
Implementing Recursion
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Printing n of Something

• Suppose you want to implement a method 
that prints out n copies of a string

public static void printIt(String s, int n) {
for(int i = 0; i < n; i++) {
System.out.print(s);

}
}
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A Different Solution

• Alternatively we can use the following algorithm:
1. if n == 0 done, otherwise

I. print the string once
II. print the string (n – 1) more times

public static void printItToo(String s, int n) {
if (n == 0) {

return;
}
else {

System.out.print(s);
printItToo(s, n - 1);    // method invokes itself

}
}
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Recursion

• A method that calls itself is called a recursive
method

• A recursive method solves a problem by 
repeatedly reducing the problem so that a base 
case can be reached

printIt("*", 5)
*printIt("*", 4)
**printIt("*", 3)
***printIt("*", 2)
****printIt("*", 1)
*****printIt("*", 0) base case
*****
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Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.



Infinite Recursion

• If the base case(s) is missing, or never reached, a 
recursive method will run forever (or until the 
computer runs out of resources)

public static void printItForever(String s, int n) {
// missing base case; infinite recursion
System.out.print(s);
printItForever(s, n - 1);

}

printIt("*", 1)
* printIt("*", 0)
** printIt("*", -1)
*** printIt("*", -2) ...........
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Climbing a Flight of n Stairs

• Not Java

climb(n) :
if n == 0
done

else
step up 1 stair
climb(n – 1);

end
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Rabbits

7

Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs



Fibonacci Numbers

• The sequence of additional pairs
– 0, 1, 1, 2, 3, 5, 8, 13, ...

are called Fibonacci numbers

• Base cases
– F(0) = 0
– F(1) = 1

• Recursive definition
– F(n) = F(n – 1) +  F(n – 2)
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Recursive Methods & Return Values

• A recursive method can return a value
• Example: compute the nth Fibonacci number

public static int fibonacci(int n) {
if (n == 0) {
return 0;

}
else if (n == 1) {
return 1;

}
else {
int f = fibonacci(n - 1) + fibonacci(n - 2);
return f;
}

}
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Recursive Methods & Return Values

• Example: write a recursive method countZeros that 
counts the number of zeros in an integer number n
– 10305060700002L has 8 zeros

• Trick: examine the following sequence of numbers
1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506 ...
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Recursive Methods & Return Values

• Not Java:

countZeros(n) :
if the last digit in n is a zero
return 1 + countZeros(n / 10)

else
return countZeros(n / 10)
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• Don't forget to establish the base case(s)
– When should the recursion stop? when you reach 

a single digit (not zero digits; you never reach zero 
digits!)

• Base case #1 : n == 0
– return 1

• Base case #2 : n != 0 && n < 10
– return 0
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public static int countZeros(long n) {

if(n == 0L) {  // base case 1
return 1;

}
else if(n < 10L) {  // base case 2
return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);

}
else {
return countZeros(m);

}
}

13



countZeros Call Stack

callZeros( 800410L )
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callZeros( 800410L )

callZeros( 80041L )

callZeros( 8004L )

callZeros( 800L )

callZeros( 80L )

callZeros( 8L )

1 + 0 + 0 + 1 + 1 + 0

0 + 0 + 1 + 1 + 0

0 + 1 + 1 + 0

1 + 1 + 0

1 + 0

0

= 3

last in first out



Fibonacci Call Tree
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Compute Powers of 10

• Write a recursive method that computes 10n

for any integer value n
• Recall:

– 100 = 1
– 10n = 10 * 10n-1

– 10-n = 1 / 10n
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public static double powerOf10(int n) {
if (n == 0) {
// base case
return 1.0;

}
else if (n > 0) {
// recursive call for positive n
return 10.0 * powerOf10(n - 1);

}
else {
// recursive call for negative n
return 1.0 / powerOf10(-n);

}
}
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Proving Correctness and Termination

• To show that a recursive method accomplishes 
its goal you must prove:
1. That the base case(s) and the recursive calls are 

correct

2. That the method terminates
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Proving Correctness

• To prove correctness:
1. Prove that each base case is correct

2. Assume that the recursive invocation is correct 
and then prove that each recursive case is correct
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printItToo

public static void printItToo(String s, int n) {
if (n == 0) {

return;
}
else {

System.out.print(s);
printItToo(s, n - 1);

}
}

20



Correctness of printItToo

1. (prove the base case) If n == 0 nothing is 
printed; thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the 
string s exactly(n – 1) times. Then the 
recursive case prints the string s exactly(n –
1)+1 = n times; thus the recursive case is 
correct.
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Proving Termination

• To prove that a recursive method terminates:
1. Define the size of a method invocation; the size 

must be a non-negative integer number

2. Prove that each recursive invocation has a smaller 
size than the original invocation

22



Termination of printIt

1.printIt(s, n) prints n copies of the 
string s; define the size of printIt(s, 
n) to be n

2. The size of the recursive invocation
printIt(s, n-1) is n-1 (by definition) 
which is smaller than the original size n.
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countZeros
public static int countZeros(long n) {

if(n == 0L) {  // base case 1
return 1;

}
else if(n < 10L) {  // base case 2
return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);

}
else {
return countZeros(m);

}
}
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Correctness of countZeros

1. (Base cases) If the number has only one digit then the 
method returns 1 if the digit is zero and 0 if the digit 
is not zero; therefore, the base case is correct.

2. (Recursive cases)  Assume that 
countZeros(n/10L) is correct (it returns the 
number of zeros in the first (d – 1) digits of n). If 
the last digit in the number is zero, then the recursive 
case returns 1 + the number of zeros in the first (d 
– 1) digits of n, otherwise it returns the number of 
zeros in the first (d – 1) digits of n; therefore, the 
recursive cases are correct.
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Termination of countZeros

1. Let the size of countZeros(n) be d the 
number of digits in the number n.

2. The size of the recursive invocation 
countZeros(n/10L) is d-1, which is 
smaller than the size of the original 
invocation.
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Decrease and Conquer

• A common strategy for solving computational 
problems
– Solves a problem by taking the original problem and 

converting it to one smaller version of the same 
problem

• Note the similarity to recursion

• Decrease and conquer, and the closely related 
divide and conquer method, are widely used in 
computer science
– Allow you to solve certain complex problems easily
– Help to discover efficient algorithms
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Root Finding

• Suppose you have a mathematical function f(x) and 
you want to find x0 such that f(x0) = 0
– Why would you want to do this?
– Many problems in computer science, science, and 

engineering reduce to optimization problems
• Find the shape of an automobile that minimizes aerodynamic drag
• Find an image that is similar to another image (minimize the 

difference between the images)
• Find the sales price of an item that maximizes profit

– If you can write the optimization criteria as a function 
g(x) then its derivative f(x) = dg/dx = 0 at the 
minimum or maximum of g (as long as g has certain 
properties)
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Bisection Method

• Suppose you can evaluate f(x) at two points x = a and x 
= b such that
– f(a) > 0
– f(b) < 0
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x
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f(a)
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Bisection Method

• Evaluate f(c) where c is halfway between a and b
– if f(c) is close enough to zero done

30

x

f(x)

f(a)

f(b)

f(c)

'plus'

'minus'



Bisection Method

– Otherwise c becomes the new end point (in this case, 
'minus') and recursively search the range 
'plus' – 'minus'
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public class Bisect {

// the function we want to find the root of

public static double f(double x) {

return Math.cos(x);

}
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public static double bisect(double xplus, double xminus,

double tolerance) {

// base case

double c = (xplus + xminus) / 2.0;

double fc = f(c);

if( Math.abs(fc) < tolerance ) {

return c;

}

else if (fc < 0.0) {

return bisect(xplus, c, tolerance);

}

else {

return bisect(c, xminus, tolerance);

}

}
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public static void main(String[] args)

{

System.out.println("bisection returns: " + 

bisect(1.0, Math.PI, 0.001));

System.out.println("true answer      : " 

+ Math.PI / 2.0);

}

}

Prints:

bisection returns: 1.5709519476855602

true answer      : 1.5707963267948966
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Divide and Conquer

• Bisection works by recursively finding which half 
of the range 'plus' – 'minus' the root lies in
– Each recursive call solves the same problem (tries to 

find the root of the function by guessing at the 
midpoint of the range)

– Each recursive call solves one smaller problem 
because half of the range is discarded

• Bisection method is decrease and conquer

• Divide and conquer algorithms typically 
recursively divide a problem into several smaller 
sub-problems until the sub-problems are small 
enough that they can be solved directly
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Merge Sort
• Merge sort is a divide and conquer algorithm that 

sorts a list of numbers by recursively splitting the list 
into two halves
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12 74 5 63 8

17 6824 53

254 3 1678

4 3 25 78 16



• The split lists are then merged into sorted sub-lists
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4 3 25 78 16

523 4 6187

86 7152 43

84 61 3 72 5



Merging Sorted Sub-lists
• Two sub-lists of length 1
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4 3

left right

result

3 4

1 Comparison
2 Copies
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LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists
• Two sub-lists of length 2

40

43

left right

result

3 4

3 Comparisons
4 Copies

52

2 5
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LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0 ) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists
• Two sub-lists of length 4
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left right

result

5 Comparisons
8 Copies

86 7152 43

84 61 3 72 5



Simplified Complexity Analysis
• In the worst case merging a total of n

elements requires
n – 1 comparisons  +
n copies
= 2n – 1 total operations

• We say that the worst-case complexity of 
merging is the order of O(n)
– O(...) is called Big O notation
– Notice that we don't care about the constants 2 

and 1
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• Formally, a function f(n) is an element of O(n)
if and only if there is a positive real number M
and a real number m such that

| f(n) | < Mn for all  n > m

• Is 2n – 1 an element of O(n)?
– Yes, let M = 2 and m = 0,

then 2n – 1 < 2n for all n > 0
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Informal Analysis of Merge Sort
• Suppose the running time (the number of 

operations) of merge sort is a function of the 
number of elements to sort
– Let the function be T(n)

• Merge sort works by splitting the list into two 
sub-lists (each about half the size of the original 
list) and sorting the sub-lists
– This takes  2T(n/2) running time

• Then the sub-lists are merged
– This takes O(n) running time

• Total running time T(n) = 2T(n/2) + O(n)
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Solving the Recurrence Relation
T(n) → 2T(n/2) + O(n) T(n) approaches...

≈ 2T(n/2) + n
= 2[ 2T(n/4) + n/2 ] + n
= 4T(n/4) + 2n
= 4[ 2T(n/8) + n/4 ] + 2n
= 8T(n/8) + 3n
= 8[ 2T(n/16) + n/8 ] + 3n
= 16T(n/16) + 4n
= 2kT(n/2k) + kn
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Solving the Recurrence Relation
T(n) = 2kT(n/2k) + kn

• For a list of length 1 we know T(1) = 1
– If we can substitute T(1) into the right-hand side 

of T(n) we might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)
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Solving the Recurrence Relation

T(n) = 2log(n)T(n/2log(n)) + n log(n)

= n T(1) + n log(n)

= n + n log(n)

∈ n log(n)
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Is Merge Sort Efficient?
• Consider a simpler (non-recursive) sorting 

algorithm called insertion sort
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// to sort an array a[0]..a[n-1] not Java!
for i = 0 to (n-1) {
k = index of smallest element in sub-array a[i]..a[n-1]
swap a[i] and a[k]

}

for i = 0 to (n-1) {                            not Java!
for j = (i+1) to (n-1) {
if (a[j] < a[i]) {
k = j;

}
}
tmp = a[i];   a[i] = a[k];   a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments



T(n) 
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Comparing Rates of Growth
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O(n)

O(n logn)

O(n2)O(2n)

n



Comments
• Big O complexity tells you something about 

the running time of an algorithm as the size of 
the input, n, approaches infinity
– We say that it describes the limiting, or 

asymptotic, running time of an algorithm

• For small values of n it is often the case that a 
less efficient algorithm (in terms of big O) will 
run faster than a more efficient one
– Insertion sort is typically faster than merge sort 

for short lists of numbers
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