
Implementing Recursion

1

Based on slides by Prof. Burton Ma

Printing n of Something

• Suppose you want to implement a method
that prints out n copies of a string

public static void printIt(String s, int n) {
for(int i = 0; i < n; i++) {
System.out.print(s);

}
}

2

A Different Solution

• Alternatively we can use the following algorithm:
1. if n == 0 done, otherwise

I. print the string once
II. print the string (n – 1) more times

public static void printItToo(String s, int n) {
if (n == 0) {

return;
}
else {

System.out.print(s);
printItToo(s, n - 1); // method invokes itself

}
}

3

Recursion

• A method that calls itself is called a recursive
method

• A recursive method solves a problem by
repeatedly reducing the problem so that a base
case can be reached

printIt("*", 5)
printIt("", 4)
**printIt("*", 3)
***printIt("*", 2)
****printIt("*", 1)
*****printIt("*", 0) base case

4

Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.

Infinite Recursion

• If the base case(s) is missing, or never reached, a
recursive method will run forever (or until the
computer runs out of resources)

public static void printItForever(String s, int n) {
// missing base case; infinite recursion
System.out.print(s);
printItForever(s, n - 1);

}

printIt("*", 1)
* printIt("*", 0)
** printIt("*", -1)
*** printIt("*", -2)

5

Climbing a Flight of n Stairs

• Not Java

climb(n) :
if n == 0
done

else
step up 1 stair
climb(n – 1);

end

6

Rabbits

7

Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs

Fibonacci Numbers

• The sequence of additional pairs
– 0, 1, 1, 2, 3, 5, 8, 13, ...

are called Fibonacci numbers

• Base cases
– F(0) = 0
– F(1) = 1

• Recursive definition
– F(n) = F(n – 1) + F(n – 2)

8

Recursive Methods & Return Values

• A recursive method can return a value
• Example: compute the nth Fibonacci number

public static int fibonacci(int n) {
if (n == 0) {
return 0;

}
else if (n == 1) {
return 1;

}
else {
int f = fibonacci(n - 1) + fibonacci(n - 2);
return f;
}

}

9

Recursive Methods & Return Values

• Example: write a recursive method countZeros that
counts the number of zeros in an integer number n
– 10305060700002L has 8 zeros

• Trick: examine the following sequence of numbers
1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506 ...

10

Recursive Methods & Return Values

• Not Java:

countZeros(n) :
if the last digit in n is a zero
return 1 + countZeros(n / 10)

else
return countZeros(n / 10)

11

• Don't forget to establish the base case(s)
– When should the recursion stop? when you reach

a single digit (not zero digits; you never reach zero
digits!)

• Base case #1 : n == 0
– return 1

• Base case #2 : n != 0 && n < 10
– return 0

12

public static int countZeros(long n) {

if(n == 0L) { // base case 1
return 1;

}
else if(n < 10L) { // base case 2
return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);

}
else {
return countZeros(m);

}
}

13

countZeros Call Stack

callZeros(800410L)

14

callZeros(800410L)

callZeros(80041L)

callZeros(8004L)

callZeros(800L)

callZeros(80L)

callZeros(8L)

1 + 0 + 0 + 1 + 1 + 0

0 + 0 + 1 + 1 + 0

0 + 1 + 1 + 0

1 + 1 + 0

1 + 0

0

= 3

last in first out

Fibonacci Call Tree

15

F(5)

F(4)

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

F(2)

F(1)
1

F(0)
0

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

Compute Powers of 10

• Write a recursive method that computes 10n

for any integer value n
• Recall:

– 100 = 1
– 10n = 10 * 10n-1

– 10-n = 1 / 10n

16

public static double powerOf10(int n) {
if (n == 0) {
// base case
return 1.0;

}
else if (n > 0) {
// recursive call for positive n
return 10.0 * powerOf10(n - 1);

}
else {
// recursive call for negative n
return 1.0 / powerOf10(-n);

}
}

17

Proving Correctness and Termination

• To show that a recursive method accomplishes
its goal you must prove:
1. That the base case(s) and the recursive calls are

correct

2. That the method terminates

18

Proving Correctness

• To prove correctness:
1. Prove that each base case is correct

2. Assume that the recursive invocation is correct
and then prove that each recursive case is correct

19

printItToo

public static void printItToo(String s, int n) {
if (n == 0) {

return;
}
else {

System.out.print(s);
printItToo(s, n - 1);

}
}

20

Correctness of printItToo

1. (prove the base case) If n == 0 nothing is
printed; thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the
string s exactly(n – 1) times. Then the
recursive case prints the string s exactly(n –
1)+1 = n times; thus the recursive case is
correct.

21

Proving Termination

• To prove that a recursive method terminates:
1. Define the size of a method invocation; the size

must be a non-negative integer number

2. Prove that each recursive invocation has a smaller
size than the original invocation

22

Termination of printIt

1.printIt(s, n) prints n copies of the
string s; define the size of printIt(s,
n) to be n

2. The size of the recursive invocation
printIt(s, n-1) is n-1 (by definition)
which is smaller than the original size n.

23

countZeros
public static int countZeros(long n) {

if(n == 0L) { // base case 1
return 1;

}
else if(n < 10L) { // base case 2
return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);

}
else {
return countZeros(m);

}
}

24

Correctness of countZeros

1. (Base cases) If the number has only one digit then the
method returns 1 if the digit is zero and 0 if the digit
is not zero; therefore, the base case is correct.

2. (Recursive cases) Assume that
countZeros(n/10L) is correct (it returns the
number of zeros in the first (d – 1) digits of n). If
the last digit in the number is zero, then the recursive
case returns 1 + the number of zeros in the first (d
– 1) digits of n, otherwise it returns the number of
zeros in the first (d – 1) digits of n; therefore, the
recursive cases are correct.

25

Termination of countZeros

1. Let the size of countZeros(n) be d the
number of digits in the number n.

2. The size of the recursive invocation
countZeros(n/10L) is d-1, which is
smaller than the size of the original
invocation.

26

Decrease and Conquer

• A common strategy for solving computational
problems
– Solves a problem by taking the original problem and

converting it to one smaller version of the same
problem

• Note the similarity to recursion

• Decrease and conquer, and the closely related
divide and conquer method, are widely used in
computer science
– Allow you to solve certain complex problems easily
– Help to discover efficient algorithms

27

Root Finding

• Suppose you have a mathematical function f(x) and
you want to find x0 such that f(x0) = 0
– Why would you want to do this?
– Many problems in computer science, science, and

engineering reduce to optimization problems
• Find the shape of an automobile that minimizes aerodynamic drag
• Find an image that is similar to another image (minimize the

difference between the images)
• Find the sales price of an item that maximizes profit

– If you can write the optimization criteria as a function
g(x) then its derivative f(x) = dg/dx = 0 at the
minimum or maximum of g (as long as g has certain
properties)

28

Bisection Method

• Suppose you can evaluate f(x) at two points x = a and x
= b such that
– f(a) > 0
– f(b) < 0

29

x

f(x)

f(a)

f(b)

'plus'

'minus'

Bisection Method

• Evaluate f(c) where c is halfway between a and b
– if f(c) is close enough to zero done

30

x

f(x)

f(a)

f(b)

f(c)

'plus'

'minus'

Bisection Method

– Otherwise c becomes the new end point (in this case,
'minus') and recursively search the range
'plus' – 'minus'

31

x

f(x)

f(a)

f(b)

'plus'

'minus'

f(c)

public class Bisect {

// the function we want to find the root of

public static double f(double x) {

return Math.cos(x);

}

32

public static double bisect(double xplus, double xminus,

double tolerance) {

// base case

double c = (xplus + xminus) / 2.0;

double fc = f(c);

if(Math.abs(fc) < tolerance) {

return c;

}

else if (fc < 0.0) {

return bisect(xplus, c, tolerance);

}

else {

return bisect(c, xminus, tolerance);

}

}

33

public static void main(String[] args)

{

System.out.println("bisection returns: " +

bisect(1.0, Math.PI, 0.001));

System.out.println("true answer : "

+ Math.PI / 2.0);

}

}

Prints:

bisection returns: 1.5709519476855602

true answer : 1.5707963267948966

34

Divide and Conquer

• Bisection works by recursively finding which half
of the range 'plus' – 'minus' the root lies in
– Each recursive call solves the same problem (tries to

find the root of the function by guessing at the
midpoint of the range)

– Each recursive call solves one smaller problem
because half of the range is discarded

• Bisection method is decrease and conquer

• Divide and conquer algorithms typically
recursively divide a problem into several smaller
sub-problems until the sub-problems are small
enough that they can be solved directly

35

Merge Sort
• Merge sort is a divide and conquer algorithm that

sorts a list of numbers by recursively splitting the list
into two halves

36

12 74 5 63 8

17 6824 53

254 3 1678

4 3 25 78 16

• The split lists are then merged into sorted sub-lists

37

4 3 25 78 16

523 4 6187

86 7152 43

84 61 3 72 5

Merging Sorted Sub-lists
• Two sub-lists of length 1

38

4 3

left right

result

3 4

1 Comparison
2 Copies

39

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists
• Two sub-lists of length 2

40

43

left right

result

3 4

3 Comparisons
4 Copies

52

2 5

41

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists
• Two sub-lists of length 4

42

left right

result

5 Comparisons
8 Copies

86 7152 43

84 61 3 72 5

Simplified Complexity Analysis
• In the worst case merging a total of n

elements requires
n – 1 comparisons +
n copies
= 2n – 1 total operations

• We say that the worst-case complexity of
merging is the order of O(n)
– O(...) is called Big O notation
– Notice that we don't care about the constants 2

and 1

43

• Formally, a function f(n) is an element of O(n)
if and only if there is a positive real number M
and a real number m such that

| f(n) | < Mn for all n > m

• Is 2n – 1 an element of O(n)?
– Yes, let M = 2 and m = 0,

then 2n – 1 < 2n for all n > 0

44

Informal Analysis of Merge Sort
• Suppose the running time (the number of

operations) of merge sort is a function of the
number of elements to sort
– Let the function be T(n)

• Merge sort works by splitting the list into two
sub-lists (each about half the size of the original
list) and sorting the sub-lists
– This takes 2T(n/2) running time

• Then the sub-lists are merged
– This takes O(n) running time

• Total running time T(n) = 2T(n/2) + O(n)

45

Solving the Recurrence Relation
T(n) → 2T(n/2) + O(n) T(n) approaches...

≈ 2T(n/2) + n
= 2[2T(n/4) + n/2] + n
= 4T(n/4) + 2n
= 4[2T(n/8) + n/4] + 2n
= 8T(n/8) + 3n
= 8[2T(n/16) + n/8] + 3n
= 16T(n/16) + 4n
= 2kT(n/2k) + kn

46

Solving the Recurrence Relation
T(n) = 2kT(n/2k) + kn

• For a list of length 1 we know T(1) = 1
– If we can substitute T(1) into the right-hand side

of T(n) we might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)

47

Solving the Recurrence Relation

T(n) = 2log(n)T(n/2log(n)) + n log(n)

= n T(1) + n log(n)

= n + n log(n)

∈ n log(n)

48

Is Merge Sort Efficient?
• Consider a simpler (non-recursive) sorting

algorithm called insertion sort

49

// to sort an array a[0]..a[n-1] not Java!
for i = 0 to (n-1) {
k = index of smallest element in sub-array a[i]..a[n-1]
swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java!
for j = (i+1) to (n-1) {
if (a[j] < a[i]) {
k = j;

}
}
tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

T(n)

50

∑ ∑
−

=

−

+=

+

=

1

0

1

)1(
32

n

i

n

ij

()() nin
n

i
312

1

0
+−−=∑

−

=

nin
n

i

n

i

n

i
31222

1

0

1

0

1

0
+−−= ∑∑∑

−

=

−

=

−

=

() nnnnn 32
2

122 2 +−
−

−=

nnnnn 322 22 +−+−=

()22 2 nOnn ∈+=

Comparing Rates of Growth

51

O(n)

O(n logn)

O(n2)O(2n)

n

Comments
• Big O complexity tells you something about

the running time of an algorithm as the size of
the input, n, approaches infinity
– We say that it describes the limiting, or

asymptotic, running time of an algorithm

• For small values of n it is often the case that a
less efficient algorithm (in terms of big O) will
run faster than a more efficient one
– Insertion sort is typically faster than merge sort

for short lists of numbers

52

