Implementing Recursion

Printing n of Something

- Suppose you want to implement a method that prints out n copies of a string

```
public static void printIt(String s, int n) {
    for(int i = 0; i < n; i++) {
        System.out.print(s);
    }
}
```


A Different Solution

- Alternatively we can use the following algorithm: 1. if $\mathrm{n}==0$ done, otherwise
I. print the string once
II. print the string $(n-1)$ more times

```
public static void printItToo(String s, int n) {
    if (n == 0) {
        return;
    }
    else {
    System.out.print(s);
    printItToo(s, n - 1); // method invokes itself
    }
}
```


Recursion

- A method that calls itself is called a recursive method
- A recursive method solves a problem by repeatedly reducing the problem so that a base case can be reached

```
printIt("*", 5)
*printIt("*", 4)
**printIt("*", 3)
***printIt("*", 2)
****printIt("*", 1)
*****printIt("*", 0) base case Notice that the base case is
*****
```

Notice that the number of times
the string is printed decreases
after each recursive call to printlt

Notice that the base case is eventually reached.

Infinite Recursion

- If the base case(s) is missing, or never reached, a recursive method will run forever (or until the computer runs out of resources)

```
public static void printItForever(String s, int n) {
    // missing base case; infinite recursion
    System.out.print(s);
    printItForever(s, n - 1);
}
printIt("*", 1)
* printIt("*", 0)
** printIt("*", -1)
*** printIt("*", -2)
```


Climbing a Flight of n Stairs

- Not Java
climb(n) :
if $n=0$
done
else
step up 1 stair
climb(n - 1);
end

Rabbits

Month 0: 1 pair

0 additional pairs

1 additional pair

Month 2: each pair 1 additional pair makes another pair; oldest pair dies

2 additional pairs

Month 3: each pair makes another pair; oldest pair dies

Fibonacci Numbers

- The sequence of additional pairs
- 0, 1, 1, 2, 3, 5, 8, 13, ... are called Fibonacci numbers
- Base cases

$$
\begin{aligned}
& -F(0)=0 \\
& -F(1)=1
\end{aligned}
$$

- Recursive definition
$-F(n)=F(n-1)+F(n-2)$

Recursive Methods \& Return Values

- A recursive method can return a value
- Example: compute the nth Fibonacci number

```
public static int fibonacci(int n) {
    if (n == 0) {
        return 0;
    }
    else if (n == 1) {
            return 1;
    }
    else {
        int f = fibonacci(n - 1) + fibonacci(n - 2);
        return f;
    }
}
```


Recursive Methods \& Return Values

- Example: write a recursive method countZeros that counts the number of zeros in an integer number \mathbf{n}
- $\mathbf{1 0 3 0 5 0 6 0 7 0 0 0 0 2 L}$ has 8 zeros
- Trick: examine the following sequence of numbers

1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506 ...

Recursive Methods \& Return Values

- Not Java:
countZeros(n) :
if the last digit in n is a zero
return 1 + countZeros(n / 10)
else
return countZeros(n / 10)
- Don't forget to establish the base case(s)
- When should the recursion stop? when you reach a single digit (not zero digits; you never reach zero digits!)
- Base case \#1: n == 0
-return 1
- Base case \#2:n != 0 \&\& $\mathbf{n}<10$
- return 0
public static int countZeros(long n) \{

```
if(n== OL) { // base case 1
    return 1;
}
else if(n < 10L) { // base case 2
    return 0;
}
boolean lastDigitlsZero = ( n % 10L == 0);
final long m = n / 10L;
if(lastDigitlsZero) {
    return 1 + countZeros(m);
}
else {
    return countZeros(m);
}
}
```


countZeros Call Stack

callZeros(800410L)
last in first out

callZeros(8L)	0
callZeros(80L)	$1+0$
callZeros(800L)	$1+1+0$
callZeros(8004L)	$0+1+1+0$
callZeros(80041L)	$0+0+1+1+0$
callZeros(800410L)	$1+0+0+1+1+0$
	$=3$

Fibonacci Call Tree

Compute Powers of 10

- Write a recursive method that computes $\mathbf{1 0}^{\mathbf{n}}$ for any integer value \mathbf{n}
- Recall:

$$
\begin{aligned}
& -10^{0}=1 \\
& -10^{n}=10 * 10^{n-1} \\
& -10^{-n}=1 / 10^{n}
\end{aligned}
$$

```
public static double powerOf10(int n) {
    if (n == 0) {
        // base case
        return 1.0;
    }
    else if (n>0) {
        // recursive call for positive n
        return 10.0 * powerOf10(n-1);
    }
    else {
    // recursive call for negative n
    return 1.0 / powerOf10(-n);
    }
}
```


Proving Correctness and Termination

- To show that a recursive method accomplishes its goal you must prove:

1. That the base case(s) and the recursive calls are correct
2. That the method terminates

Proving Correctness

- To prove correctness:

1. Prove that each base case is correct
2. Assume that the recursive invocation is correct and then prove that each recursive case is correct

printItToo

public static void printItToo(String s, int n) \{
if ($\mathrm{n}==0$) \{ return;
\}
else \{
System.out.print(s); printItToo(s, n-1);
\}
\}

Correctness of printItToo

1. (prove the base case) If $\mathrm{n}==0$ nothing is printed; thus the base case is correct.
2. Assume that printittoo(s, n-1) prints the string s exactly ($\mathrm{n}-1$) times. Then the recursive case prints the string s exactly(n 1) $\mathbf{+ 1}=n$ times; thus the recursive case is correct.

Proving Termination

- To prove that a recursive method terminates:

1. Define the size of a method invocation; the size must be a non-negative integer number
2. Prove that each recursive invocation has a smaller size than the original invocation

Termination of printlt

1. printIt(\mathbf{s}, \mathbf{n}) prints \mathbf{n} copies of the string s; define the size of printIt (s, n) to be \mathbf{n}
2. The size of the recursive invocation printIt ($s, \mathbf{n - 1}$) is $\mathbf{n - 1}$ (by definition) which is smaller than the original size \mathbf{n}.

countZeros

```
public static int countZeros(long n) {
    if(n == OL) { // base case 1
    return 1;
}
else if(n < 10L) { // base case 2
    return 0;
}
boolean lastDigitlsZero = ( n % 10L == 0);
final long m = n / 10L;
if(lastDigitlsZero) {
    return 1 + countZeros(m);
}
else {
    return countZeros(m);
}
}
```


Correctness of countZeros

1. (Base cases) If the number has only one digit then the method returns $\mathbf{1}$ if the digit is zero and $\mathbf{0}$ if the digit is not zero; therefore, the base case is correct.
2. (Recursive cases) Assume that countZeros ($\mathbf{n} / \mathbf{1 0 L}$) is correct (it returns the number of zeros in the first ($\mathbf{d} \mathbf{- 1)}$) digits of \mathbf{n}). If the last digit in the number is zero, then the recursive case returns $\mathbf{1}+$ the number of zeros in the first (\mathbf{d} - 1) digits of n, otherwise it returns the number of zeros in the first ($\mathbf{d} \mathbf{- 1}$) digits of \mathbf{n}; therefore, the recursive cases are correct.

Termination of countZeros

1. Let the size of countZeros(\mathbf{n}) be \mathbf{d} the number of digits in the number \mathbf{n}.
2. The size of the recursive invocation countZeros($n / 10 L$) is $\mathbf{d - 1}$, which is smaller than the size of the original invocation.

Decrease and Conquer

- A common strategy for solving computational problems
- Solves a problem by taking the original problem and converting it to one smaller version of the same problem
- Note the similarity to recursion
- Decrease and conquer, and the closely related divide and conquer method, are widely used in computer science
- Allow you to solve certain complex problems easily
- Help to discover efficient algorithms

Root Finding

- Suppose you have a mathematical function $f(x)$ and you want to find X_{0} such that $f\left(x_{0}\right)=0$
- Why would you want to do this?
- Many problems in computer science, science, and engineering reduce to optimization problems
- Find the shape of an automobile that minimizes aerodynamic drag
- Find an image that is similar to another image (minimize the difference between the images)
- Find the sales price of an item that maximizes profit
- If you can write the optimization criteria as a function $\mathbf{g}(\mathrm{x})$ then its derivative $\mathrm{f}(\mathrm{x})=\mathbf{d g} / \mathbf{d x}=0$ at the minimum or maximum of \mathbf{g} (as long as \mathbf{g} has certain properties)

Bisection Method

- Suppose you can evaluate $\mathbf{f}(\mathbf{x})$ at two points $\mathbf{x}=\mathbf{a}$ and \mathbf{x}
$=\mathbf{b}$ such that
$-f(a)>0$
$-f(b)<0$
$f(x)$

Bisection Method

- Evaluate $\mathbf{f}(\mathbf{c})$ where \mathbf{c} is halfway between \mathbf{a} and \mathbf{b}
- if $f(\mathbf{c})$ is close enough to zero done

Bisection Method

- Otherwise cocomes the new end point (in this case, 'minus') and recursively search the range 'plus' - 'minus'

public class Bisect \{
// the function we want to find the root of
public static double f(double x) \{
return Math. $\cos (\mathrm{x})$;
\}

```
public static double bisect(double xplus, double xminus,
            double tolerance) {
// base case
double c = (xplus + xminus) / 2.0;
double fc = f(c);
if( Math.abs(fc) < tolerance ) {
return c;
}
else if (fc < 0.0) {
    return bisect(xplus, c, tolerance);
}
else {
    return bisect(c, xminus, tolerance);
    }
}
```

```
        public static void main(String[] args)
        {
            System.out.println("bisection returns: " +
        bisect(1.0, Math.PI, 0.001));
            System.out.println("true answer :"
        + Math.PI / 2.0);
    }
}
```

Prints:
bisection returns: 1.5709519476855602
true answer : 1.5707963267948966

Divide and Conquer

- Bisection works by recursively finding which half of the range 'plus' - 'minus' the root lies in
- Each recursive call solves the same problem (tries to find the root of the function by guessing at the midpoint of the range)
- Each recursive call solves one smaller problem because half of the range is discarded
- Bisection method is decrease and conquer
- Divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

Merge Sort

- Merge sort is a divide and conquer algorithm that sorts a list of numbers by recursively splitting the list into two halves

- The split lists are then merged into sorted sub-lists

Merging Sorted Sub-lists

- Two sub-lists of length 1

left	right
4	3

result	
3	4

1 Comparison
2 Copies

```
LinkedList<Integer> result = new LinkedList<Integer>();
```

```
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
result.add(fL);
left.removeFirst();
}
else {
result.add(fR);
right.removeFirst();
}
if (left.isEmpty()) {
result.addAll(right);
}
else {
    result.addAll(left);
}
```


Merging Sorted Sub-lists

- Two sub-lists of length 2

3 Comparisons
 4 Copies

```
LinkedList<Integer> result = new LinkedList<Integer>();
while (left.size() > 0 && right.size() > 0 ) {
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
    result.add(fL);
    left.removeFirst();
}
else {
    result.add(fR);
    right.removeFirst();
}
}
if (left.isEmpty()) {
result.addAll(right);
}
else {
    result.addAll(left);
}
```


Merging Sorted Sub-lists

- Two sub-lists of length 4

5 Comparisons
8 Copies

Simplified Complexity Analysis

- In the worst case merging a total of \mathbf{n} elements requires
n - 1 comparisons +
n copies
$=2 n-1$ total operations
- We say that the worst-case complexity of merging is the order of $O(n)$
$-O(\ldots)$ is called Big O notation
- Notice that we don't care about the constants 2 and 1
- Formally, a function $f(n)$ is an element of $O(n)$ if and only if there is a positive real number M and a real number m such that

$$
|f(n)|<M n \text { for all } n>m
$$

- Is $2 n-1$ an element of $O(n)$?
- Yes, let $M=\mathbf{2}$ and $m=\mathbf{0}$, then $\mathbf{2 n - 1}<\mathbf{2 n}$ for all $n>0$

Informal Analysis of Merge Sort

- Suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
- Let the function be $T(n)$
- Merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
- This takes $2 T(n / 2)$ running time
- Then the sub-lists are merged
- This takes $O(n)$ running time
- Total running time $T(n)=2 T(n / 2)+O(n)$

Solving the Recurrence Relation

$$
\begin{aligned}
T(n) & \rightarrow 2 T(n / 2)+O(n) \quad T(n) \text { approaches... } \\
& \approx 2 T(n / 2)+n \\
& =2[2 T(n / 4)+n / 2]+n \\
& =4 T(n / 4)+2 n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+3 n \\
& =8[2 T(n / 16)+n / 8]+3 n \\
& =16 T(n / 16)+4 n \\
& =\mathbf{2}^{k} T\left(n / \mathbf{2}^{k}\right)+k n
\end{aligned}
$$

Solving the Recurrence Relation

$T(n)=2^{k} T\left(n / 2^{k}\right)+k n$

- For a list of length $\mathbf{1}$ we know $T(\mathbf{1})=\mathbf{1}$
- If we can substitute $T(1)$ into the right-hand side of $T(n)$ we might be able to solve the recurrence

$$
n / \mathbf{2}^{k}=\mathbf{1} \Rightarrow \mathbf{2}^{k}=n \Rightarrow k=\log (n)
$$

Solving the Recurrence Relation

$$
\begin{aligned}
T(n) & =2^{\log (n)} T\left(n / \mathbf{2}^{\log (n)}\right)+n \log (n) \\
& =n T(\mathbf{1})+n \log (n) \\
& =n+n \log (n) \\
& \in \quad n \log (n)
\end{aligned}
$$

Is Merge Sort Efficient?

- Consider a simpler (non-recursive) sorting algorithm called insertion sort

```
// to sort an array a[0]..a[n-1]
not Java!
for i = 0 to (n-1) {
    k = index of smallest element in sub-array a[i]..a[n-1]
    swap a[i] and a[k]
    }
```

```
for i = 0 to (n-1) { not Java!
    for j = (i+1) to (n-1) {
```

 \}
 tmp \(=a[i] ; \quad a[i]=a[k] ;\)
 \(a[k]=t m p ;\)
 \}

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1}\left(\left(\sum_{j=(i+1)}^{n-1} 2\right)+3\right) \\
& =\sum_{i=0}^{n-1}(2(n-i-1))+3 n \\
& =2 \sum_{i=0}^{n-1} n-2 \sum_{i=0}^{n-1} i-2 \sum_{i=0}^{n-1} 1+3 n \\
& =2 n^{2}-2 \frac{n(n-1)}{2}-2 n+3 n \\
& =2 n^{2}-n^{2}+n-2 n+3 n \\
& =n^{2}+2 n \in O\left(n^{2}\right)
\end{aligned}
$$

Comparing Rates of Growth

Comments

- Big O complexity tells you something about the running time of an algorithm as the size of the input, n, approaches infinity
- We say that it describes the limiting, or asymptotic, running time of an algorithm
- For small values of n it is often the case that a less efficient algorithm (in terms of big O) will run faster than a more efficient one
- Insertion sort is typically faster than merge sort for short lists of numbers

