
09/07/2013

1

1

CSE 1020: Unit 9

Topics: Inheritance

To do: Chapter 9; Lab 9

2

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

09/07/2013

2

3

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

4

Motivation: What and why
What
• Occasion often arises where we need to define a

class that is similar to an existing one.
– Perhaps we just need to add a few new attributes.
– Perhaps we just need to add a few new methods.

• OOP supports the definition of a new class as a
subclass (or specialization) of an old one.
– Rather than requiring that an entirely new class be

defined from scratch.
• The subclass inherits all of the attributes and

methods of the old class
– It can add new attributes and methods.
– It can even override old methods.

• We refer to this as inheritance.

09/07/2013

3

5

Motivation: What and why
What
• Occasion often arises where we need to define a

class that is similar to an existing one.
– Perhaps we just need to add a few new attributes.
– Perhaps we just need to add a few new methods.

• OOP supports the definition of a new class as a
subclass (or specialization) of an old one.
– Rather than requiring that an entirely new class be

defined from scratch.
• The subclass inherits all of the attributes and

methods of the old class
– It can add new attributes and methods.
– It can even override old methods.

• We refer to this as inheritance.

6

Motivation: What and why
What
• Occasion often arises where we need to define a

class that is similar to an existing one.
– Perhaps we just need to add a few new attributes.
– Perhaps we just need to add a few new methods.

• OOP supports the definition of a new class as a
subclass (or specialization) of an old one.
– Rather than requiring that an entirely new class be

defined from scratch.
• The subclass inherits all of the attributes and

methods of the old class
– It can add new attributes and methods.
– It can even override old methods.

• We refer to this as inheritance.

09/07/2013

4

7

Motivation: What and why
What
• Occasion often arises where we need to define a

class that is similar to an existing one.
– Perhaps we just need to add a few new attributes.
– Perhaps we just need to add a few new methods.

• OOP supports the definition of a new class as a
subclass (or specialization) of an old one.
– Rather than requiring that an entirely new class be

defined from scratch.
• The subclass inherits all of the attributes and

methods of the old class
– It can add new attributes and methods.
– It can even override old methods.

• We refer to this as inheritance.

8

Motivation: What and why

Why

• Code reuse is important in software engineering.

– This can save much time and effort during initial
design and implementation.

– It also helps in keeping all code “in sync” as
subsequent modifications are required.

• Inheritance supports abstraction from general to
more specific (specialized) data types.

– A natural extension to class abstraction.

– Supports type consolidation.

09/07/2013

5

9

Motivation: What and why

Why

• Code reuse is important in software engineering.

– This can save much time and effort during initial
design and implementation.

– It also helps in keeping all code “in sync” as
subsequent modifications are required.

• Inheritance supports abstraction from general to
more specific (specialized) data types.

– A natural extension to class abstraction.

– Yields type consolidation.

10

Example: Student
A hierarchy of classes
• The class Undergrad is a

subclass of Student.
• The class Student is a

superclass of Undergrad.
• Similarly

– Grad is a subclass of
Student

– Student is a superclass of
Grad

• Further
– Msc is a subclass of Grad
– Grad is a superclass of

Msc
• Etcetera

Student

Undergrad Grad

Msc Phd

09/07/2013

6

11

Example: Student
A hierarchy of classes
• The class Undergrad is a

subclass of Student.
• The class Student is a

superclass of Undergrad.
• Similarly

– Grad is a subclass of
Student

– Student is a superclass of
Grad

• Further
– Msc is a subclass of Grad
– Grad is a superclass of

Msc
• Etcetera

Student

Undergrad Grad

Msc Phd

12

Example: Student
A hierarchy of classes
• The class Undergrad is a

subclass of Student.
• The class Student is a

superclass of Undergrad.
• Similarly

– Grad is a subclass of
Student

– Student is a superclass of
Grad

• Further
– Msc is a subclass of Grad
– Grad is a superclass of

Msc
• Etcetera

Student

Undergrad Grad

Msc Phd

09/07/2013

7

13

Example: Student

Instance of relationships

• Every instance of a class
also is an instance of all its
superclasses.

• An instance of Undergrad
also is an instance of
Student.

• An instance of Msc is an
instance of Grad and an
instance of Student.

• We see that the
relationships are similar to
those of sets.

Student

Undergrad Grad

Msc Phd

14

Example: Student

Instance of relationships

• Every instance of a class
also is an instance of all its
superclasses.

• An instance of Undergrad
also is an instance of
Student.

• An instance of Msc is an
instance of Grad and an
instance of Student.

• We see that the
relationships are similar to
those of sets.

Student

Undergrad Grad

Msc Phd

09/07/2013

8

15

Example: Student

Instance of relationships
• Every instance of a class

also is an instance of all its
superclasses.

• An instance of Undergrad
also is an instance of
Student.

• An instance of Msc is an
instance of Grad and an
instance of Student.

• We see that the
relationships are similar to
those of sets.

• Some speak of an “is-a”
relationship.

Student

Undergrad Grad

Msc Phd

UML representation

16

Example: CreditCard/RewardCard

Instance of relationships

• Class RewardCard is a
subclass of CreditCard.

• It inherits CreditCard’s
methods

– e.g., getNumber, pay, etc.

and fields/attributes.

• Class RewardCard also
defines some new methods

– e.g., getRewardPoints

and new fields/attributes.
UML representation

CreditCard

RewardCard

09/07/2013

9

17

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

18

Subclass API

Header

• The API header explicitly notes the heritage of a
class through use of the Java keyword extends

public class RewardCard

extends CreditCard

• Notice that all class APIs we have seen use extends
through the presence of

extends Object

• We shall see that in Java, all classes are descends
(subclasses of) the (super)class Object.

09/07/2013

10

19

Subclass API

Header

• The API header explicitly notes the heritage of a
class through use of the Java keyword extends

public class RewardCard

extends CreditCard

• Notice that all class APIs we have seen use extends
through the presence of

extends Object

• We shall see that in Java, all classes are descends
(subclasses of) the (super)class Object.

20

Subclass API

Constructor
• As a user, we see nothing new in the API constructor

section.
• In Java, constructors are not inherited.

Constructor Summary

RewardCard(int no, java.lang.String aName)
Construct a reward card having the passed number and holder
name, and set its initial dollar and point balances to zero.

RewardCard(int no, java.lang.String aName, double aLimit)
Construct a reward card having the passed number, holder
name and credit limit and set its initial dollar and point balances
to zero.

09/07/2013

11

21

Subclass API

Constructor
• As a user, we see nothing new in the API constructor

section.
• In Java, constructors are not inherited.

Constructor Summary

RewardCard(int no, java.lang.String aName)
Construct a reward card having the passed number and holder
name, and set its initial dollar and point balances to zero.

RewardCard(int no, java.lang.String aName, double aLimit)
Construct a reward card having the passed number, holder
name and credit limit and set its initial dollar and point balances
to zero.

22

Subclass API

Methods

• By default, a subclass, inherits the methods of the
superclass.

• The inherited methods are noted beneath the method
summary table.

Method Summary

…

Methods inherited from class type.lang.CreditCard

getBalance, getExpiryDate, getIssueDate, getLimit, getName,
getNumber, isSimilar, pay, setExpiryDate, setLimit

09/07/2013

12

23

Subclass API

Methods

• By default, a subclass, inherits the methods of the
superclass.

• The inherited methods are noted beneath the method
summary table.

Method Summary

…

Methods inherited from class type.lang.CreditCard

getBalance, getExpiryDate, getIssueDate, getLimit, getName,
getNumber, isSimilar, pay, setExpiryDate, setLimit

24

Subclass API

Methods

• Given that we have bothered to consider a subclass,
which implies some specialization of the
superclass,…

• …it is only natural to find that the methods of the
superclass do not completely satisfy the
requirements of the subclass.

• There are three situations to distinguish

1.New methods

2.Cross-class overloading of methods

3.Overriding methods

09/07/2013

13

25

Subclass API

Methods: New methods

• Problem: In certain situations, the behaviour of the
superclass simply does not encompass that of the
subclass.

– For example, CreditCard has no notion of reward
points, which are definitive of RewardCard.

• Solution:

– New methods are provided for the subclass.

– Document in the subclass Method Summary.

26

Subclass API

Methods: New methods

• Problem: In certain situations, the behaviour of the
superclass simply does not encompass that of the
subclass.

– For example, CreditCard has no notion of reward
points, which are definitive of RewardCard.

• Solution:

– New methods are provided for the subclass.

– Document in the subclass Method Summary.

09/07/2013

14

27

Subclass API

Methods: New methods

• Example

Method Summary

int getPointBalance()

Return the number of reward points accumulated on this
reward card.

void redeem(int point)

Redeem the passed number of points and reduce the
point balance accordingly.

28

Subclass API

Methods: Cross-class overloading of methods
• Problem:

– The superclass offers methods that come close to
modeling the behaviour of the subclass, …

– …but the methods offered do not allow us to pass
appropriate arguments.

• For example,
– Class CreditCard offers an isSimilar method to

compare CreditCards with parameter type
CreditCard; …

– …whereas, we want to pass an argument of type
RewardCard to compare RewardCards.

09/07/2013

15

29

Subclass API

Methods: Cross-class overloading of methods
• Solution:

– Overload the method in the subclass: Provide a
method of the same name, but with different
signature.

– Both methods will be documented in the API of the
subclass (as standard with overloaded methods): The
new one in the Method Summary; the original under
Methods Inherited From.

• Remark: Since the two methods accomplish similar tasks
(e.g., comparison of cards), it is desirable to keep the
method name the same.

30

Subclass API

Methods: Cross-class overloading of methods
• Solution:

– Overload the method in the subclass: Provide a
method of the same name, but with different
signature.

– Both methods will be documented in the API of the
subclass (as standard with overloaded methods): The
new one in the Method Summary; the original under
Methods Inherited From.

• Remark: Since the two methods accomplish similar tasks
(e.g., comparison of cards), it is desirable to keep the
method name the same.

09/07/2013

16

31

Subclass API

Methods: Cross-class overloading methods

• Example

Method Summary

boolean isSimilar(RewardCard other)

Test the similarity of two reward cards

Methods inherited from class type.lib.CreditCard

… isSimilar …

32

Subclass API

Methods: Overriding methods
• Problem:

– The superclass offers methods that come close to
modeling the behaviour of the subclass, …

– …that allow us to pass appropriate arguments, …
– …but somehow fall short of the needs of the

subclass.
• For example,

– Class CreditCard offers a charge method…
– but the method does not allow us to adjust reward

points, is integral to the operation of a RewardCard.

09/07/2013

17

33

Subclass API

Methods: Overriding methods

• Solution:

– Override the method in the subclass: Provide a
method of the same signature and return, but the
internal operations altered to model that of the
subclass.

– Only the overriding method will be documented in the
API of the subclass.

• Remark: Since the two methods accomplish similar tasks
(e.g., comparison of cards), it is desirable to keep the
method name the same.

34

Subclass API

Methods: Overriding methods

• Solution:

– Override the method in the subclass: Provide a
method of the same signature and return, but the
internal operations altered to model that of the
subclass.

– Only the overriding method will be documented in the
API of the subclass.

• Remark: Since the two methods accomplish similar tasks
(e.g., charge to a card), it is desirable to keep the
method name the same.

09/07/2013

18

35

Subclass API

Methods: Overriding methods
• Example

Method Summary

boolean charge(double amount)
...

void credit(double amount)
…

boolean equals(java.lang.Object other)
…

String toString()
…

36

Subclass API

Overridden vs. overloaded methods and
constructors

• It is important to distinguish between overloaded and
overridden methods.

• Let’s review the differences.

09/07/2013

19

37

Subclass API

We often overload constructors
• Example

Constructor Summary

RewardCard(int no, java.lang.String aName)
Construct a reward card having the passed number and holder
name, and set its initial dollar and point balances to zero.

RewardCard(int no, java.lang.String aName, double aLimit)
Construct a reward card having the passed number, holder
name and credit limit and set its initial dollar and point balances
to zero.

38

Subclass API

We also overload methods

• Example

Method Summary

boolean isSimilar(RewardCard other)

Test the similarity of two reward cards

Methods inherited from class type.lib.CreditCard

… isSimilar …

09/07/2013

20

39

Subclass API

Overloaded methods & constructors must have
distinct signatures

• When overloading methods we define several methods
with the same name that are available in the same
class.

• This is only possible when the signatures of the
methods are different.

• To decide which overloaded method to call, the
compiler looks at the number and type of arguments.

• If the signatures were the same, it could not determine
which method to call.

40

Subclass API

Overridden methods have the same signature

• The method in the subclass replaces that in the
superclass.

09/07/2013

21

41

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

42

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

22

43

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

44

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

23

45

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

46

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

24

47

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

48

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

25

49

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

50

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

26

51

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

52

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

27

53

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

54

Subclass API

Example methods

class Parent with methods

void meth() // #1

void meth(int n) // #2, overloads #1

class Offspring extends Parent with
methods

void meth(int n) // #3, overrides #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.meth(); // calls #1
o1.meth(31); // calls #2
o2.meth(); // calls #1
o2.meth(29); // calls #3

09/07/2013

28

55

Subclass API

Overridden vs. overloaded methods and
constructors (recap.)

• It is important to distinguish between overloaded and
overridden methods.

• Overloading: We declare several versions of a
method that work with different types of arguments.
– Multiple versions of the method are

simultaneously visible.
• Overriding: We declare methods that have the same

signature, with a superclass/subclass relationship.
– The overriding method replaces the overridden

method.
– Although, you can still access the original method

via super.

56

Subclass API

Overridden vs. overloaded methods and
constructors (recap.)

• It is important to distinguish between overloaded and
overridden methods.

• Overloading: We declare several versions of a
method that work with different types of arguments.
– Multiple versions of the method are

simultaneously visible.
• Overriding: We declare methods that have the same

signature, with a superclass/subclass relationship.
– The overriding method replaces the overridden

method.
– Although, you can still access the original method

via super.

09/07/2013

29

57

Subclass API

Overridden vs. overloaded methods and
constructors (recap.)

• It is important to distinguish between overloaded and
overridden methods.

• Overloading: We declare several versions of a
method that work with different types of arguments.

– Multiple versions of the method are
simultaneously visible.

• Overriding: We declare methods that have the same
signature, with a superclass/subclass relationship.

– The overriding method replaces the overridden
method.

58

Subclass API

Method API (recap.)

• We have see

– Inheritance of methods from the superclass

– Definition of new methods by the subclass

– Cross-class overloading of methods

– Overriding of methods

09/07/2013

30

59

Subclass API

Attributes

• By default, a subclass, inherits the attributes (fields)
of the superclass.

• The inherited attributes are noted beneath the field
summary table.

Field Summary

…

Fields inherited from class type.lang.CreditCard

MIN_NAME_LENGTH, MOD, SEQUENCE_NUMBER_LENGTH

60

Subclass API

Attributes

• By default, a subclass, inherits the attributes (fields)
of the superclass.

• The inherited attributes are noted beneath the field
summary table.

Field Summary

…

Fields inherited from class type.lang.CreditCard

MIN_NAME_LENGTH, MOD, SEQUENCE_NUMBER_LENGTH

09/07/2013

31

61

Subclass API

Attributes

• Given that we have bothered to consider a subclass,
which implies some specialization of the
superclass,…

• …it is only natural to find that the attributes of the
superclass do not completely satisfy the
requirements of the subclass.

• There are two situations to distinguish

1.New attributes

2.Shadowing of attributes

62

Subclass API

Attributes: New attributes

• Problem: In certain situations, the data represented by
the superclass simply does not encompass that of the
subclass.

– For example, CreditCard has no notion of reward
points, which are definitive of RewardCard.

• Solution:

– New attributes are provided for the subclass.

– Document in the subclass Field Summary.

09/07/2013

32

63

Subclass API

Attributes: New attributes

• Problem: In certain situations, the data represented by
the superclass simply does not encompass that of the
subclass.

– For example, CreditCard has no notion of reward
points, which are definitive of RewardCard.

• Solution:

– New attributes are provided for the subclass.

– Document in the subclass Field Summary.

64

Subclass API

Attributes: New attributes

• Example

Field Summary

static int REWARD_RATE

The rate used to compute the number of
reward points.

09/07/2013

33

65

Subclass API
Attributes: Shadowed attributes
• Problem: In certain situations, the data represented by

the superclass somehow misrepresents what is intended
for the subclass.
– For example, CreditCard and RewardCard are

defined to have different default credit limits.
• Solution:

– Provide an attribute in the subclass with the same
name as that of the superclass. We say that the
attribute of the subclass shadows that of the
superclass and that the superclass attribute is
shadowed by the subclass attribute.

– The attribute defined by the subclass will be accessed
within the subclass.

– Document in the subclass Field Summary. Do not list
the shadowed attribute in Fields Inherited From table.

66

Subclass API
Attributes: Shadowed attributes
• Problem: In certain situations, the data represented by

the superclass somehow misrepresents what is intended
for the subclass.
– For example, CreditCard and RewardCard are

defined to have different default credit limits.
• Solution:

– Provide an attribute in the subclass with the same
name as that of the superclass. We say that the
attribute of the subclass shadows that of the
superclass and that the superclass attribute is
shadowed by the subclass attribute.

– The attribute defined by the subclass will be accessed
within the subclass.

– Document in the subclass Field Summary. Do not list
the shadowed attribute in Fields Inherited From table.

09/07/2013

34

67

Subclass API

Attributes: Shadowed attributes

• Example

Field Summary

static double DEFAULT_LIMIT

The default credit limit used by the two-
argument constructor.

68

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

35

69

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

70

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

36

71

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

72

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

37

73

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

74

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

38

75

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

76

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

39

77

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

78

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

40

79

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

80

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

09/07/2013

41

81

Subclass API

Example attributes

class Parent with attributes

type att1 // #1

type att2 // #2

class Offspring extends Parent with
attributes

type att2 // #3, shadows #2

Example use

// in app can write
Parent o1 = new Parent();
Offspring o2 = new

Offspring();
o1.att1; // accesses #1
o1.att2; // accesses #2
o2.att1; // accesses #1
o2.att2; // accesses #3

82

Subclass API

Attribute (field) API (recap.)

• We have see

– Inheritance of attributes from the superclass

– Definition of new attributes by the subclass

– Shadowing of superclass attributes by the
subclass

09/07/2013

42

83

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

IO.println(cc1.toString());
IO.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
IO.println(“name: ” + cc1.getName());
IO.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

84

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

IO.println(cc1.toString());
IO.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
IO.println(“name: ” + cc1.getName());
IO.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

09/07/2013

43

85

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

86

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

09/07/2013

44

87

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
IO.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

88

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
output.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

09/07/2013

45

89

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
output.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
IO.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

90

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
output.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
output.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

09/07/2013

46

91

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
output.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
output.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

92

Subclass API

Example usage
// assume the usual
import type.lib.*;
public class CardTest
{ public static void main(String[] args)
{ CreditCard cc1 = new CreditCard(703, “John”);

output.println(cc1.toString());
output.println(“credit limit: “ + cc1.DEFAULT_LIMIT);
output.println(“name: ” + cc1.getName());
output.println(“bal: ” + cc1.getBalance());
cc1.charge(120.0);
cc1.charge(70.0);
output.println(“bal: “ + cc1.getBalance());
cc1.pay(50.0);
output.println(“bal: ” + cc1.getBalance());
// all of the above accesses the class CreditCard
// continued on next page

09/07/2013

47

93

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
IO.println(rc1.toString()); // access RewardCard
IO.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
IO.println(“name: ” + rc1.getName()); // access CreditCard
IO.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

94

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
IO.println(rc1.toString()); // access RewardCard
IO.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
IO.println(“name: ” + rc1.getName()); // access CreditCard
IO.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

48

95

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
IO.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
IO.println(“name: ” + rc1.getName()); // access CreditCard
IO.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

96

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
IO.println(“name: ” + rc1.getName()); // access CreditCard
IO.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

49

97

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
IO.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

98

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

50

99

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

100

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
IO.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

51

101

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

102

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

52

103

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.redeem(5); // access Rew.
IO.println(“reward points: ” + rc1.getPointBalance()); // access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

104

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.redeem(5); // access Rew.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

09/07/2013

53

105

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.redeem(5); // access Rew.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.credit(50.0); // access Rew.
IO.println(rc1.toString()); // access Rew.

}
}

106

Subclass API

Example usage
// continued from previous slide
RewardCard rc1 = new RewardCard(704, “Paul”);
output.println(rc1.toString()); // access RewardCard
output.println(“credit limit: “ + rc1.DEFAULT_LIMIT); // access Rew.
output.println(“name: ” + rc1.getName()); // access CreditCard
output.println(“bal: ” + rc1.getBalance()); // access Cred.
rc1.charge(500.0); // access Rew.
rc1.pay(50.0); // access Cred.
output.println(“bal: “ + rc1.getBalance()); // access Cred.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.redeem(5); // access Rew.
output.println(“reward points: ” + rc1.getPointBalance()); //access Rew.
rc1.credit(50.0); // access Rew.
output.println(rc1.toString()); // access Rew.

}
}

09/07/2013

54

107

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

108

Substitutability and polymorphism

The is-a relationship (and promotion)
• Every object of the subclass is also a superclass object

– For example, every Undergrad is-a Student
– For example, every RewardCard is-a CreditCard

• When a superclass reference is expected, a subclass
reference will be accepted as well.

• Here are a few of examples

CreditCard cc = new RewardCard(); // cc declared Credit
IO.println(“I am a string.”); // println expects an Object

• This is analogous to automatic promotion among
primitive types.

09/07/2013

55

109

Substitutability and Polymorphism

The is-a relationship (and promotion)
• Every object of the subclass is also a superclass object

– For example, every Undergrad is-a Student
– For example, every RewardCard is-a CreditCard

• When a superclass reference is expected, a subclass
reference will be accepted as well.

• Here are a few of examples

CreditCard cc = new RewardCard(); // cc declared Credit
IO.println(“I am a string.”); // println expects an Object

• This is analogous to automatic promotion among
primitive types.

110

Substitutability and Polymorphism

The is-a relationship (and promotion)
• Every object of the subclass is also a superclass object

– For example, every Undergrad is-a Student
– For example, every RewardCard is-a CreditCard

• When a superclass reference is expected, a subclass
reference will be accepted as well.

• Here are a few of examples

CreditCard cc = new RewardCard(); // cc declared Credit
output.println(“I am a string.”); // println expects an Object

• This is analogous to automatic promotion among
primitive types.

09/07/2013

56

111

Substitutability and Polymorphism

The is-a relationship (and promotion)
• Every object of the subclass is also a superclass object

– For example, every Undergrad is-a Student
– For example, every RewardCard is-a CreditCard

• When a superclass reference is expected, a subclass
reference will be accepted as well.

• Here are a few of examples

CreditCard cc = new RewardCard(); // cc declared Credit
output.println(“I am a string.”); // println expects an Object

• This is analogous to automatic promotion among
primitive types.

112

Substitutability and Polymorphism

The is-a relationship (and demotion)

• Demotion between object types (within a hierarchy)
requires manual casting

• Again, as among primitive types.

• It is advisable to test via instanceof prior to casting

CreditCard cc = new RewardCard();

…

if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

• Attempt of an inappropriate demotion yields a runt-time
error.

09/07/2013

57

113

Substitutability and Polymorphism

The is-a relationship (and demotion)

• Demotion between object types (within a hierarchy)
requires manual casting

• Again, as among primitive types.

• It is advisable to test via instanceof prior to casting

CreditCard cc = new RewardCard();

…

if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

• Attempt of an inappropriate demotion yields a runt-time
error.

114

Substitutability and Polymorphism

The is-a relationship (and demotion)

• Demotion between object types (within a hierarchy)
requires manual casting

• Again, as among primitive types.

• It is advisable to test via instanceof prior to casting

CreditCard cc = new RewardCard();

…

if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

• Attempt of an inappropriate demotion yields a run-time
error.

09/07/2013

58

115

Substitutability and Polymorphism

The substitutability principle
• The sort of automatic promotion between types within a

hierarchy that we have seen, e.g.,…
CreditCard cc = new RewardCard();

• …is enabled at the level of the compiler by the so
called…

• Substitutability principle: When a superclass is
expected, a subclass is accepted.

• Remark: For the most part this principle is perfectly
reasonable; the subclass has at least the
representational power of the superclass (although
perhaps in a somewhat different form through
overriding and shadowing).

116

Substitutability and Polymorphism

The substitutability principle
• The sort of automatic promotion between types within a

hierarchy that we have seen, e.g.,…
CreditCard cc = new RewardCard();

• …is enabled at the level of the compiler by the so
called…

• Substitutability principle: When a superclass is
expected, a subclass is accepted.

• Remark: For the most part this principle is perfectly
reasonable; the subclass has at least the
representational power of the superclass (although
perhaps in a somewhat different form through
overriding and shadowing).

09/07/2013

59

117

Substitutability and Polymorphism

At run-time…
• …the processor invokes overriden instance methods

based on the object type, not the reference type.
• Example

Student s = new Undergrad();
York.println(s);
Object obj = s;
York.println(obj);

118

Substitutability and Polymorphism

At run-time…
• …the processor invokes overridden instance methods

based on the object type, not the reference type.
• Example

CreditCard cc1 = new CreditCard();
CreditCard cc2 = new RewardCard();
IO.println(cc1); // invokes toString of CreditCard
IO.println(cc2); // invokes toString of RewardCard
Object obj1 = cc1;
Object obj2 = cc2;
IO.println(obj1); // invokes toString of CreditCard
IO.println(obj2); // invokes toString of RewardCard

09/07/2013

60

119

Substitutability and Polymorphism

At run-time…
• …the processor invokes overridden instance methods

based on the object type, not the reference type.
• Example

CreditCard cc1 = new CreditCard();
CreditCard cc2 = new RewardCard();
output.println(cc1); // invokes toString of CreditCard
IO.println(cc2); // invokes toString of RewardCard
Object obj1 = cc1;
Object obj2 = cc2;
IO.println(obj1); // invokes toString of CreditCard
IO.println(obj2); // invokes toString of RewardCard

120

Substitutability and Polymorphism

At run-time…
• …the processor invokes overridden instance methods

based on the object type, not the reference type.
• Example

CreditCard cc1 = new CreditCard();
CreditCard cc2 = new RewardCard();
output.println(cc1); // invokes toString of CreditCard
output.println(cc2); // invokes toString of RewardCard
Object obj1 = cc1;
Object obj2 = cc2;
IO.println(obj1); // invokes toString of CreditCard
IO.println(obj2); // invokes toString of RewardCard

09/07/2013

61

121

Substitutability and Polymorphism

At run-time…
• …the processor invokes overridden instance methods

based on the object type, not the reference type.
• Example

CreditCard cc1 = new CreditCard();
CreditCard cc2 = new RewardCard();
output.println(cc1); // invokes toString of CreditCard
output.println(cc2); // invokes toString of RewardCard
Object obj1 = cc1;
Object obj2 = cc2;
IO.println(obj1); // invokes toString of CreditCard
IO.println(obj2); // invokes toString of RewardCard

122

Substitutability and Polymorphism

At run-time…
• …the processor invokes overridden instance methods

based on the object type, not the reference type.
• Example

CreditCard cc1 = new CreditCard();
CreditCard cc2 = new RewardCard();
output.println(cc1); // invokes toString of CreditCard
output.println(cc2); // invokes toString of RewardCard
Object obj1 = cc1;
Object obj2 = cc2;
output.println(obj1); // invokes toString of CreditCard
output.println(obj2); // invokes toString of RewardCard

09/07/2013

62

123

Substitutability and Polymorphism

Early vs. late binding

• Suppose we are given two references, big and small,
to a superclass and its subclass.

• At compile time (early binding) it is okay to supply small
when big is expected

– Assignment: big = small;

– Parameter passing: pass a small argument to
method with big parameters

– Return: Return a small in a big return method.

124

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = GlobalCredit();
gcc.add(new RewardCard(1, “Smith”);

– Return: Return a small in a big return method.
cc = gcc.getFirst();

09/07/2013

63

125

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = GlobalCredit();
gcc.add(new RewardCard(1, “Smith”);

– Return: Return a small in a big return method.
cc = gcc.getFirst();

126

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = GlobalCredit();
gcc.add(new RewardCard(1, “Smith”);

– Return: Return a small in a big return method.
cc = gcc.getFirst();

09/07/2013

64

127

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = new GlobalCredit();
gcc.add(new RewardCard(1, “Smith”));

– Return: Return a small in a big return method.
cc = gcc.getFirst();

128

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = new GlobalCredit();
gcc.add(new RewardCard(1, “Smith”));

– Return: Return a small in a big return method.
cc = gcc.getFirst();

09/07/2013

65

129

Substitutability and Polymorphism

Early vs. late binding
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At compile time (early binding) it is okay to supply small

when big is expected
– Assignment: big = small;

CreditCard cc = new RewardCard(1, “Smith”);
– Parameter passing: pass a small argument to

method with big parameters
GlobalCredit gcc = new GlobalCredit();
gcc.add(new RewardCard(1, “Smith”));

– Return: Return a small in a big return method.
cc = gcc.getFirst(); // hypothetical getFirst() method

130

Substitutability and Polymorphism
Early vs. late binding (Cont.)
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At run-time (late binding) it is okay to reverse all of the

above
– via use of the potentially dangerous cast (small) big

RewardCard rc = (RewardCard) cc;

– This only works if big actually points to a small
object at run-time, e.g., prior to cast had something
equivalent to

CreditCard cc = new RewardCard);

– Make use of instanceof to avoid having a run-time
error (an exception thrown), e.g.,

CreditCard cc = new RewardCard();
if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

09/07/2013

66

131

Substitutability and Polymorphism
Early vs. late binding (Cont.)
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At run-time (late binding) it is okay to reverse all of the

above
– via use of the potentially dangerous cast (small) big

RewardCard rc = (RewardCard) cc;

– This only works if big actually points to a small
object at run-time, e.g., prior to cast had something
equivalent to

CreditCard cc = new RewardCard);

– Make use of instanceof to avoid having a run-time
error (an exception thrown), e.g.,

CreditCard cc = new RewardCard();
if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

132

Substitutability and Polymorphism
Early vs. late binding (Cont.)
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At run-time (late binding) it is okay to reverse all of the

above
– via use of the potentially dangerous cast (small) big

RewardCard rc = (RewardCard) cc;

– This only works if big actually points to a small
object at run-time, e.g., prior to cast had something
equivalent to

CreditCard cc = new RewardCard();

– Make use of instanceof to avoid having a run-time
error (an exception thrown), e.g.,

CreditCard cc = new RewardCard();
if (cc instanceof RewardCard)

RewardCard rc = (RewardCard) cc;

09/07/2013

67

133

Substitutability and Polymorphism
Early vs. late binding (Cont.)
• Suppose we are given two references, big and small,

to a superclass and its subclass.
• At run-time (late binding) it is okay to reverse all of the

above
– via use of the potentially dangerous cast (small) big

RewardCard rc = (RewardCard) cc;

– This only works if big actually points to a small
object at run-time, e.g., prior to cast had something
equivalent to

CreditCard cc = new RewardCard();

– Make use of instanceof to avoid having a run-time
error (an exception thrown), e.g.,

if (cc instanceof RewardCard)
RewardCard rc = (RewardCard) cc;

134

Substitutability and Polymorphism

Reference resolution

• Let r be a reference to an object o.

– Remark: Due to situations such as

CreditCard cc = new RewardCard();

the class of the reference (e.g., cc has class
CreditCard) is not necessarily the class of the actual
object instance in memory (e.g., RewardCard).

• Let f be a feature, i.e., a method or attribute.

• Problem: Given r.f, what is the target class used to
realize the desired computation?

09/07/2013

68

135

Substitutability and Polymorphism

Reference resolution

• Let r be a reference to an object o.

– Remark: Due to substitutability, e.g.,

CreditCard cc = new RewardCard();

the class of the reference (e.g., cc has class
CreditCard) is not necessarily the class of the actual
object instance in memory (e.g., RewardCard).

• Let f be a feature, i.e., a method or attribute.

• Problem: Given r.f, what is the target class used to
realize the desired computation?

136

Substitutability and Polymorphism

Reference resolution

• Let r be a reference to an object o.

– Remark: Due to substitutability, e.g.,

CreditCard cc = new RewardCard();

the class of the reference (e.g., cc has class
CreditCard) is not necessarily the class of the actual
object instance in memory (e.g., RewardCard).

• Let f be a feature, i.e., a method or attribute.

• Problem: Given r.f, what is the target class used to
realize the desired computation?

09/07/2013

69

137

Substitutability and Polymorphism

Reference resolution

• Let r be a reference to an object o.

– Remark: Due to substitutability, e.g.,

CreditCard cc = new RewardCard();

the class of the reference (e.g., cc has class
CreditCard) is not necessarily the class of the actual
object instance in memory (e.g., RewardCard).

• Let f be a feature, i.e., a method or attribute.

• Problem: Given r.f, what is the target class used to
realize the desired computation?

138

Substitutability and Polymorphism

Reference resolution
• Let r be a reference to an object o.

– Remark: Due to substitutability, e.g.,
CreditCard cc = new RewardCard();
the class of the reference (e.g., cc has class
CreditCard) is not necessarily the class of the actual
object instance in memory (e.g., RewardCard).

• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to

realize the desired computation?
– Is it that of the reference (e.g., CreditCard)?

or
– Is it that of the object instance (e.g., RewardCard)?

09/07/2013

70

139

Substitutability and Polymorphism

Reference resolution
• Let r be a reference to an object o.
• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to realize the

desired computation?
• Solution (in two phases):

– Early binding solution (realized at compile time by compiler):
target class = class of r

regardless of the class of the actual object.
– Late binding solution (realized at run-time by the virtual

machine):
if (f is not an overriding instance method)

late binding target class = early binding target class
else

late binding target class = class of object in memory
The executed computation is in terms of the late binding result.

140

Substitutability and Polymorphism

Reference resolution
• Let r be a reference to an object o.
• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to realize the

desired computation?
• Solution (in two phases):

– Early binding solution (realized at compile time by compiler):
target class = class of r

regardless of the class of the actual object.
– Late binding solution (realized at run-time by the virtual

machine):
if (f is not an overriding instance method)

late binding target class = early binding target class
else

late binding target class = class of object in memory
The executed computation is in terms of the late binding result.

09/07/2013

71

141

Substitutability and Polymorphism

Reference resolution
• Let r be a reference to an object o.
• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to realize the

desired computation?
• Solution (in two phases):

– Early binding solution (realized at compile time by compiler):
target class = class of r

regardless of the class of the actual object.
– Late binding solution (realized at run-time by the virtual

machine):
if (f is not an overriding instance method)

late binding target class = early binding target class
else

late binding target class = class of o
The executed computation is in terms of the late binding result.

142

Substitutability and Polymorphism

Reference resolution
• Let r be a reference to an object o.
• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to realize the

desired computation?
• Solution (in two phases):

– Early binding solution (realized at compile time by compiler):
target class = class of r

regardless of the class of the actual object.
– Late binding solution (realized at run-time by the virtual

machine):
if (f is not an overriding instance method)

late binding target class = early binding target class
else

late binding target class = class of o
The executed computation is in terms of the late binding result.

09/07/2013

72

143

Substitutability and Polymorphism
Reference resolution
• Example

CreditCard cc = new RewardCard();

• Based on the approach to reference resolution, early
binding (based on the reference) is upheld for
– Attributes of all types (static/class as well as non-

static/instance); even shadowed fields will not be blocked.

double d = cc.DEFAULT_RATE; // accesses CreditCard
– Static/class methods, even if invoked via the reference (as

opposed to the class name).

cc.hypotheticalStaticMethod(); // accesses CreditCard

– Non-overridden instance methods. Check this out!
• Late binding only changes matters for overridden

instance methods.
cc.charge(200.00); // invokes RewardCard

144

Substitutability and Polymorphism
Reference resolution
• Example

CreditCard cc = new RewardCard();

• Based on the approach to reference resolution, early
binding (based on the reference) is upheld for
– Attributes of all types (static/class as well as non-

static/instance); even shadowed fields will not be blocked.

double d = cc.DEFAULT_RATE; // accesses CreditCard
– Static/class methods, even if invoked via the reference (as

opposed to the class name).

cc.hypotheticalStaticMethod(); // accesses CreditCard

– Non-overridden instance methods. Check this out!
• Late binding only changes matters for overridden

instance methods.
cc.charge(200.00); // invokes RewardCard

09/07/2013

73

145

Substitutability and Polymorphism
Reference resolution
• Example

CreditCard cc = new RewardCard();

• Based on the approach to reference resolution, early
binding (based on the reference) is upheld for
– Attributes of all types (static/class as well as non-

static/instance); even shadowed fields will not be blocked.

double d = cc.DEFAULT_RATE; // accesses CreditCard
– Static/class methods, even if invoked via the reference (as

opposed to the class name).

cc.hypotheticalStaticMethod(); // accesses CreditCard

– Non-overridden instance methods.
– Late binding only changes matters for overridden instance

methods.

cc.charge(200.00); // invokes RewardCard

146

Substitutability and Polymorphism
Reference resolution
• Example

CreditCard cc = new RewardCard();

• Based on the approach to reference resolution, early
binding (based on the reference) is upheld for
– Attributes of all types (static/class as well as non-

static/instance); even shadowed fields will not be blocked.
double d = cc.DEFAULT_RATE; // accesses CreditCard

– Static/class methods, even if invoked via the reference (as
opposed to the class name).

cc.hypotheticalStaticMethod(); // invokes CreditCard
– Non-overridden instance methods.

cc.pay(50.0); // invokes CreditCard
– Late binding only changes matters for overridden instance

methods.
cc.charge(200.00); // invokes RewardCard

09/07/2013

74

147

Substitutability and Polymorphism
Reference resolution
• Example

CreditCard cc = new RewardCard();

• Based on the approach to reference resolution, early
binding (based on the reference) is upheld for
– Attributes of all types (static/class as well as non-

static/instance); even shadowed fields will not be blocked.
double d = cc.DEFAULT_RATE; // accesses CreditCard

– Static/class methods, even if invoked via the reference (as
opposed to the class name).

cc.hypotheticalStaticMethod(); // invokes CreditCard
– Non-overridden instance methods.

cc.pay(50.0); // invokes CreditCard

Late binding only changes matters for overridden
instance methods.

cc.charge(200.00); // invokes RewardCard

148

Substitutability and Polymorphism

The polymorphism principle
• In Java, instance method calls are always determined

by the type of the actual object, not the type of the
object reference.

• The principle that the actual type of the object
determines the method to be called is polymorphism.
– Many forms; same name.
– The same computation works for objects of many

shapes.
– It adapts itself to the nature of the objects.

• Early binding pertains to compile time polymorphism.
• Late binding pertains to run-time polymorphism.

09/07/2013

75

149

Substitutability and Polymorphism

The polymorphism principle
• In Java, instance method calls are always determined

by the type of the actual object, not the type of the
object reference.

• The principle that the actual type of the object
determines the method to be called is polymorphism.
– Many forms; same name.
– The same computation works for objects of many

shapes.
– It adapts itself to the nature of the objects.

• Early binding pertains to compile time polymorphism.
• Late binding pertains to run-time polymorphism.

150

Substitutability and Polymorphism

The polymorphism principle
• In Java, instance method calls are always determined

by the type of the actual object, not the type of the
object reference.

• The principle that the actual type of the object
determines the method to be called is polymorphism.
– Many forms; same name.
– The same computation works for objects of many

shapes.
– It adapts itself to the nature of the objects.

• Early binding pertains to compile time polymorphism.
• Late binding pertains to run-time polymorphism.

09/07/2013

76

151

Substitutability and Polymorphism

The polymorphism principle
• In Java, instance method calls are always determined

by the type of the actual object, not the type of the
object reference.

• The principle that the actual type of the object
determines the method to be called is polymorphism.
– Many forms; same name.
– The same computation works for objects of many

shapes.
– It adapts itself to the nature of the objects.

• Early binding pertains to compile time polymorphism.
• Late binding pertains to run-time polymorphism.

152

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

IO.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
IO.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

09/07/2013

77

153

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

IO.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
IO.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

154

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
IO.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

09/07/2013

78

155

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
IO.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

156

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
IO.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

09/07/2013

79

157

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
output.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

158

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
output.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

09/07/2013

80

159

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
output.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
IO.println(yc.toString());
// continued on next slide

160

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
output.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
output.println(yc.toString());
// continued on next slide

09/07/2013

81

161

Substitutability and Polymorphism

Example usage
// assume the usual
import type.lib.*;
public class GlobalCreditEg
{ public static void main(String[] args)
{ GlobalCredit yc = new GlobalCredit(“York Credit”);

output.println(yc.toString());
CreditCard cc1 = new CreditCard(703,”John”,2000.0);
yc.add(cc1); // expects CC ref., receives and accepts CC ref
output.println(yc.toString());
CreditCard cc2 = new RewardCard(704,”Paul”,1000.0);
yc.add(cc2); // expects CC ref., receives and accepts CC ref
RewardCard rc1 = new RewardCard(705,”Jane”,2500.0);
yc.add(rc1); // expects CC ref., receives and accepts RC ref
output.println(yc.toString());
// continued on next slide

162

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
IO.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
IO.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

09/07/2013

82

163

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
IO.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
IO.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

164

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
IO.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

09/07/2013

83

165

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

166

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

IO.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

09/07/2013

84

167

Substitutability and Polymorphism
CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

168

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
IO.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

Substitutability and Polymorphism
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]
CARD [NO=000703-8, Balance=600.00]

09/07/2013

85

169

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Substitutability and Polymorphism

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
output.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
IO.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

170

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Substitutability and Polymorphism

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
output.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
output.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
// continued on next page

09/07/2013

86

171

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Substitutability and Polymorphism

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
output.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
output.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
// continued on next page

172

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Substitutability and Polymorphism

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
output.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
output.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
// continued on next page

RWRD [NO=000704-7, Balance=900.00, Points=45]
RWRD [NO=000705-6, Balance=0.00, Points=0]
CARD [NO=000703-8, Balance=600.00]

09/07/2013

87

173

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000705-6, Balance=0.00, Points=0]
RWRD [NO=000704-7, Balance=500.00, Points=25]

Substitutability and Polymorphism

Example usage
// continued from previous slide
boolean res;
res = cc2.charge(500.0); // Reward
output.println(“charging 500.0 to 704 is “ + res); // true
res = cc1.charge(600.0); // Credit
output.println(“charging 600.0 to 703 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = cc2.charge(800.0); // Reward
output.println(“charging 800.0 to 704 is “ + res); // false
res = cc2.charge(400.0); // Reward
output.println(“charging 400.0 to 704 is “ + res); // true
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
// continued on next page

174

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
IO.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
IO.println(“redeem 10 points on 704.”);
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
IO.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

09/07/2013

88

175

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
IO.println(“redeem 10 points on 704.”);
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
IO.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

176

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())

IO.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
IO.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

09/07/2013

89

177

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
IO.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

178

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
IO.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

RWRD [NO=000704-7, Balance=900.00, Points=35]
RWRD [NO=000705-6, Balance=0.00, Points=0]
CARD [NO=000703-8, Balance=400.00]

09/07/2013

90

179

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
output.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc=yc.getFirst(); cc!=null; cc=yc.getNext())
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

180

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
output.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc : yc)
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

09/07/2013

91

181

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
output.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc : yc)
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
IO.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

182

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
output.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc : yc)
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
output.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

09/07/2013

92

183

CARD [NO=000703-8, Balance=600.00]
RWRD [NO=000704-7, Balance=500.00, Points=25]
RWRD [NO=000705-6, Balance=0.00, Points=0]

Substitutability and Polymorphism

Example usage
// continued from previous slide
cc1.pay(200.0); // CC
output.println(“Pay 200 on 703.”);
((RewardCard) cc2).redeem(10); // risky, but we know cc2 is RC
output.println(“redeem 10 points on 704.”);
for (CreditCard cc : yc)

output.println(cc.toString()); // depends on object type
res = rc1.charge(800.0); // RC
output.println(“charging 800.0 to 705 is “ + res); // true
for (CreditCard cc : yc)
{ if (cc instanceof RewardCard) // true for cc2 and rc1

{ RewardCard rc = (RewardCard) cc;
output.println(rc.getNumber() + “ ” + rc.getPointBalance());

}
}

} }

000704-7 35
000705-6 40

184

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

09/07/2013

93

185

Abstract classes and interfaces

A challenge
• Designing classes hierarchically has great power in

allowing subclasses to inherit from superclasses.
• In particular, when one class contains a subset of the

features of another, then it is natural to specify them as
subclass in superclass in an inheritance chain.

• In some situations, however, two classes share some
features, but each contains features not in the other.

• Java provides two ways to deal with such situations.
– Abstract classes
– Interfaces

186

Abstract classes and interfaces

A challenge
• Designing classes hierarchically has great power in

allowing subclasses to inherit from superclasses.
• In particular, when one class contains a subset of the

features of another, then it is natural to specify them as
subclass in superclass in an inheritance chain.

• In some situations, however, two classes share some
features, but each contains features not in the other.

• Java provides two ways to deal with such situations.
– Abstract classes
– Interfaces

09/07/2013

94

187

Abstract classes and interfaces
Abstract classes
• Given two classes that contain some common features,

create an artificial third class and designate it as the
superclass of the other two.

• The artificial class is called an abstract class because it
does not encapsulate an actual object.

• Still, an inheritance hierarchy is defined with the
abstract class at the root.

• An abstract class is recognizable in its API header
because the word abstract is added.

public abstract class Vehicle

 Vehicle
{Abstract}

Bus Car

188

Abstract classes and interfaces
Abstract classes
• Given two classes that contain some common features,

create an artificial third class and designate it as the
superclass of the other two.

• The artificial class is called an abstract class because it
does not encapsulate an actual object.

• Still, an inheritance hierarchy is defined with the
abstract class at the root.

• An abstract class is recognizable in its API header
because the word abstract is added.

public abstract class Vehicle

 Vehicle
{Abstract}

Bus Car

09/07/2013

95

189

Abstract classes and interfaces
Abstract classes
• Given two classes that contain some common features,

create an artificial third class and designate it as the
superclass of the other two.

• The artificial class is called an abstract class because it
does not encapsulate an actual object.

• Still, an inheritance hierarchy is defined with the
abstract class at the root.

• An abstract class is recognizable in its API header
because the word abstract is added.

public abstract class Vehicle

 Vehicle
{Abstract}

Bus Car

In UML, an abstract class
has its name in italics and
the word Abstract beneath
it in curly brackets.

190

Abstract classes and interfaces
Abstract class usage
• An abstract class cannot be instantiated.
• To use an abstract class, you must obtain an instance

from one of its subclasses.
• There are two standard ways to proceed.
1. Factory method: Find a method that gives you an
instance. For example, the abstract class Vehicle has a
method

public static Car createCar()
Then an instance of vehicle can be created as Vehicle

myCar = Vehicle.createCar();
2. Subclass constructor: Find a subclass and use its
constructor.

Vehicle myCar = new Car();

09/07/2013

96

191

Abstract classes and interfaces
Abstract class usage
• An abstract class cannot be instantiated.
• To use an abstract class, you must obtain an instance

from one of its subclasses.
• There are two standard ways to proceed.
1. Factory method: Find a method that gives you an
instance. For example, the abstract class Vehicle has a
method

public static Car createCar()
Then an instance of vehicle can be created as Vehicle

Vehicle myCar = Vehicle.createCar();
2. Subclass constructor: Find a subclass and use its
constructor.

Vehicle myCar = new Car();

192

Abstract classes and interfaces
Abstract class usage
• An abstract class cannot be instantiated.
• To use an abstract class, you must obtain an instance

from one of its subclasses.
• There are two standard ways to proceed.
1. Factory method: Find a method that gives you an
instance. For example, the abstract class Vehicle has a
method

public static Car createCar()
Then an instance of vehicle can be created as Vehicle

Vehicle myCar = Vehicle.createCar();
2. Subclass constructor: Find a subclass and use its
constructor.

Vehicle myCar = new Car();

09/07/2013

97

193

Abstract classes and interfaces
Interfaces
• In some cases it might be desirable for a class to

inherit features from more than one class.
• However, at least in Java, multiple inheritance is not

allowed.
• An interface defines a group of methods that must be

define by its implementing classes.
• The implementing class does not inherit the methods in

full, only their headers (i.e., the way to interface to
them).

• The key: A class is allowed to implement multiple
interfaces.

194

Abstract classes and interfaces
Interfaces
• As an example, suppose you wanted to abstract the

notion that a variety of shapes have area.

• Notice that each implementing class must implement
getArea(). Indeed, the necessary operations are shape
dependent.

 «interface»
HasArea

+ getArea() double

Circle CylinderRectangle

09/07/2013

98

195

Abstract classes and interfaces
Interfaces
• As an example, suppose you wanted to abstract the

notion that a variety of shapes have area.

• Notice that each implementing class must implement
getArea(). Indeed, the necessary operations are shape
dependent.

 «interface»
HasArea

+ getArea() double

Circle CylinderRectangle

In UML, an interface is
indicated via <<interface>>
above its name.

196

Abstract classes and interfaces
Interfaces
• As an example, suppose you wanted to abstract the

notion that a variety of shapes have area.

• Notice that each implementing class must implement
getArea(). Indeed, the necessary operations are shape
dependent.

• To gain access, we appeal to an implementing class,
e.g.,

HasArea shape = new Rectangle(3, 9);

 «interface»
HasArea

+ getArea() double

Circle CylinderRectangle

In UML, an interface is
indicated via <<interface>>
above its name.

09/07/2013

99

197

Abstract classes and interfaces
Interfaces
• As an example, suppose you wanted to abstract the

notion that a variety of shapes have area.

• Remark: Since we are dealing with interfaces, each of
the above classes might also implement additional
interfaces.

• As examples:
– Rectangle and Cylinder might also implement an interface HasHeight
– Cylinder and Circle might also implement an interface HasRadius

 «interface»
HasArea

+ getArea() double

Circle CylinderRectangle

In UML, an interface is
indicated via <<interface>>
above its name.

198

Abstract classes and interfaces
Interfaces
• As an example, suppose you wanted to abstract the

notion that a variety of shapes have area.

• Remark: Since we are dealing with interfaces, each of
the above classes might also implement additional
interfaces.

• As examples:
– Rectangle and Cylinder might also implement an interface HasHeight
– Cylinder and Circle might also implement an interface HasRadius

 «interface»
HasArea

+ getArea() double

Circle CylinderRectangle

In UML, an interface is
indicated via <<interface>>
above its name.

09/07/2013

100

199

Abstract classes and interfaces

Summary
• Designing classes hierarchically has great power in

allowing subclasses to inherit from superclasses.
• In some situations, however, two classes share some

features, but each contains features not in the other.
• Java provides two ways to deal with such situations.

– Abstract classes
– Interfaces

200

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

09/07/2013

101

201

The class Object

The cosmic superclass
• In Java, all objects are direct or indirect subclasses of

the Object class.
• They inherit from it a number of methods

– toString
– equals
– clone
– and more…

• As with other inherited methods, it is critical to consider
how they work...

• …and override them, as needed.
• For example, the Object class clone provides only

shallow copying
– If an object contains a reference to another object, then it

provides a copy (not a clone) of that object reference.
– Okay if all attributes are

202

The class Object

The cosmic superclass

• In Java, all objects are direct or indirect subclasses of
the Object class.

• They inherit from it a number of methods

– toString

– equals

– clone

– and more…

09/07/2013

102

203

The class Object

The cosmic superclass
• All objects are direct or indirect subclasses of the

Object class.
• They inherit from it a number of methods

– toString
– equals
– clone
– and more…

• As with other inherited methods, it is critical to consider
how they work...

• …and override them, as needed.

204

The class Object

The cosmic superclass
• In Java, all objects are direct or indirect subclasses of

the Object class.
• They inherit from it a number of methods

– toString
– equals
– clone
– and more…

• As with other inherited methods, it is critical to consider
how they work...

• …and override them, as needed.
• For example, the toString of RewardCard is an override

of the toString inherited from CreditCard, which in turn
is an override of the toString inherited from Object.

09/07/2013

103

205

The class Object

To override or not to override

• Example: The Object class clone provides only
shallow copying

– If an object contains a reference to another object,
then it provides a copy (not a clone) of that object
reference.

– Okay if all attributes are numbers, truth values or
strings (immutable objects)

– Suspect if (mutable) objects are involved.

• Example: The Object class equals defaults to = =

• Example: The Object class toString defaults to the
object reference.

206

The class Object

To override or not to override

• Example: The Object class clone provides only
shallow copying

– If an object contains a reference to another object,
then it provides a copy (not a clone) of that object
reference.

– Okay if all attributes are numbers, truth values or
strings (immutable objects)

– Suspect if (mutable) objects are involved.

• Example: The Object class equals defaults to = =

• Example: The Object class toString defaults to the
object reference.

09/07/2013

104

207

The class Object

To override or not to override

• Example: The Object class clone provides only
shallow copying

– If an object contains a reference to another object,
then it provides a copy (not a clone) of that object
reference.

– Okay if all attributes are numbers, truth values or
strings (immutable objects)

– Suspect if (mutable) objects are involved.

• Example: The Object class equals defaults to = =

• Example: The Object class toString defaults to the
object reference.

208

The class Object

To override or not to override

• Example: The Object class clone provides only
shallow copying

– If an object contains a reference to another object,
then it provides a copy (not a clone) of that object
reference.

– Okay if all attributes are numbers, truth values or
strings (immutable objects)

– Suspect if (mutable) objects are involved.

• Example: The Object class equals defaults to = =

• Example: The Object class toString defaults to the
object reference.

09/07/2013

105

209

The class Object

To override or not to override

• Example: The Object class clone provides only
shallow copying

– If an object contains a reference to another object,
then it provides a copy (not a clone) of that object
reference.

– Okay if all attributes are numbers, truth values or
strings (immutable objects)

– Suspect if (mutable) objects are involved.

• Example: The Object class equals defaults to = =

• Example: The Object class toString defaults to the
object reference.

210

The class Object

Why bother?

• Theory benefit (example): Use of the Object class
enforces an overall hierarchical structure on Java data
objects.

• Practical benefit (example): Use of the Object class
allows us to define generic data structuring
mechanisms (recall the class Vector, which can hold
any Object).

09/07/2013

106

211

The class Object

Why bother?

• Theory benefit (example): Use of the Object class
enforces an overall hierarchical structure on Java data
objects.

• Practical benefit (example): Use of the Object class
allows us to define generic data structuring
mechanisms (recall the class Vector, which can hold
any Object).

212

The class Object

Why bother?

• Theory benefit (example): Use of the Object class
enforces an overall hierarchical structure on Java data
objects.

• Practical benefit (example): Use of the Object class
allows us to define generic data structuring
mechanisms (recall the class Vector, which can hold
any Object).

09/07/2013

107

213

The class Object

Recap.
• In Java, all objects are direct or indirect subclasses of

the Object class.
• Correspondingly, all classes inherit a number of

methods from Object.
– As with other inherited methods, it is critical to

consider how they work and override them, as
needed.

• Use of the Object class provides
– Overall hierarchical structure to Java.
– Ability to define and use generic data structuring

and manipulation.

214

Summary

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

09/07/2013

108

215

Outline

• Motivation

• Subclass API

• Substitutability and Polymorphism

• Abstract classes and interfaces

• The class Object

• Appendix: Arrays of objects

216

Arrays of objects

Array elements can be objects

• As one would expect, we can create arrays of
objects.

• Let’s see an example…

09/07/2013

109

217

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

218

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

09/07/2013

110

219

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

220

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

09/07/2013

111

221

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

222

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

Remark: The principle of substitutability allows a
RewardCard instance to be inserted in a CreditCard
array.

09/07/2013

112

223

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

IO.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

Remark: The principle of substitutability allows a
RewardCard instance to be inserted in a CreditCard
array.

224

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

output.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

09/07/2013

113

225

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

output.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

IO.println(myCards[j].toString());

}

}

226

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

output.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

output.println(myCards[j].toString());

}

} Remark: Polymorphism ensures that the appropriate
toString method will be called for each card.

09/07/2013

114

227

Arrays of objects

Example

public class ArrayOfCards

{ public static void main(String[] args)

{ final int MAX_CARDS = 3;

CreditCard[] myCards = new CreditCard[MAX_CARDS];

myCards[0] = new CreditCard(1, “Wildes”);

myCards[1] = new CreditCard(2, “Wildes”);

myCards[2] = new RewardCard(3, “Wildes”);

output.println(“Cards in my wallet\n”);

for (int j=0; j<myCards.length; j++)

output.println(myCards[j].toString());

}

} Remark: Polymorphism ensures that the appropriate
toString method will be called for each card.

228

Arrays of objects

Recap.

• We can create arrays of objects.

• Declaration and construction exactly analogous to
that of arrays of primitive type elements.

• When applicable, the principles of substitutability and
polymorphism work exactly as they should.

