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CSE 3311 Software Design 
Report 2 Partial Solution 

 
 

Expect diagrams throughout.  Only a few diagrams are given for illustration.  Diagrams must be labeled 
and referenced in the body of the report.  The partial solution does not contain sufficient commentary about 
the assertions.  Your solution is expected to have more explanation and justification.  

1	  Greatest	  common	  divisor	  (GCD)	  contract	  
 

require 
    a_strickly_positive: a > 0 
    b_strickly_positive: b > 0 
 
invariant 
    remainder_big_enough: remainder ≥ 0 
    remainder_small_enough: remainder < y 
    x_stricly_positive: x > 0 
    y_stricly_positive: y > 0 
    gcd_x_y_related_to_gcd_a_b: gcd(a, b) = gcd(x, y) 
 
variant 
    remainder 
 
ensure 
   result_strictly_positive: Result > 0 
   result_divides_both: (a mod Result = 0) ∧ (b mod Result = 0) 
   result_is_greatest: ∀ x : Result + 1 .. min(a, b) • (a mod x ≠ 0) ∧ (b mod x ≠ 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2012 October 16  Page 2 of 5 
 
 

 - 2 - 

2	  Cumulative	  sum	  contract	  
require 
  in_exists: in ≠ void 
  in_proper_lower_bound: in.lower = 1 
  n_in_range: in.lower ≤ n ≤ in.upper 
 
invariant 

  partial_result_correct: ∀ p : 1 .. j • Result[p] = 

€ 

k=1

p

∑ in[k] 

 

 

Figure 1: Diagram showing invariant for cumulative sum loop 

variant 
  n – j 
   
ensure 
  result_proper_size: Result.lower = 1 ∧  Result.upper = n 

  result_correct: ∀ j : 1 .. n • Result[j] = 

€ 

k=1

j

∑ in[k] 
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3	  Separate	  even-odd	  contract	  
require 
  in_exists: in ≠ void 
 
invariant 
  partialresult_correct: 
    ∀ j : in.lower .. max_even • even(in[j]) 
          ∀ j : min_odd .. in.upper • odd(in[j]) 
    known_evens_in_original: 
        ∀ j : in.lower .. max_even • in’[j] ∈ {k : in.lower .. in.upper • in[k]} 
    known_odds_in_original:  
        ∀ j :min_odd .. in.upper • in’[j] ∈ {k : in.lower .. in.upper • in[k]} 
    original_in_result: 
        ∀ j : in.lower .. max_even • even(in[j]) →  in[j] ∈ {k : in.lower .. max_even • in’[k]} 
        ∀ j : min_odd .. in.upper • even(in[j]) →  in[j] ∈ {k : in.lower .. max_even • in’[k]} 
        ∀ j : in.lower .. max_even • odd(in[j]) →  in[j] ∈ {k : min_odd .. in.upper • in’[k]} 
        ∀ j : min_odd .. in.upper • odd(in[j]) →  in[j] ∈ {k : min_odd .. in.upper • in’[k]} 
 
variant 
  min_odd – max_even 
 
ensure 
  result_correct: ∀ j : in.lower .. Result–1 • even(in’[j]) 
                             ∀ j : Result .. in.upper • odd(in’[j]) 
  results_in_original: 
    ∀ j : in.lower .. in.upper • in’[j] ∈ {k : in.lower .. in.upper • in[k]} 
  original_in_results:  
    ∀ j : in.lower .. in.upper • in[j] ∈ {k : in.lower .. in.upper • in’[k]} 
 

 

Figure 2: Diagram for loop invariant 

The ensure clause is only partially correct.  Actually need to specify that the number of occurrences of 
each value in the original array occur in the final array.  Here we regard the array as a sequence; i.e. the 
indices map to the values.  The operator ⎡ is the sequence restriction operator.  It extracts, for example 
in the first clause, the subsequence from the sequence in that corresponds to values in the set {in[j]}.  
Because the set {in[j]} contains only one value, the expression {k : in.lower .. in.upper • in ⎡ {in[j]} } 
creates a set of sequences with one sequence for each value in the array in.  If the before and after set 
of sequences is the same, then we have neither gained nor lost copies of a value if it occurs multiple 
times.  This clause is difficult for you to write mathematically but it is not unreasonable for you to have 
thought of and to describe the problem. 
 

  original_and_results_have_the_same_values:  
    ∀ j :  in.lower .. in.upper • { in ⎡ {in[j]} }  = { in’ ⎡ {in’[j]} } 
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4	  Verify	  double_half	  algorithm	  is	  correct	  

Question 0: What is the loop invariant? 
We are given the loop invariant 

∀  j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 
             ∧ ∀  j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 

Question 1: Is the base case established? 
From the from clause of the loop statement the following relationships are true. 
  k = in.lower 

 

Substitute into the loop invariant to get the following. 
∀  j : in.lower .. in.lower–1 | odd(in[j]) • in’[j] = in[j]*2 

   ∧ ∀  j : in.lower .. in.lower–1 | even(in[j]) • in’[j] = in[j]/2 
 

In both clauses the interval is empty so the predicate is true.  As a consequence the invariant is true. 

Question 2: Verify inductive case 
We assume the invariant is true 

∀  j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 
             ∧ ∀  j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 

 

Executing the body of the loop gives two cases to consider. 
 
 

Case 1: even(in[k]) 
Executing the loop body gives the following relationships 

             k’ = k + 1 
          ∧ in’[k] = in[k]/2 

 

The loop invariant at the end of the loop is the following. 
                    ∀  j : in.lower .. k’–1 | odd(in[j]) • in’[j] = in[j]*2 

     ∧ ∀  j : in.lower .. k’–1 | even(in[j]) • in’[j] = in[j]/2 
 

Substitute k’ = k + 1 into the loop invariant. 
                     ∀  j : in.lower .. k | odd(in[j]) • in’[j] = in[j]*2 

     ∧ ∀  j : in.lower .. k | even(in[j]) • in’[j] = in[j]/2 
 

Split off the last term in each range. 
                     ∀  j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 ∧ odd(in[k]) → in’[k] = in[k]*2 

     ∧ ∀  j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 ∧ even(in[k]) → in’[k] = in[k]/2 
 

In the first line, the first clause is true because it is the same as in the loop invariant at beginning of the 
loop.  The second clause is true because odd(in[k]) is false, so the implication is true.  As a consequence the 
first line of the invariant is true. 

 

In the second line, the first clause is true because it is the same as in the loop invariant at the beginning of 
the loop.  The second clause is true because even([in[j]) is true and  in’[k] = ink]/2 is true, so the 
implication is true. 

 

As a consequence the loop invariant is true at the end of execution the loop body for this case. 
 
Case 2: odd(in[k]) 
Executing the loop body gives the following relationships 

             k’ = k + 1 
          ∧ in’[k] = in[k]*2 

 

The loop invariant at the end of the loop is the following. 
                    ∀  j : in.lower .. k’–1 | odd(in[j]) • in’[j] = in[j]*2 
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     ∧ ∀  j : in.lower .. k’–1 | even(in[j]) • in’[j] = in[j]/2 
 

Substitute k’ = k + 1 into the loop invariant. 
                     ∀  j : in.lower .. k | odd(in[j]) • in’[j] = in[j]*2 

     ∧ ∀  j : in.lower .. k | even(in[j]) • in’[j] = in[j]/2 
 

Split off the last term in each range. 
                     ∀  j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 ∧ odd(in[k]) → in’[k] = in[k]*2 

     ∧ ∀  j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 ∧ even(in[k]) → in’[k] = in[k]/2 
 

In the first line, the first clause is true because it is the same as in the loop invariant at beginning of the 
loop.  The second clause is true because odd([in[j]) is true and  in’[k] = ink]*2 is true, so the implication is 
true. 

 

In the second line, the first clause is true because it is the same as in the loop invariant at the beginning of 
the loop.  The second clause is true because even(in[k]) is false, so the implication is true.  As a 
consequence the second line of the invariant is true. 

 

As a consequence the loop invariant is true at the end of execution the loop body for this case. 
 

Since the loop invariant remains true in both cases, the executing the loop body preserves the loop 
invariant. 

Question 3a: Does the loop terminate? 
The termination condition is k > in.upper. 
k starts at in.lower and increases by 1 on every iteration of the loop.  Eventually k must become greater 
than in.upper.  As a consequence the loop terminates. 

Question 3b: Is the postcondition established? 
The loop invariant is the following. 

∀  j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 
             ∧ ∀  j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 

At the end of the loop k > in.upper and k increments by 1, therefore k = in.upper + 1. 
 

Substitute into the loop invariant to get the following. 
∀  j : in.lower .. (in.upper+1)–1 | odd(in[j]) • in’[j] = in[j]*2 

             ∧ ∀  j : in.lower .. (in.upper+1)–1 | even(in[j]) • in’[j] = in[j]/2 
 

Which simplifies to the following. 
∀  j : in.lower .. in.upper | odd(in[j]) • in’[j] = in[j]*2 

             ∧ ∀  j : in.lower .. in.upper | even(in[j]) • in’[j] = in[j]/2 
 

The last expression is the same as the post condition.  As a consequence the postcondition is true. 
 

Q.E.D. 
 


