
 Implementing
Stacks and Queues

1

Based on slides by Prof. Burton Ma

Stack

• Examples of stacks

2

Top of Stack

• Top of the stack

3

Stack Operations

• Classically, stacks only support two operations
1. Push

• Add to the top of the stack

2. Pop
• Remove from the top of the stack

4

Stack Optional Operations
• Optional operations

1. Size
• Number of elements in the stack

2. isEmpty
• Is the stack empty?

3. peek
• Get the top element (without removing it)

4. search
• Find the position of the element in the stack

5. isFull
• Is the stack full? (for stacks with finite capacity)

6. capacity
• Total number of elements the stack can hold (for stacks with

finite capacity)

5

Push

1. st.push("A")
2. st.push("B")
3. st.push("C")
4. st.push("D")
5. st.push("E")

6

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

Pop

1. String s = st.pop()
2. s = st.pop()
3. s = st.pop()
4. s = st.pop()
5. s = st.pop()

7

"A"

"B"

"C"

"D"

"E"

top

top

top

top

top

LIFO

• Stack is a Last-In-First-Out (LIFO) data
structure
– The last element pushed onto the stack is the first

element that can be accessed from the stack

8

Implementation with LinkedList

• A linked list can be used to efficiently
implement a stack

• The head of the list becomes the top of the
stack
– Adding (push) and removing (pop) from the head

of a linked list requires O(1) time

9

10

public class Stack<E> {
 private LinkedList<E> stack;

 public Stack() {
 this.stack = new LinkedList<E>();
 }

 public push(E element) {
 this.stack.addFirst(element);
 }

 public E pop() {
 return this.stack.removeFirst();
 }
}

Implementation with ArrayList

• ArrayList can be used to efficiently
implement a stack

• The end of the list becomes the top of the
stack
– Adding and removing to the end of an
ArrayList usually can be performed in O(1)
time

11

12

public class Stack<E> {
 private ArrayList<E> stack;

 public Stack() {
 this.stack = new ArrayList<E>();
 }

 public push(E element) {
 this.stack.add(element);
 }

 public E pop() {
 return this.stack.remove(this.stack.size() - 1);
 }
}

Implementations in java.util

• java.util.Stack provides a stack class

13

Applications

• Stacks are used widely in computer science
and computer engineering
– A call stack is used to store information about the

active methods in a Java program
– Undo/Redo
– Back/Forward history
– Widely used in parsing

14

Queue

15

Queue

16

back front

Queue Operations

• Classically, queues only support two
operations
1. Enqueue

• Add to the back of the queue

2. Dequeue
• Remove from the front of the queue

17

Queue Optional Operations
• Optional operations

1. size
• Number of elements in the queue

2. isEmpty
• Is the queue empty?

3. peek
• Get the front element (without removing it)

4. search
• Find the position of the element in the queue

5. isFull
• Is the queue full? (for queues with finite capacity)

6. capacity
• Total number of elements the queue can hold (for queues

with finite capacity)

18

Enqueue

1. q.enqueue("A")
2. q.enqueue("B")
3. q.enqueue("C")
4. q.enqueue("D")
5. q.enqueue("E")

19

A B C D E

B F B B B

B

B

Dequeue

1. String s = q.dequeue()

20

A B C D E

F B

Dequeue

1. String s = q.dequeue()
2. s = q.dequeue()

21

B C D E

F B

Dequeue

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()

22

C D E

F B

Dequeue

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()

23

D E

F B

Dequeue

1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()
5. s = q.dequeue()

24

E

F B

FIFO

• Queue is a First-In-First-Out (FIFO) data
structure
– The first element enqueued in the queue is the

first element that can be accessed from the queue

25

Implementation with LinkedList
• A linked list can be used to efficiently implement a

queue as long as the linked list keeps a reference to the
last node in the list
– Required for enqueue

• The head of the list becomes the front of the queue
– Removing (dequeue) from the head of a linked list requires

O(1) time
– Adding (enqueue) to the end of a linked list requires O(1)

time if a reference to the last node is available

• java.util.LinkedList is a doubly linked list that holds a
reference to the last node

26

27

public class Queue<E> {
 private LinkedList<E> q;

 public Queue() {
 this.q = new LinkedList<E>();
 }

 public enqueue(E element) {
 this.q.addLast(element);
 }

 public E dequeue() {
 return this.q.removeFirst();
 }
}

Implementation with LinkedList

• Note that there is no need to implement your
own queue as there is an existing interface
– The interface does not use the names enqueue

and dequeue however

28

java.util.Queue
public interface Queue<E>

extends Collection<E>

• Plus other methods
– http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

29

boolean add(E e)

Inserts the specified element into this queue...
E remove()

Retrieves and removes the head of this queue...

E peek()

Retrieves, but does not remove, the head of this queue...

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

java.util.Queue

• LinkedList implements Queue so if you ever
need a queue you can simply use:
– E.g. for a queue of strings

Queue<String> q = new LinkedList<String>();

30

Queue applications

• Queues are useful whenever you need to hold
elements in their order of arrival
– Serving requests of a single resource

• Printer queue
• Disk queue
• CPU queue
• Web server

31

