
CSE3311 SOFTWARE DESIGN – ASSIGNMENT 2
INHERITANCE AND POLYMORPHISM

VER. 1.0

PRZEMYSLAW PAWLUK

Due: Wednesday, June 12, 2013

Where: In class

Weight: 10%

1. Main Points

Be sure to read and follow all the guidelines from the links on reports and academic
honesty from the WWW home page for the course. The specification is the union of this
document plus the program text you are given.

1.1. Learning objectives.
• Reading and writing assertions
• Reading and understanding contracts
• Verifying the correctness of algorithms

1.2. To hand in. Hand in, in class, a report containing the following items as a package
in the given order.

(1) Cover page printed from the course web pages
(2) Your report consisting of your solutions to the tasks in Section 2. For reports

done in pairs, include an appendix describing the contributions of the two team
members.

(3) Electronic submission: There is no electronic submission for this report.

1



2 PRZEMYSLAW PAWLUK

2. Tasks

2.1. Greatest common divisor (GDC) contract. Using mathematical notation, an-
notate the best possible require, ensure, invariant and variant assertions for the following
function. gcd, that computes the greatest common divisor of two positive integers. The
greatest common divisor (GDC) of two positive integers, a and b, denoted by gcd(a, b) is
the largest natural number that divides both a and b. Some examples include gcd(9, 6) = 3,
gcd(16, 5) = 1. Euclids algorithm computes the gcd of two numbers as follows:

Step A:
Write a = q ∗ b + r where 0 <= r <= b.
StepB:
If r > 0,then set a = b, b = r and goto Step A. Otherwise last b is the GDC.
The equation a = q ∗b+r implies that gcd(a, b) = gcd(b, r) and hence the process works.
Here are several iterations:
a = q1 ∗ b + r1 where 0 <= r1 <= b
b = q2 ∗ r1 + r2 where 0 <= r2 < r1
r1 = q3 ∗ r2 + r3 where 0 <= r3 < r2

The algorithm:
gcd (a, b: INTEGER): INTEGER

-- Greatest common divisor of a and b.
require ???
local x, y, remainder: INTEGER
do

from x := a ; y := b; remainder := x \\ y -- remainder of x divided by y
invariant ???
until remainder = 0

loop
x := y
y := remainder
remainder := x \\ y
variant ???

end
Result := y
ensure ???

end



CSE3311 SOFTWARE DESIGN – ASSIGNMENT 2 INHERITANCE AND POLYMORPHISM VER. 1.0 3

2.2. Cumulative sum contract. Using mathematical notation, annotate the best pos-
sible require, ensure, invariant and variant assertions for the following function, cumula-
tive sum, that creates an array that contains the cumulative sum of the first n integers in
the array in.

cumulative_sum(in : ARRAY[INTEGER], n : INTEGER) : ARRAY[INTEGER]
require ???
local j : INTEGER
do

create Result.make(1, n)
from Result[1] := in[1] ; j := 1
invariant ???
until j = n - 1 do

j := j + 1
Result[j] := Result[j-1] + in[j]

variant ???
end

ensure ???
end



4 PRZEMYSLAW PAWLUK

2.3. Separate even-odd contract. Using mathematical notation, annotate the best pos-
sible require, ensure, invariant and variant assertions for the following function, sepa-
rate even odd, that rearranges the elements of the array such that the lower part contains
the even integers in the original array and the upper part contains the odd integers the
order of the even integers and the odd integers does not have to be the same as in the
original array. The returned result is the split point index.

separate_even_odd(in : ARRAY[INTEGER]) : INTEGER
require ???
local max_even : INTEGER ; min_odd : INTEGER do

from min_odd := in.upper + 1 ; max_even := in.lower - 1
invariant ???
until max_even = min_odd - 1 do

max_even := max_even + 1
if max_even \= min_odd then

if odd(in[max_even]) then
min_odd := min_odd - 1
swap(in[max_even], in[min_odd])
if odd(in[max_even]) then

max_even := max_even - 1
end

end
end
variant ???

end Result := min_odd
ensure ???

end



CSE3311 SOFTWARE DESIGN – ASSIGNMENT 2 INHERITANCE AND POLYMORPHISM VER. 1.0 5

2.4. Verify double half algorithm is correct. From the given contract, verify the al-
gorithm double half is correct.

double_half (in : ARRAY[REAL])
require in \= void
local k : INTEGER do

from k = in.lower

invariant
∀j : in.lower...k − 1|odd(in[j]) • in′[j] = in[j] ∗ 2
∧ ∀j : in.lower...k − 1|even(in[j]) • in′[j] = in[j]/2
until k > in.upper loop

if even(in[k]) then
in[k] := in[k]/2

else
in[k] := in[k]*2

end
k:=k+1

end
ensure

∀j : in.lower...in.upper|odd(in[j]) • in′[j] = in[j] ∗ 2
∧ ∀j : in.lower...in.upper|even(in[j]) • in′[j] = in[j]/2
end

3. Grading scheme

The grade for the report is partitioned into the following parts.
(1) Overall presentation 10%
(2) Greatest common divisor (GCD) contract 20%
(3) Cumulative sum contract 20%
(4) Separate even-odd contract 20%
(5) Verify double half algorithm 30%


