
Mixing Static and Non-Static
Features

1

Based on slides by Prof. Burton Ma

static Attributes

An attribute that is static is a per-class
member
 Only one copy of the attribute, and the attribute is

associated with the class
 Every object created from a class declaring a static

attribute shares the same copy of the attribute

 Static attributes are used when you really want
only one common instance of the attribute for
the class

2

Example

A common textbook example of a static
attribute is a counter that counts the number
of created instances of your class

3

// adapted from Sun's Java Tutorial
public class Bicycle {
 // some attributes here...
 private static int numberOfBicycles = 0;

 public Bicycle() {
 // set some attributes here...
 Bicycle.numberOfBicycles++;
 }

 public static int getNumberOfBicyclesCreated() {
 return Bicycle.numberOfBicycles;
 }
}

note:
not this.numberOfBicycles++

[notes 3.2]

Another common example is to count the
number of times a method has been called

4

public class X {

 private static int numTimesXCalled = 0;
 private static int numTimesYCalled = 0;

 public void xMethod() {
 // do something... and then update counter
 ++X.numTimesXCalled;
 }

 public void yMethod() {
 // do something... and then update counter
 ++X.numTimesYCalled;
 }
}

Mixing Static and Non-static Attributes

A class can declare static (per class) and non-
static (per instance) attributes
A common textbook example is giving each

instance a unique serial number
 The serial number belongs to the instance
 Therefore it must be a non-static attribute

5

public class Bicycle {
 // some attributes here...
 private static int numberOfBicycles = 0;

 private int serialNumber;

 // ...

How do you assign each instance a unique
serial number?
 The instance cannot give itself a unique serial

number because it would need to know all the
currently used serial numbers

Could require that the client provide a serial
number using the constructor
 Instance has no guarantee that the client has

provided a valid (unique) serial number

6

The class can provide unique serial numbers
using static attributes
 E.g. using the number of instances created as a

serial number

7

public class Bicycle {
 // some attributes here...

 private static int numberOfBicycles = 0;
 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.numberOfBicycles;
 Bicycle.numberOfBicycles++;
 }
}

A more sophisticated implementation might
use an object to generate serial numbers

8

public class Bicycle {

 // some attributes here...
 private static int numberOfBicycles = 0;

 private static final
 SerialGenerator serialSource = new SerialGenerator();

 private int serialNumber;

 public Bicycle() {
 // set some attributes here...
 this.serialNumber = Bicycle.serialSource.getNext();
 Bicycle.numberOfBicycles++;
 }
}

Static Methods

 Recall that a static method is a per-class method
 Client does not need an object to invoke the method
 Client uses the class name to access the method

 A static method can only use static
attributes of the class
 static methods have no this parameter because a
static method can be invoked without an object

 Without a this parameter, there is no way to access
non-static attributes

Non-static methods can use all of the attributes of
a class (including static ones)

 9

10

public class Bicycle {
 // some attributes, constructors, methods here...

 public static int getNumberCreated()
 {
 return Bicycle.numberOfBicycles;
 }

 public int getSerialNumber()
 {
 return this.serialNumber;
 }

 public void setNewSerialNumber()
 {
 this.serialNumber = Bicycle.serialSource.getNext();
 }
}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

Singleton Pattern

A singleton is a class that is instantiated exactly
once
 Singleton is a well-known design pattern that

can be used when you need to:
1. Ensure that there is no more than one instance of

a class, and
2. Provide a global point of access to the instance
 Any client that imports the package containing the

singleton class can access the instance

11 [notes 3.4]

One and Only One

How do you enforce this?
 Need to prevent clients from creating instances of

the singleton class
 private constructors

 The singleton class should create the one instance
of itself
 Note that the singleton class is allowed to call its own
private constructors

 Need a static attribute to hold the instance

12

A Silly Example
public class Santa
{
 // whatever attributes you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 …

}

13

Global Access

How do clients access the singleton instance?
 By using a static method

Note that clients only need to import the

package containing the singleton class to get
access to the singleton instance
 Any client method can use the singleton instance

without mentioning the singleton in the parameter
list

14

A Silly Example (cont)
public class Santa {

 private int numPresents;
 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize attributes here... }

 public static Santa getInstance()
 { return Santa.INSTANCE; }

 public Present givePresent() {
 Present p = new Present();
 this.numPresents--;
 return p;
 }
}

15

// client code in a method somewhere
public void gimme()
{
 Santa.getInstance().givePresent();
}

Lazy Instantiation

Notice that the previous singleton
implementation always creates the singleton
instance whenever the class is loaded
 If no client uses the instance then it was created

needlessly

 It is possible to delay creation of the singleton
instance until it is needed by using lazy
instantiation

16

Lazy Instantiation as per Notes
public class Santa {
 private static Santa INSTANCE = null;

 private Santa()
 { // ... }

 public static Santa getInstance()
 {
 if (Santa.INSTANCE == null) {
 Santa.INSTANCE = new Santa();
 }
 return Santa.INSTANCE;
 }
}

17

Singleton UML Class Diagram

18

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

One Instance per State
 The Java language specification guarantees that

identical String literals are not duplicated

 Prints: same object? true

 The compiler ensures that identical String literals
all refer to the same object
 A single instance per unique state

19

// client code somewhere

String s1 = "xyz";
String s2 = "xyz";

// how many String instances are there?
System.out.println("same object? " + (s1 == s2));

[notes 3.5]

Multiton

 A singleton class manages a single instance of the class
 A multiton class manages multiple instances of the class

 What do you need to manage multiple instances?
 A collection of some sort

 How does the client request an instance with a
particular state?
 It needs to pass the desired state as arguments to a method

20

Singleton vs Multiton UML Diagram

21

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

Multiton

- instances : Map
...

- Multiton()

+ getInstance(Object) : Multiton
...

Singleton vs Multiton

 Singleton
 One instance

private static final Santa INSTANCE = new Santa();

 Zero-parameter accessor

public static Santa getInstance()

22

Singleton vs Multiton

Multiton
 Multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

 Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

23

Making PhoneNumber a Multiton

1. Multiple instances (each with unique state)

 private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

2. Accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

24

Making PhoneNumber a Multiton

3. Require private constructors
 To prevent clients from creating instances on their

own
 clients should use getInstance()

4. Require immutability of PhoneNumbers
 To prevent clients from modifying state, thus

making the keys inconsistent with the PhoneNumbers
stored in the map

 Recall the recipe for immutability...

25

26

public class PhoneNumber implements Comparable<PhoneNumber>
{
 private static final Map<String, PhoneNumber> instances =
 new TreeMap<String, PhoneNumber>();

 private final short areaCode;
 private final short exchangeCode;
 private final short stationCode;

 private PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode)
 { // identical to previous versions }

27

 public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)
 {
 String key = "" + areaCode + exchangeCode + stationCode;
 PhoneNumber n = PhoneNumber.instances.get(key);
 if (n == null)
 {
 n = new PhoneNumber(areaCode, exchangeCode, stationCode);
 PhoneNumber.instances.put(key, n);
 }
 return n;
 }
 // remainder of PhoneNumber class ...

28

public class PhoneNumberClient {

 public static void main(String[] args)
 {
 PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);
 PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

 System.out.println("x equals y: " + x.equals(y) +
 " and x == y: " + (x == y));

 System.out.println("x equals z: " + x.equals(z) +
 " and x == z: " + (x == z));
 }
}

x equals y: true and x == y: true
x equals z: false and x == z: false

Map

A map stores key-value pairs
Map<String, PhoneNumber>

Values are put into the map using the key

29

key type value type

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

Values can be retrieved from the map using
only the key
 If the key is not in the map the value returned is null

30

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago
PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

A map is not allowed to hold duplicate keys
 If you re-use a key to insert a new object, the existing object

corresponding to the key is removed and the new object inserted

31

// client code somewhere
Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago); // add ago
System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911)); // replaces ago
System.out.println(m);

{4169796648=(416) 979-6648}
{4169796648=(905) 760-1911}

Prints

Mutable Keys

 From
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

 Note: great care must be exercised if mutable
objects are used as map keys. The behavior of a
map is not specified if the value of an object is
changed in a manner that affects equals
comparisons while the object is a key in the map.

32

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

33

public class MutableKey
{
 public static void main(String[] args)
 {
 Map<Date, String> m = new TreeMap<Date, String>();
 Date d1 = new Date(100, 0, 1);
 Date d2 = new Date(100, 0, 2);
 Date d3 = new Date(100, 0, 3);
 m.put(d1, "Jan 1, 2000");
 m.put(d2, "Jan 2, 2000");
 m.put(d3, "Jan 3, 2000");
 d3.setYear(101); // mutator
 System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000
 System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000
 System.out.println("d3 " + m.get(d3)); // d3 null
 }
}

change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Static Factory Method

Notice that Singleton and Multiton use a static
method to return an instance of a class
A static method that returns an instance of a

class is called a static factory method
 Factory because, as far as the client is concerned,

the method creates an instance
 Similar to a constructor

34

