CSE4421: Lab 6

Burton Ma

Posted: Wed Apr 03, 2013 Due: Before 11:59PM Mon Apr 08, 2013

This lab builds on the previous lab. In Lab 5, we assumed that the robot could measure all 8 landmarks simultaneously with the same uncertainty. In this lab, we change this assumption.

- 1. Suppose that the measurement covariance for each landmark is proportional to the distance between the robot and the landmark. For each landmark i let the measurement noise be given by $d_i \mathbf{Q}_i$ where d_i is the distance between between the robot and landmark i at time t and \mathbf{Q}_i is the covariance matrix from Lab 5. Repeat the plot for Lab 5 using this new measurement noise model.
- 2. Now suppose that the measurement noise also has a directional dependence. Let the direction between the robot and landmark i be \mathbf{v}_i , and let the direction perpendicular to \mathbf{v}_i be \mathbf{w}_i . Suppose that the noise variance in direction \mathbf{v}_i be $0.16d_i$ and the the noise variance in direction \mathbf{w}_i be $0.04d_i$. Repeat the plot for Lab 5 using this new measurement noise model.

Submit your Matlab files (including the commands that generate your plots) using the command

submit 4421 L6 your-matlab-files