Problem Solving Skills

Steven Castellucci

Why Attend University?

- To learn how to learn
- To learn how to think
- To learn how to problem solve

Problem Solving

- Impossible to learn a solution to every possible problem
- Important skills in programming and in life
- Learn methods to
 - Analyze the situation
 - Attempt a solution
 - Evaluate the result

Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime.

Identify Important Information

- Very important:
 - Read entire problem or task description
 - Understand the requirements
- Identify:
 - Required input (e.g., prompts, data types, valid ranges)
 - Expected output (e.g., calculated values, formatting)
 - Available resources (e.g., input files, existing code, provided classes/methods)

Use Previous Experience

- Different programs often share similar characteristics (e.g., performing input validation, reading from a file)
- Try to remember (or look-up) your solution to similar problems
 - How similar are the two programming tasks?
 - How are the tasks different?
- Identify which parts can be used and which have to be changed

Draw a Diagram

- Often benefits visual learners
- For example:
 - Given a square and the Cartesian coordinates of two opposite points, determine the coordinates of the other two points

Make a Table

- Visually organizing inputs/outputs can also be beneficial
- For example:
 - Given input n, output a right-aligned, upside down triangle made of n lines of *'s

Input: 5	Line	Spaces	Stars
Outout	1	0	5
Output: * * * * *	2	1	4
* * * *	3	2	3
* * *	4	3	2
*	5	4	1

Find a Pattern

- When one draws a diagram or makes a table, patterns might become more apparent
- Using the previous example (*n* = 5):
 - #spaces = line# 1
 - #starts = n line# + 1

Line	Spaces	Stars
1	0	5
2	1	4
3	2	3
4	3	2
5	4	1

Solve a Smaller Problem

- Programs often have many parts, e.g.:
 - Prompt user
 - Validate input
 - Calculate answer
 - Format output
- Identify a single part and try to solve it
- Solve the problem for a smaller subset of input (e.g., solve for an input of 0 or 1, then work backwards to solve for an input of n)

Implement, Check, and Repeat

- Code your solution
- Run tests
- Compare actual output to the expected output
- Identify differences
- Refine solution or try a different approach
- Repeat tests

Observation Tips

- Take your time
- Look for subtle differences
- Discard preconceptions
- Avoid assumptions
- Practice exercises:
 - <u>http://www.spotthedifference.com/</u>
 - <u>http://sciencenotebooking.blogspot.ca/2010/08/fun-observation-exercises.html</u>

Observation Exercise 1

Enter the number to square: 5 The square of that number is 25

Enter the number to square: 5 The square of that number is 25

Observation Exercise 2

The numbers are as	The numbers are as		
follows:	follows:		
2	2		
10	10		
5	5		
8	8		
26	26		
80	80		

Observation Exercise 3

Enter the initial speed (m/s): 10.0 Enter the initial angle (deg): 60.0 The trajectory's range is 8.83 metres.

Enter the initial Speed (m/s): 10.0 Enter the initial angle (deg):60.00 The trajectory's range is 8.83 meters

Thank You