a parameter can have the same name as an attribute

(see [notes 1.3.3])
 the scope of a parameter is the body of the method

static Methods

17

 a method that is static is a per-class member
 client does not need an object to invoke the method
 client uses the class name to access the method

 boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

 static methods are also called class methods
 a static method can only use static fields of the class

[notes 1.2.4], [AJ 249-255]

Invoking Methods

18

 a client invokes a method by passing arguments to the
method
 the types of the arguments must be compatible with the

types of parameters in the method signature
 the values of the arguments must satisfy the preconditions

of the method contract [JBA 2.3.3]

List<Die> dice = new ArrayList<Die>();
for (int i = 0; i < 5; i++) {
 dice.add(new Die());
}
boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

argument

Pass-by-value
 Java uses pass-by-value to:
 transfer the value of the arguments to the method
 transfer the return value back to the client

 consider the following utility class and its client…

19

20

import type.lib.Fraction;

public class Doubler {

 private Doubler() {
 }

 // tries to double x
 public static void twice(int x) {
 x = 2 * x;
 }

 // tries to double f
 public static void twice(Fraction f) {
 long numerator = f.getNumerator();
 f.setNumerator(2 * numerator);
 }
}

21

import type.lib.Fraction;

public class TestDoubler {

 public static void main(String[] args) {

 int a = 1;

 Doubler.twice(a);

 Fraction b = new Fraction(1, 2);

 Doubler.twice(b);

 System.out.println(a);

 System.out.println(b);

 }

}

Pass-by-value

 what is the output of the client program?
 try it and see

 an invoked method runs in its own area of memory

that contains storage for its parameters
 each parameter is initialized with the value of its

corresponding argument

22

Pass-by-value with Reference Types

23

Fraction b =

 new Fraction(1, 2);

64 client
b

500 Fraction object

numer 1

denom 2

500 value of b is a
reference to the

new
Fraction object

value of b is not the
Fraction 1/2

Pass-by-value with Reference Types

24

Fraction b =

 new Fraction(1, 2);

Doubler.twice(b);

64 client
b

500 Fraction object

numer 1

denom 2

600 Doubler.twice

f

500

500
parameter f

is an independent
copy of the value

of argument b
(a reference)

the value of b
is passed to the

method
Doubler.twice

Pass-by-value with Reference Types

25

Fraction b =

 new Fraction(1, 2);

Doubler.twice(b);

64 client
b

500 Fraction object

numer 1 2

denom 2

600 Doubler.twice

f

500

500

Doubler.twice
multiplies the

numerator of the
Fraction object by

2

Pass-by-value with Primitive Types

26

int a = 1;
64 client

a 1 value of a is the
integer value that

we stored

Pass-by-value with Primitive Types

27

int a = 1;

Doubler.twice(a);

64 client
a

800 Doubler.twice

x 1

1

parameter x
is an independent
copy of the value

of argument a
(a primitive)

the value of a
is passed to the

method
Doubler.twice

this is a different
Doubler.twice
method than the
previous example

(now resides at
address 800)

Pass-by-value with Reference Types

28

int a = 1;

Doubler.twice(a);

64 client
a

800 Doubler.twice

x

1

1 2

Doubler.twice
multiplies the value

of x by 2;
that's it, nothing

else happens

Pass-by-value

29

 Java uses pass-by-value for all types (primitive and
reference)
 an argument of primitive type cannot be changed by a

method
 an argument of reference type can have its state changed by

a method

 pass-by-value is used to return a value from a method
back to the client

Documenting Code

30

Javadoc
 documenting code was not a new idea when Java was

invented
 however, Java was the first major language to embed

documentation in the code and extract the documentation
into readable electronic APIs

 the tool that generates API documents from comments

embedded in the code is called Javadoc

31

Javadoc

32

 Javadoc processes doc comments that immediately
precede a class, attribute, constructor or method
declaration
 doc comments delimited by /** and */
 doc comment written in HTML and made up of two parts

1. a description
 first sentence of description gets copied to the summary section
 only one description block; can use <p> to create separate

paragraphs
2. block tags
 begin with @ (@param, @return, @exception)
 @pre. is non-standard (custom tag used in CSE1030)

Javadoc Guidelines

33

 http://www.oracle.com/technetwork/java/javase/documentation/inde
x-137868.html

 [notes 1.5.1, 1.5.2]

 precede every exported class, interface, constructor,
method, and attribute with a doc comment

 for methods the doc comment should describe the
contract between the method and the client
 preconditions ([notes 1.4], [JBA 2.3.3])
 postconditions ([notes 1.4], [JBA 2.3.3])

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Javadoc Examples
 short in-class demo here
 see any lab exercise

34

Introduction to Testing

35

Testing
 testing code is a vital part of the development process
 the goal of testing is to find defects in your code
 Program testing can be a very effective way to show the

presence of bugs, but it is hopelessly inadequate for
showing their absence.
—Edsger W. Dijkstra

 how can we test our utility class?
 write a program that uses it and verify the result

36

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

37

public class IsThreeOfAKindTest {

 public static void main(String[] args) {

 // make a list of 5 dice that are 3 of a kind

 // check if Yahtzee.isThreeOfAKind returns true

 }

}

38

public class IsThreeOfAKindTest {

 public static void main(String[] args) {

 // make a list of 5 dice that are 3 of a kind

 List<Die> dice = new ArrayList<Die>();

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 2)); // 2

 dice.add(new Die(6, 3)); // 3

 // check if Yahtzee.isThreeOfAKind returns true

 }

}

39

public class IsThreeOfAKindTest {

 public static void main(String[] args) {

 // make a list of 5 dice that are 3 of a kind

 List<Die> dice = new ArrayList<Die>();

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 1)); // 1

 dice.add(new Die(6, 2)); // 2

 dice.add(new Die(6, 3)); // 3

 // check if Yahtzee.isThreeOfAKind returns true

 if (Yahtzee.isThreeOfAKind(dice) == true) {

 System.out.println("success");

 }

 }

}

40

public class IsThreeOfAKindTest {
 public static void main(String[] args) {
 // make a list of 5 dice that are 3 of a kind
 List<Die> dice = new ArrayList<Die>();
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 2)); // 2
 dice.add(new Die(6, 3)); // 3

 // check if Yahtzee.isThreeOfAKind returns false
 if (Yahtzee.isThreeOfAKind(dice) == false) {
 throw new RuntimeException("FAILED: " +
 dice + " is a 3-of-a-kind");
 }
 }
}

Testing
 checking if a test fails and throwing an exception

makes it easy to find tests that fail
 because uncaught exceptions terminate the running

program
 unfortunately, stopping the test program might mean that

other tests remain unrunnable
 at least until you fix the broken test case

41

Unit Testing
 A unit test examines the behavior of a distinct unit of

work. Within a Java application, the "distinct unit of
work" is often (but not always) a single method. … A
unit of work is a task that isn't directly dependent on
the completion of any other task."
 from the book JUnit in Action

42

JUnit
 JUnit is a testing framework for Java

 A framework is a semi-complete application. A

framework provides a reusable, common structure to
share among applications. Developers incorporate the
framework into their own application and extend it to
meet their specific needs"
 from the book JUnit in Action

43

JUnit
 JUnit provides a way for creating:
 test cases

 a class that contains one or more tests
 test suites

 a group of tests
 test runner

 a way to automatically run test suites

 in-class demo of JUnit in eclipse

44

45

package cse1030.games;

import static org.junit.Assert.*;

import java.util.ArrayList;
import java.util.List;

import org.junit.Test;

public class YahtzeeTest {

 @Test
 public void threeOfAKind() {
 // make a list of 5 dice that are 3 of a kind
 List<Die> dice = new ArrayList<Die>();
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 2)); // 2
 dice.add(new Die(6, 3)); // 3

 assertTrue(Yahtzee.isThreeOfAKind(dice));
 }

}

	Utilities (Part 2)
	Goals for Today
	Puzzle 2
	Slide Number 4
	Overflow
	new Yahtzee Objects
	Preventing Instantiation
	Version 2 (prevent instantiation)
	Version 2.1 (even better)
	private
	Utilities
	Slide Number 12
	Method Signatures
	Method Signatures
	Methods
	Parameters
	static Methods
	Invoking Methods
	Pass-by-value
	Slide Number 20
	Slide Number 21
	Pass-by-value
	Pass-by-value with Reference Types
	Pass-by-value with Reference Types
	Pass-by-value with Reference Types
	Pass-by-value with Primitive Types
	Pass-by-value with Primitive Types
	Pass-by-value with Reference Types
	Pass-by-value
	Documenting Code
	Javadoc
	Javadoc
	Javadoc Guidelines
	Javadoc Examples
	Introduction to Testing
	Testing
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Testing
	Unit Testing
	JUnit
	JUnit
	Slide Number 45

