
2012 October 16 Page 1 of 5

 - 1 -

CSE 3311 Software Design
Report 2 Partial Solution

Expect diagrams throughout. Only a few diagrams are given for illustration. Diagrams must be labeled
and referenced in the body of the report. The partial solution does not contain sufficient commentary about
the assertions. Your solution is expected to have more explanation and justification.

1	 Greatest	 common	 divisor	 (GCD)	 contract	

require
 a_strickly_positive: a > 0
 b_strickly_positive: b > 0

invariant
 remainder_big_enough: remainder ≥ 0
 remainder_small_enough: remainder < y
 x_stricly_positive: x > 0
 y_stricly_positive: y > 0
 gcd_x_y_related_to_gcd_a_b: gcd(a, b) = gcd(x, y)

variant
 remainder

ensure
 result_strictly_positive: Result > 0
 result_divides_both: (a mod Result = 0) ∧ (b mod Result = 0)
 result_is_greatest: ∀ x : Result + 1 .. min(a, b) • (a mod x ≠ 0) ∧ (b mod x ≠ 0)

2012 October 16 Page 2 of 5

 - 2 -

2	 Cumulative	 sum	 contract	
require
 in_exists: in ≠ void
 in_proper_lower_bound: in.lower = 1
 n_in_range: in.lower ≤ n ≤ in.upper

invariant

 partial_result_correct: ∀ p : 1 .. j • Result[p] =

€

k=1

p

∑ in[k]

Figure 1: Diagram showing invariant for cumulative sum loop

variant
 n – j

ensure
 result_proper_size: Result.lower = 1 ∧ Result.upper = n

 result_correct: ∀ j : 1 .. n • Result[j] =

€

k=1

j

∑ in[k]

2012 October 16 Page 3 of 5

 - 3 -

3	 Separate	 even-odd	 contract	
require
 in_exists: in ≠ void

invariant
 partialresult_correct:
 ∀ j : in.lower .. max_even • even(in[j])
 ∀ j : min_odd .. in.upper • odd(in[j])
 known_evens_in_original:
 ∀ j : in.lower .. max_even • in’[j] ∈ {k : in.lower .. in.upper • in[k]}
 known_odds_in_original:
 ∀ j :min_odd .. in.upper • in’[j] ∈ {k : in.lower .. in.upper • in[k]}
 original_in_result:
 ∀ j : in.lower .. max_even • even(in[j]) → in[j] ∈ {k : in.lower .. max_even • in’[k]}
 ∀ j : min_odd .. in.upper • even(in[j]) → in[j] ∈ {k : in.lower .. max_even • in’[k]}
 ∀ j : in.lower .. max_even • odd(in[j]) → in[j] ∈ {k : min_odd .. in.upper • in’[k]}
 ∀ j : min_odd .. in.upper • odd(in[j]) → in[j] ∈ {k : min_odd .. in.upper • in’[k]}

variant
 min_odd – max_even

ensure
 result_correct: ∀ j : in.lower .. Result–1 • even(in’[j])
 ∀ j : Result .. in.upper • odd(in’[j])
 results_in_original:
 ∀ j : in.lower .. in.upper • in’[j] ∈ {k : in.lower .. in.upper • in[k]}
 original_in_results:
 ∀ j : in.lower .. in.upper • in[j] ∈ {k : in.lower .. in.upper • in’[k]}

Figure 2: Diagram for loop invariant

The ensure clause is only partially correct. Actually need to specify that the number of occurrences of
each value in the original array occur in the final array. Here we regard the array as a sequence; i.e. the
indices map to the values. The operator ⎡ is the sequence restriction operator. It extracts, for example
in the first clause, the subsequence from the sequence in that corresponds to values in the set {in[j]}.
Because the set {in[j]} contains only one value, the expression {k : in.lower .. in.upper • in ⎡ {in[j]} }
creates a set of sequences with one sequence for each value in the array in. If the before and after set
of sequences is the same, then we have neither gained nor lost copies of a value if it occurs multiple
times. This clause is difficult for you to write mathematically but it is not unreasonable for you to have
thought of and to describe the problem.

 original_and_results_have_the_same_values:
 ∀ j : in.lower .. in.upper • { in ⎡ {in[j]} } = { in’ ⎡ {in’[j]} }

2012 October 16 Page 4 of 5

 - 4 -

4	 Verify	 double_half	 algorithm	 is	 correct	

Question 0: What is the loop invariant?
We are given the loop invariant

∀ j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2
 ∧ ∀ j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2

Question 1: Is the base case established?
From the from clause of the loop statement the following relationships are true.
 k = in.lower

Substitute into the loop invariant to get the following.
∀ j : in.lower .. in.lower–1 | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. in.lower–1 | even(in[j]) • in’[j] = in[j]/2

In both clauses the interval is empty so the predicate is true. As a consequence the invariant is true.

Question 2: Verify inductive case
We assume the invariant is true

∀ j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2
 ∧ ∀ j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2

Executing the body of the loop gives two cases to consider.

Case 1: even(in[k])
Executing the loop body gives the following relationships

 k’ = k + 1
 ∧ in’[k] = in[k]/2

The loop invariant at the end of the loop is the following.
 ∀ j : in.lower .. k’–1 | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. k’–1 | even(in[j]) • in’[j] = in[j]/2

Substitute k’ = k + 1 into the loop invariant.
 ∀ j : in.lower .. k | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. k | even(in[j]) • in’[j] = in[j]/2

Split off the last term in each range.
 ∀ j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 ∧ odd(in[k]) → in’[k] = in[k]*2

 ∧ ∀ j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 ∧ even(in[k]) → in’[k] = in[k]/2

In the first line, the first clause is true because it is the same as in the loop invariant at beginning of the
loop. The second clause is true because odd(in[k]) is false, so the implication is true. As a consequence the
first line of the invariant is true.

In the second line, the first clause is true because it is the same as in the loop invariant at the beginning of
the loop. The second clause is true because even([in[j]) is true and in’[k] = ink]/2 is true, so the
implication is true.

As a consequence the loop invariant is true at the end of execution the loop body for this case.

Case 2: odd(in[k])
Executing the loop body gives the following relationships

 k’ = k + 1
 ∧ in’[k] = in[k]*2

The loop invariant at the end of the loop is the following.
 ∀ j : in.lower .. k’–1 | odd(in[j]) • in’[j] = in[j]*2

2012 October 16 Page 5 of 5

 - 5 -

 ∧ ∀ j : in.lower .. k’–1 | even(in[j]) • in’[j] = in[j]/2

Substitute k’ = k + 1 into the loop invariant.
 ∀ j : in.lower .. k | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. k | even(in[j]) • in’[j] = in[j]/2

Split off the last term in each range.
 ∀ j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2 ∧ odd(in[k]) → in’[k] = in[k]*2

 ∧ ∀ j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2 ∧ even(in[k]) → in’[k] = in[k]/2

In the first line, the first clause is true because it is the same as in the loop invariant at beginning of the
loop. The second clause is true because odd([in[j]) is true and in’[k] = ink]*2 is true, so the implication is
true.

In the second line, the first clause is true because it is the same as in the loop invariant at the beginning of
the loop. The second clause is true because even(in[k]) is false, so the implication is true. As a
consequence the second line of the invariant is true.

As a consequence the loop invariant is true at the end of execution the loop body for this case.

Since the loop invariant remains true in both cases, the executing the loop body preserves the loop
invariant.

Question 3a: Does the loop terminate?
The termination condition is k > in.upper.
k starts at in.lower and increases by 1 on every iteration of the loop. Eventually k must become greater
than in.upper. As a consequence the loop terminates.

Question 3b: Is the postcondition established?
The loop invariant is the following.

∀ j : in.lower .. k–1 | odd(in[j]) • in’[j] = in[j]*2
 ∧ ∀ j : in.lower .. k–1 | even(in[j]) • in’[j] = in[j]/2

At the end of the loop k > in.upper and k increments by 1, therefore k = in.upper + 1.

Substitute into the loop invariant to get the following.
∀ j : in.lower .. (in.upper+1)–1 | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. (in.upper+1)–1 | even(in[j]) • in’[j] = in[j]/2

Which simplifies to the following.
∀ j : in.lower .. in.upper | odd(in[j]) • in’[j] = in[j]*2

 ∧ ∀ j : in.lower .. in.upper | even(in[j]) • in’[j] = in[j]/2

The last expression is the same as the post condition. As a consequence the postcondition is true.

Q.E.D.

