COSC 1020: Week 8
Topics: Aggregation

To do: Chapter 8, Lab 8

Outline
Introduction
Aggregation API
Collections
Algorithm complexity

Further example usage

02/07/2013

Outline

e Introduction

Introduction

Motivation

» Our everyday world is full of objects.
— cars
— audio/video (A/V) systems
— computers

» Typically, systems (objects) of even moderate
complexity are comprised of subsystems.

— Car: body, wheels, engine, ...
— A/V system: Receiver, monitor, speakers, ...

— Computers: processor, memory, 10 devices, ...

* Indeed, the subsystems often are comprised of
subsubsystems...

02/07/2013

02/07/2013

Introduction

Motivation

» Example: Because a car is comprised of a body,
wheel and engine, we can capture it via UML
aggregation (has-a) representation.

» We say that the car aggregates its components.

— body
4
car L 2 wheel
1)
engine 5

Introduction

Aggregation

» A typical software system uses several classes,
including the app.

* Itis useful to depict the interrelationships that hold.

* Aggregation (has-a): Class C aggregates class T if C
has T as an attribute.

* We call C the aggregate class.
* We call T the component or aggregated class.

cC K— T

Introduction

Class aggregation

» Our software world is full of objects.
— Investment
— Portfolio
— CreditCard

» Typically, objects of even moderate complexity are
comprised of objects.

— Investment: Stock
— Portfolio: Investment(s)
— CreditCard: Dates

* Indeed, the Portfolio is comprised of Investments,
which are comprised of Stocks.

Introduction

Class aggregation

» Examples: We have introduced three has-a
relationships; these can be captured via UML.

* We say that the aggregate class aggregates its
component (aggregated) class(es) .

1

Investment KO———— Stock

*

Portfolio K>———— Investment

CreditCard [@— Date

02/07/2013

Introduction
Multiplicity
* In addition to the aggregate and aggregated classes,
aggregation is characterized via multiplicity.

* Multiplicity is the number of attributes in the
aggregate class that are of the aggregated type.

1

Investment KO——— Stock

*

Portfolio K>—— Investment

CreditCard |[@——— Date

Introduction

Composition

* An aggregation between an aggregate class C and
an aggregated class T is called a composition if
creating an instance of C automatically leads to
creating one or more instances of T.

2

CreditCard |[{@——— Date

10

02/07/2013

02/07/2013

Introduction

Composition

* An aggregation between an aggregate class C and
an aggregated class T is called a composition if
creating an instance of C automatically leads to
creating one or more instances of T.

2

CreditCard |[@p———— Date

« Remark: We fill the diamond to indicate that an

aggregate is a composition.
11

Introduction

Collection

* An aggregation between an aggregate class C and
an aggregated class T is called a collection if, rather
than forcing all components to be created with the
aggregate, an app is allowed to create/add
components at any time.

*

Portfolio K>———— Investment

12

02/07/2013

Outline

» Aggregation API

13

Aggregation API

Construction of aggregations (non-compositions)

» The aggregate class expects an app to create
needed components (aggregated classes)...

* ... and then pass the needed references to the
aggregate constructor.

14

Aggregation API

Construction of aggregations (non-compositions)

» The aggregate class expects an app to create
needed components (aggregated classes)...

* ... and then pass the needed references to the
aggregate constructor.

Example API

Constructor Summary

Investment(Stock aStock, int aQuantity, double aBValue)
Construct an investment having the passed fields.

15

Aggregation API

Construction of aggregations (non-compositions)

The aggregate class expects an app to create needed
components (aggregated classes)...

... and then pass the needed references to the aggregate
constructor.

Example usage

Create an investment
Stock stk = new Stock(“TD”);
Investment inv = new Investment(stk, 15, 24.45);

02/07/2013

Aggregation API

Construction of aggregations (non-compositions)

* The aggregate class expects an app to create needed
components (aggregated classes)...

* ... and then pass the needed references to the aggregate
constructor.

Example usage

e Create an investment
Stock stk = new Stock(“TD”);
Investment inv = new Investment(stk, 15, 24.45);
Alternatively

Investment inv=new Investment(new Stock(“TD"),15,24.45);

Aggregation API

Construction of aggregations (non-compositions)

* The aggregate class expects an app to create needed
components (aggregated classes)...

» ... and then pass the needed references to the aggregate
constructor.

Example usage

» Create an investment
Stock stk = new Stock(“TD”);
Investment inv = new Investment(stk, 15, 24.45);
Alternatively

Investment inv=new Investment(new Stock(“TD”),15,24.45);

* Remark: It is permissible to pass a null reference for the
component. 18

02/07/2013

Aggregation API

Construction of compositions

In a composition, the aggregate cannot leave it to an
app to create components.

The components are integral to the aggregate and
have the same lifetime as the aggregate.

The constructor creates the components internally as
part of its implementation.

Inspection of the Constructor API does not
necessarily reveal presence of aggregated objects.

Aggregation API

Construction of compositions

In a composition, the aggregate cannot leave it to an
app to create components.

The components are integral to the aggregate and
have the same lifetime as the aggregate.

The constructor creates the components internally as
part of its implementation.

Inspection of the Constructor API does not
necessarily reveal presence of aggregated objects.

Example API
Constructor Summary
CreditCard(int no, String aName, double aLimit)

Construct a credit card having the passed...

02/07/2013

10

Aggregation API

Construction of compositions

* In a composition, the aggregate cannot leave it to an
app to create components.

* The components are integral to the aggregate and
have the same lifetime as the aggregate.

» The constructor creates the components internally as
part of its implementation.

* Inspection of the Constructor API does not
necessarily reveal presence of aggregated objects.

Example API

Constructor Summary

CreditCard(int no, String aName, double aLimit)
Construct a credit card having the passed...

* Remark: This constructor will implicitly create issue
and expiry Date objects (see, java.util.Date). ”

Aggregation API

Construction of compositions

* In a composition, the aggregate cannot leave it to an app
to create components.

* The components are integral to the aggregate and have
the same lifetime as the aggregate.

» The constructor creates the components internally as
part of its implementation.

* Inspection of the Constructor APl does not necessarily
reveal presence of aggregated objects.

Example usage
» Create a CreditCard
CreditCard myCard = new CreditCard(666, “Poe”, 5000.00);

22

02/07/2013

11

Aggregation API

Construction of compositions

In a composition, the aggregate cannot leave it to an app
to create components.

The components are integral to the aggregate and have
the same lifetime as the aggregate.

The constructor creates the components internally as
part of its implementation.

Inspection of the Constructor APl does not necessarily
reveal presence of aggregated objects.

Example usage

Create a CreditCard

CreditCard myCard = new CreditCard(666, “Poe”, 5000.00);

Remark: Issue and expiry Date objects have been
created for myCard.
23

Aggregation API

Component access

An aggregate class must provide a way to access its
components.

Otherwise, an app would have no way to avall itself to
the component objects.

02/07/2013

12

Aggregation API

Component access

An aggregate class must provide a way to access its
components.

Otherwise, an app would have no way to avalil itself to
the component objects.

Example usage

Stock stk = new Stock(*TD”);

Investment inv = new Investment(stk, 15, stk.getPrice());
Stock stk2 = inv.getStock();

Aggregation API

Component access

An aggregate class must provide a way to access its
components.

Otherwise, an app would have no way to avall itself to
the component objects.

Example usage

Stock stk = new Stock(*TD”);

Investment inv = new Investment(stk, 15, stk.getPrice());
Stock stk2 = inv.getStock();

CreditCard myCard = new CreditCard(666, “Poe”, 5.00);
Date mylssue = myCard.getlssueDate();

Date myExpiry = myCard.getExpiryDate();

02/07/2013

13

02/07/2013

Aggregation API

Component access

» An aggregate class must provide a way to access its
components.

» Otherwise, an app would have no way to avail itself to
the component objects.

» Example usage
Stock stk = new Stock(*TD”);
Investment inv = new Investment(stk, 15, stk.getPrice());
Stock stk2 = inv.getStock();
CreditCard myCard = new CreditCard(666, “Poe”, 5.00);
Date mylssue = myCard.getlssueDate();
Date myExpiry = myCard.getExpiryDate();

* Remark: We do not need to use new, as the
components already have been created. 27

Aggregation API

Component access

* A question of interest: Should the component accessor
return

— areference to the component per se
or
— areference to a copy of the component?

28

14

Aggregation API

Component access

» A question of interest: Should the component accessor
return

— areference to the component per se
or
— areference to a copy of the component?

» Either approach will allow the app to retrieve information
about the component.

29

Aggregation API

Component access

* A question of interest: Should the component accessor
return

— areference to the component per se
or
— areference to a copy of the component?

» Either approach will allow the app to retrieve information
about the component.

« However,

— Reference to the component per se: Allows the app
to modify (mutate) the original component.

— Reference to a copy of the component: Does not
allow app to modify the component, only the copy.

30

02/07/2013

15

Aggregation API

Component access

» A question of interest: Should the component accessor
return

— Reference to the component: Allows modification of
component by app

or

— Reference to a copy of component: Does not allow
modification of component by app.

Aggregation API

Component access

* A question of interest: Should the component accessor
return

— Reference to the component: Allows modification of
component by app

or

— Reference to a copy of component: Does not allow
modification of component by app.

* Answer (in two parts):

02/07/2013

16

Aggregation API

Component access
» A question of interest: Should the component accessor

return
— Reference to the component: Allows modification of

component by app

or
— Reference to a copy of component: Does not allow

modification of component by app.
* Answer (in two parts):
— If the app created the component, then it should be
able to modify it. >»Non-composition aggregations
should return reference to component.

Aggregation API

Component access
* A question of interest: Should the component accessor

return
— Reference to the component: Allows modification of

component by app

or

— Reference to a copy of component: Does not allow
modification of component by app.

* Answer (in two parts):

— If the app created the component, then it should be
able to modify it. >*Non-composition aggregations
should return reference to component.

— If the app did not create the component, then it
should not be able to modify it. > Compositions
should return reference to copy of component 34

02/07/2013

17

Aggregation API

Component access and mutation

» Compare the results of an accessor returning reference
to component vs. reference to copy of component.

» Reference to component

35

Aggregation API

Component access and mutation

» Compare the results of an accessor returning reference to
component vs. reference to copy of component.

+ Reference to component

Investment inv = new Investment(new Stock(*TD"),2,24.45);
output.printin(inv.getStock()); // prints TD

Stock stk = inv.getStock();

stk.setSymbol(“RY”);

output.printin(stk); // prints Royal
output.println(inv.getStock()); // prints Royal

02/07/2013

18

Aggregation API

Component access and mutation

« Compare the results of an accessor returning reference to
component vs. reference to copy of component.

« Reference to component

Investment inv = new Investment(new Stock(“TD”),2,24.45);
output.printin(inv.getStock()); // prints TD

Stock stk = inv.getStock();

stk.setSymbol(“RY");

output.printin(stk); // prints Royal
output.printin(inv.getStock()); // prints Royal

* Remark: Investment aggregates, but not as a composition.

37

Aggregation API

Component access and mutation

» Compare the results of an accessor returning reference
to component vs. reference to copy of component.

» Reference to copy of component

38

02/07/2013

19

Aggregation API

Component access and mutation

« Compare the results of an accessor returning reference to
component vs. reference to copy of component.

» Reference to copy of component

CreditCard myCard = new CreditCard(1, “Wildes”);
output.printin(myCard.getlssueDate()); // time is creation time
Date mylssue = myCard.getlssueDate();
mylssue.setTime(0); // see java.util.Date
output.printin(mylssue); // time is O
output.printin(myCard.getlssueDate()); // time is creation time

39

Aggregation API

Component access and mutation

» Compare the results of an accessor returning reference to
component vs. reference to copy of component.

» Reference to copy of component

CreditCard myCard = new CreditCard(1, “Wildes”);
output.printin(myCard.getlssueDate()); // time is creation time
Date mylssue = myCard.getlssueDate();
mylssue.setTime(0); // see java.util.Date
output.printin(mylssue); // time is 0
output.printin(myCard.getlssueDate()); // time is creation time

* Remark: CreditCard aggregates as a composition.
40

02/07/2013

20

Aggregation API

Aggregation mutation

* Non-composition aggregations typically do not
provide mutator methods to change the components.

— Mutation can be accomplished via the references
returned by the collection’s accessor methods.

Aggregation API

Aggregation mutation

* Non-composition aggregations typically do not
provide mutator methods to change the components.

— Mutation can be accomplished via the references
returned by the collection’s accessor methods.

» Compositions must provide mutator methods to
change components

— No reference is provided to the actual components
(only reference to a copy of the components).

— Typically, such mutators come with restrictions
(preconditions) in an attempt to maintain
consistent state in the component objects.

— Example: The CreditCard class has a mutator

method setExpiryDate that only works if the
passed date is not null and is after the issue date4.2

02/07/2013

21

Aggregation API

Recapitulation

Feature in Aggregation Composition
Aggregate (non-composition)
constructor Expects a component No ref. passed;

ref to be passedasa component created
parameter; null okay. by constructor.

accessor Must be present in Must be present in
API; returns a API; returns ref. to
component ref. component copy.

mutator Not needed; can Possibly; but with

mutate via accessor. restrictions

(preconditions). i

Outline

e Collections

44

02/07/2013

22

Collections

Basics

* In many cases, an object has a whole collection of
components.

* Moreover, the number of components can vary
dynamically.

* Examples
— A course has a collection of students.
— A portfolio has a collection of investments.

45

Collections

Basics

* In Java, there are several mechanisms to deal with
collections.

— arrays
— The Vector class
— ... and others we will see latter.

* Some classes are designed to hide/encapsulate the
mechanism that is used to maintain the collection.

— The Portfolio class.

*

Portfolio KO———— Investment

46

02/07/2013

23

Collections

Construction

» Since the number of components in a collection can
vary dynamically...

» ... the components can not be created internally by a
constructor (as they are with a composition)

» ... the components can not be passed as parameters
to the constructor (as they are with other
aggregates).

47

Collections

Construction

» Since the number of components in a collection can
vary dynamically...

» ... the components can not be created internally by a
constructor (as they are with a composition)

» ... the components can not be passed as parameters
to the constructor (as they are with other
aggregates).

» Standard solution

— A constructor must be provided that creates an
empty collection (and/or one with initial contents).

— A method must be provided for adding
components (to a previously created) collection.

48

02/07/2013

24

Collections

Construction

* Since the number of components in a collection can
vary dynamically...

e ...should a block of memory sufficient to encompass
all anticipated components be allocated upfront at
construction?

e ...should memory be allocated dynamically as
components are added?

49

Collections

Construction

» Since the number of components in a collection can
vary dynamically...

» ...should a block of memory sufficient to encompass
all anticipated components be allocated upfront at
construction?

* ...should memory be allocated dynamically as
components are added?

 In practice, both solutions are encountered
— Upfront allocation is referred to as static allocation.

— Allocation as components are added is referred to
as dynamic allocation.
50

02/07/2013

25

Collections

Construction
» Example constructors

Portfolio
Constructor Summary
Portfolio(java.lang.String title, int max)

Construct an empty portfolion having the passed name and
capable of holding the specified number of investments.

51

Collections

Construction
» Example constructors

Portfolio
Constructor Summary
Portfolio(java.lang.String title, int max)

Construct an empty portfolion having the passed name and
capable of holding the specified number of investments.

* lllustrative usage
Portfolio myPortfolio = new Portfolio(“value”, 10);

52

02/07/2013

26

Collections

Construction
» Example constructors

GlobalCredit
Constructor Summary
GlobalCredit(java.lang.String name)
Constuct a GC processing centre having the name name.

53

Collections

Construction
» Example constructors

GlobalCredit
Constructor Summary
GlobalCredit(java.lang.String name)
Constuct a GC processing centre having the name name.

* lllustrative usage
GlobalCredit myCntr = new GlobalCredit(*1020Credit”);

54

02/07/2013

27

Collections

Adding components

» A collection must provide a method for inserting
components.

+ Often, this method is called “add”.

* When a component is to be added, two conditions for
concern might arise.

1.The collection is full
2.The component already is present

55

Collections

Adding components

* When a component is to be added, two conditions for
concern might arise.

1.The collection is full

» Applies only to static allocation. (By definition,
dynamic allocation structures are never full).

56

02/07/2013

28

Collections

Adding components

* When a component is to be added, two conditions for
concern might arise.

1.The collection is full

» Applies only to static allocation. (By definition,
dynamic allocation structures are never full).

» The add method must signal failure to caller.

 Typically, failure/success signaled by making
add have a boolean return.

57

Collections

Adding components

* When a component is to be added, two conditions for
concern might arise.

2. The component is already present

» Something to be added already was added
previously.

» We distinguish two different contexts.

02/07/2013

29

Collections

Adding components

* When a component is to be added, two conditions for
concern might arise.

2. The component is already present

» Something to be added already was added
previously.

» We distinguish two different contexts.
I. List

ii. Set

Collections

Adding components

* When a component is to be added, two conditions for
concern might arise.
2. The component is already present

» Something to be added already was added
previously.

» We distinguish two different contexts.
I. List contexts allow duplication: The
component is added to the collection;

add method returns void (components
always added).

ii. Set

02/07/2013

30

Collections

Adding components
* When a component is to be added, two conditions for
concern might arise.
2. The component is already present
» Something to be added already was added
previously.
» We distinguish two different contexts.

I. List contexts allow duplication: The
component is added to the collection;
add method returns void (components
always added).

ii. Set contexts do not allow duplication:The
duplicate component is not added to the

collection; add method returns false. o

Collections

Adding components
* Method add return summary:
— Set context (no duplication) + static allocation
- boolean return
— Set context (no duplication) + dynamic allocation
- boolean return
— List contexts (allows duplication) + static allocation
- boolean return
— List contexts (allows duplication) + dynamic
allocation

- void return
62

02/07/2013

31

Collections

Adding components
* Example add methods

Portfolio
Method Summary
boolean add(Investment inv)

Attempt to add the passed investment to this
portfolio.

Collections

Adding components
* Example add methods

Portfolio
Method Summary
boolean add(Investment inv)

Attempt to add the passed investment to this
portfolio.

* Remarks: Class Portfolio
— Has a fixed capacity - static allocation.
— Accepts duplications - list context.

64

02/07/2013

32

Collections

Adding components
* Example add methods

Portfolio
Method Summary
boolean add(Investment inv)

Attempt to add the passed investment to this
portfolio.

* lllustrative usage
Portfolio myPortfolio = new Portfolio(*value”, 10);
Investment i1 =new Investment(new Stock(“TD”),15,24.45);

boolean success = myPortfolio.add(il); 65

Collections

Adding components
* Example add methods

GlobalCredit
Method Summary

boolean add(CreditCard card)
Attempt to add the passed credit card to this GCC.

66

02/07/2013

33

Collections

Adding components
* Example add methods

GlobalCredit
Method Summary

boolean add(CreditCard card)
Attempt to add the passed credit card to this GCC.

* Remarks: Class GlobalCredit
— Has no set capacity = dynamic allocation.
— Does not accept duplicates - set context.

67

Collections

Adding components
* Example add methods

GlobalCredit

Method Summary
boolean add(CreditCard card)
Attempt to add the passed credit card to this GCC.

* lllustrative usage
GlobalCredit myCntr = new GlobalCredit(*1020Credit”);
CreditCard myCard = new CreditCard(1, “Wildes”);

boolean success = myCntr.add(myCard);
68

02/07/2013

34

Collections

Interlude: Sets vs. Lists

» Sets and lists are two fundamental ADTs (Abstract
Data Types) that abstract real world collections of
common interest.

69

Collections

Interlude: Sets vs. Lists

» Sets and lists are two fundamental ADTs (Abstract
Data Types) that abstract real world collections of
common interest.

» Some collections only allow a component to be
represented once.

— The collection of integers [1,10].

— The collection of credit cards by an issuer with
given ID numbers.

— We refer to such collections as sets.

70

02/07/2013

35

Collections

Interlude: Sets vs. Lists

» Sets and lists are two fundamental ADTs (Abstract
Data Types) that abstract real world collections of
common interest.

* Some collections only allow a component to be
represented once.

— The collection of integers [1,10].

— The collection of credit cards by an issuer with
given ID numbers.

— We refer to such collections as sets.

* Some collections allow a component to be
represented more than once.

— The collection of roots of a polynomial.
— The collection of investments in a stock portfolio.
— We refer to such collections as lists. n

Collections

Adding components

» Example: Read several investments from a user and add
them to a portfolio.

02/07/2013

36

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

Create a new portfolio

1. Acquire necessary info: Prompt user and read response.

2. Construct a Portfolio.

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.
output.print(“Enter number of investments: ”);

02/07/2013

37

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

Collections

Adding components

« Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name:);

String name = input.nextLine();

02/07/2013

38

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name: ”);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

Collections

Adding components

» Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name:);

String name = input.nextLine();

Portfolio pf = new Portfolio(hame, num);

loop over number of investments: know num; use for
{ add investment to portfolio

02/07/2013

39

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name: ”);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

loop over number of investments: know num; use for
{ add investment to portfolio

1. acquire necessary info. to create investment: prompt & read

2. construct investment
3. add investment

}

Collections

Adding components

« Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name:);

String name = input.nextLine();

Portfolio pf = new Portfolio(hame, num);

for (inti=0;i<num;i++)

{

80

02/07/2013

40

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name: ”);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

for (inti=0; i< num; i++)

{ output.printin(“"Enter stock symbol, number of shares, price per share”);

output.printin(“press ENTER after each item.”);

81

Collections

Adding components

« Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name: ");

String name = input.nextLine();

Portfolio pf = new Portfolio(hame, num);

for (inti=0;i<num;i++)

{ output.printin(“Enter stock symbol, number of shares, price per share”);
output.printin(“press ENTER after each item.”);
pf.add

82

02/07/2013

41

Collections

Adding components

* Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(“Enter portfolio name: ”);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

for (inti=0; i< num; i++)

{ output.printin(“"Enter stock symbol, number of shares, price per share”);

output.printin(“press ENTER after each item.”);
pf.add
(1
).
}

83

Collections

Adding components

» Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments: ”);

int num = input.nextint();

output.print(*Enter portfolio name:);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

for (inti=0;i<num;i++)

{ output.printin(“Enter stock symbol, number of shares, price per share”);
output.printin(“press ENTER after each item.”);
pf.add
(new Investment(new Stock(input.nextLine()), input.nextint(), input.nextDouble()
);

}

84

02/07/2013

42

Collections

Adding components

» Example: Read several investments from a user and add
them to a portfolio.

output.print(“Enter number of investments:);

int num = input.nextint();

output.print(“Enter portfolio name:);

String name = input.nextLine();

Portfolio pf = new Portfolio(name, num);

for (inti=0;i<num;i++)

{ output.printin(*"Enter stock symbol, number of shares, price per share”);
output.printin(“press ENTER after each item.”);
pf.add
(new Investment(new Stock(input.nextLine()), input.nextint(), input.nextDouble()
);

}

output.printin(“Portfolio” + name + “created.”); 85

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.

86

02/07/2013

43

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.

Create a new processing centre

1. Acquire necessary info: Prompt user and read response.

2. Construct a GlobalCredit.

87

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.

output.print(“Enter name of processing centre: ");

String name = input.nextLine();

88

02/07/2013

44

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.

output.print(“Enter name of processing centre: ”);

String name = input.nextLine();

GlobalCredit gcc = new GlobalCredit(hame);

89

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.

output.print(“Enter name of processing centre: ");

String name = input.nextLine();

GlobalCredit gcc = new GlobalCredit(name);

loop over set of cards: Don’t know cardinality in advance;
but can define sentinel = use while (true) + break
(add card to processing centre

90

02/07/2013

45

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.

output.print(“Enter name of processing centre: ”);

String name = input.nextLine();

GlobalCredit gcc = new GlobalCredit(hame);

loop over set of cards: Don’t know cardinality in advance;
but can define sentinel - use while (true) + break
(add card to processing centre
1. Acquire necessary info. To create card: prompt & read
2. Break if card num == 0, the sentinel
3. Construct card
4. Add card

)

91

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.

output.print(“Enter name of processing centre: ");

String name = input.nextLine();

GlobalCredit gcc = new GlobalCredit(name);

while (true)

{

92

02/07/2013

46

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.
output.print(“Enter name of processing centre: ”);
String name = input.nextLine();
GlobalCredit gcc = new GlobalCredit(hame);
while (true)
{ output.print(“Enter card number (0 to quit): ”);
int num = input.nextint();

93

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.
output.print(“Enter name of processing centre: ");
String name = input.nextLine();
GlobalCredit gcc = new GlobalCredit(name);
while (true)
{ output.print(“Enter card number (0 to quit): ");
int num = input.nextint();
if (num == 0) break; // this is the way out of loop

94

02/07/2013

47

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.
output.print(“Enter name of processing centre: ”);
String name = input.nextLine();
GlobalCredit gcc = new GlobalCredit(hame);
while (true)
{ output.print(“Enter card number (0 to quit): ”);
int num = input.nextint();
if (num == 0) break; // this is the way out of loop
output.print(“Enter name: ”);
String who = input.nextLine();

95

Collections

Adding components

» Example: Read several credit cards from user and add
them to a processing centre.
output.print(“Enter name of processing centre: ”);
String name = input.nextLine();
GlobalCredit gcc = new GlobalCredit(name);
while (true)
{ output.print(“Enter card number (0 to quit): ");
int num = input.nextint();
if (num == 0) break; // this is the way out of loop
output.print(“Enter name: ");
String who = input.nextLine();
gcc.add(new CreditCard(num, who));

96

02/07/2013

48

Collections

Adding components

* Example: Read several credit cards from user and add
them to a processing centre.
output.print(“Enter name of processing centre: ”);
String name = input.nextLine();
GlobalCredit gcc = new GlobalCredit(hame);
while (true)
{ output.print(“Enter card number (0 to quit): ”);
int num = input.nextint();
if (num == 0) break; // this is the way out of loop
output.print(“Enter name: ”);
String who = input.nextLine();
gcc.add(new CreditCard(num, who));
}
output.printin(“Processing centre ” + name + “created.”);
97

Collections

Component access

» A collection must provide a method for accessing its
components.

» For the simplest aggregations and compositions, e.g.,
— Investment
— CreditCard

» The API documented one accessor per component,
with the components distinguished by name, e.g.,

— getStock
— getlssueDate

98

02/07/2013

49

Collections

Component access

» A collection must provide a method for accessing its
components.

» For the simplest aggregations and compositions, e.g.,
— Investment
— CreditCard

» The API documented one accessor per component,
with the components distinguished by name, e.g.,

— getStock
— getlssueDate

* The approach seen so far will not work for collections,
e.g.,

— Portfolio holds numerous un-named investments.
99

Collections

Component access

* We consider component access for collections via
systematic traversal in two ways:

1.Indexed traversal;

2. lterator traversal;

* The API of a collection should document methods for
one or both approaches.

100

02/07/2013

50

Collections

Component access

» We consider component access for collections via
systematic traversal in two ways:

1.Indexed traversal: Think of the components as
numbered, i.e., having a numerical index; to
access, ask for components by index.

2.lterator traversal:

» The API of a collection should document methods for
one or both approaches.

101

Collections

Component access

* We consider component access for collections via
systematic traversal in two ways:

1.Indexed traversal: Think of the components as
numbered, i.e., having a numerical index; to
access, ask for components by index.

2.lterator traversal: The traversal operates at a higher
level of abstraction than index-based. It
automatically guarantees that all elements are
visited without missing one and without repeated
visits to the same element. The client is not
concerned with indexing or ordering of elements

* The API of a collection should document methods folg2
one or both approaches.

02/07/2013

51

Collections

Component access: Indexed traversal
» Think of the components as having a numerical index

 |tis not necessary the ordering of the indices reflect
the order of insertion into the collection.

* What is necessary is that there be a 1 to 1 mapping
between indices and components.

» Remark: Recall our earlier discussion of arrays.

103

Collections

Component access: Indexed traversal
* Two methods are of interest.

104

02/07/2013

52

Collections

Component access: Indexed traversal
» Two methods are of interest.
1. int size()

Returns the number of components in the
collection, with O return indicating empty. For non-
empty collections, the legal range of indices is
[0,size-1].

105

Collections

Component access: Indexed traversal
* Two methods are of interest.
1. int size()

Returns the number of components in the
collection, with O return indicating empty. For non-
empty collections, the legal range of indices is
[0,size-1].

2. type get(int index)
Returns a reference to the component with the
passed index. The return has the type of the
component.

106

02/07/2013

53

02/07/2013

Collections
Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

107

Collections

Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

108

54

Collections

Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();
for (int j=0; j<pf.size(); j++)
{

109

Collections

Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();
for (int j=0; j<pf.size(); j++)
{ output.print(pf.get(j).getStock().getSymbol() +"\t");

110

02/07/2013

55

Collections

Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

for (int j=0; j<pf.size(); j++)

{ output.print(pf.get(j).getStock().getSymbol() +"\t");
output.print(pf.get(j).getQty() + “\t");

111

Collections

Component access: Indexed traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

for (int j=0; j<pf.size(); j++)

{ output.print(pf.get(j).getStock().getSymbol() +"\t");
output.print(pf.get(j).getQty() + “\t");
output.printin(pf.get(j).getBookValue());

112

02/07/2013

56

Collections

Component access: Iterator-based traversal
* An enhanced for loop is employed.
* Let E be the type of element e that are components of
a collection bag
for (E e : bag)
{
/I visit element e
}

* Remark: The colon, :, in the syntax can be read as “in”.

Collections

Component access: Iterator-based traversal
» An enhanced for loop is employed.
* Let E be the type of element e that are components of
a collection bag
for (E e : bag)
{
/I visit element e
}
 Remark: The colon, :, in the syntax can be read as “in”.
» This type of traversal is simple, but inflexible: You must
traverse; you can’t ask about a particular element.
» Totellif a class supports iterator-based traversal,

consult the APl and see if it implements the Iterable

interface. 14

02/07/2013

57

Collections
Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

115

Collections

Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

116

02/07/2013

58

Collections

Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();
for (Investment inv : pf)

{

117

Collections

Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();
for (Investment inv : pf)
{ output.print(inv.getStock().getSymbol() +"\t");

118

02/07/2013

59

Collections

Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

for (Investment inv : pf)

{ output.print(inv.getStock().getSymbol() +"\t");
output.print(inv.getQty() + “\t");

119

Collections

Component access: Iterator-based traversal

» Example usage: Iterate over the components of a
Portfolio and report on contents.

Portfolio pf = Portfolio.getRandom();

for (Investment inv : pf)

{ output.print(inv.getStock().getSymbol() +"\t");
output.print(inv.getQty() + “\t");
output.printin(inv.getBookValue());

120

02/07/2013

60

Collections

Component search
e Search is concerned with determining whether or not a
given collection contains a specific, given component.
» Examples
— Does a Portfolio contain a Stock with a given
symbol?
— Does a GlobalCredit contain a CreditCard with a
given num?

Collections

Component search
» Search is concerned with determining whether or not a
given collection contains a specific, given component.
* Examples
— Does a Portfolio contain a Stock with a given
symbol?
— Does a GlobalCredit contain a CreditCard with a
given num?
* There are two possible outcomes of a search.
1.Success: The desired component is found and is
returned as a reference.

2.Failure: The desired component is not found, null
may be returned.

02/07/2013

61

Collections

Component search

e Search is concerned with determining whether or not a
given collection contains a specific, given component.

» Examples
— Does a Portfolio contain a Stock with a given
symbol?
— Does a GlobalCredit contain a CreditCard with a
given num?
* There are two possible outcomes of a search.

1.Success: The desired component is found and is
returned as a reference.
2.Failure: The desired component is not found, null
may be returned.
* Remark: There may be more than one component in a
collection that satisfies the search conditions. 123

Collections

Component search

* We can implement search by leveraging either of the
access methods that we have found for collections
(indexed or iterator).

124

02/07/2013

62

Collections

Component search

* We can implement search by leveraging either of the
access methods that we have found for collections
(indexed or iterator).

— Set up a loop that visits every component of the
collection.

125

Collections

Component search

* We can implement search by leveraging either of the
access methods that we have found for collections
(indexed or iterator).

— Set up a loop that visits every component of the
collection.

— For each component, check to see if it satisfies the
search condition.

126

02/07/2013

63

Collections

Component search

* We can implement search by leveraging either of the
access methods that we have found for collections
(indexed or iterator).

— Set up a loop that visits every component of the
collection.

— For each component, check to see if it satisfies the
search condition.

— If so, then exit the loop and return the component.

127

Collections

Component search

* We can implement search by leveraging either of the
access methods that we have found for collections
(indexed or iterator).

— Set up a loop that visits every component of the
collection.

— For each component, check to see if it satisfies the
search condition.

— If so, then exit the loop and return the component.

— If the end of the collection is encountered, then exit
the loop and return null.

128

02/07/2013

64

Collections

Component search
* Example (partial) implementation

129

Collections

Component search
* Example (partial) implementation
/[assume inv a valid investment and pf a valid portfolio

130

02/07/2013

65

Collections

Component search

» Example (partial) implementation

/l assume inv a valid investment and pf a valid portfolio
boolean found = false;

131

Collections

Component search

* Example (partial) implementation

/[assume inv a valid investment and pf a valid portfolio
boolean found = false;

for (int j=0; j<pf.size(); j++)

{

132

02/07/2013

66

Collections

Component search

» Example (partial) implementation

/l assume inv a valid investment and pf a valid portfolio
boolean found = false;

for (int j=0; j<pf.size(); j++)

{ Investment current = pf.get());

133

Collections

Component search

* Example (partial) implementation

/[assume inv a valid investment and pf a valid portfolio
boolean found = false;

for (int j=0; j<pf.size(); j++)

{ Investment current = pf.get(j);
if (current.equals(inv))
found = true;
}

134

02/07/2013

67

02/07/2013

Outline

* Algorithm complexity

135

Algorithm complexity

Analysis of algorithms

* In general, execution time increases with the size of
input.

» For example, searching for an item in a collection
takes longer as the size of the collection increases.

136

68

Algorithm complexity

Analysis of algorithms

* In general, execution time increases with the size of
input.

* For example, searching for an item in a collection
takes longer as the size of the collection increases.

» To formalize
— Let n be the size of the input (e.g., collection size).

— Let T(n) represent the running time of an
algorithm as a function of input size, n.

137

Algorithm complexity

Example
* How long will it take our simple search algorithm to
execute?

/[l assume inv a valid investment and pf a valid portfolio
boolean found = false;
for (int j=0; j<pf.size(); j++)

{ Investment current = pf.get(j);
if (current.equals(inv))
found = true;
}

138

02/07/2013

69

Algorithm complexity

Example
» How long will it take our simple search algorithm to
execute?

The time to execute each
statement is constant.

/l assume inv a valid investment and pf/a val
boolean found = false;
for (int j=0; j<pf.size(); j++)

portfolio

{ Investment current = pf.get());
if (current.equals(inv))
found = true;
}
139
Algorithm complexity
Example
* How long will it take our simple search algorithm to
execute?

The loop executes The time to execute each
pf.size() times. statement is constant.

/[assume inv a valid investment and pf/a valid portfolio

boolean found = false;

for (int j=0; j<pf.size(); j++)

{ Investment current = pf.get(j);
if (current.equals(inv))

found = true;

140

02/07/2013

70

Algorithm complexity

Example

* Overall, we have shown
that run time, T(n),
essentially depends
directly on n = pf.size().

 In particular, the running
time of our search

algorithm depends
linearly on the size of

input N.

Running Time

Size of Input

141

Algorithm complexity

Alternatively

» Other algorithms might
execute at a rate that
grows more rapidly than
linearly with size of input.

e Such an algorithm is
superlinear in complexity.

* In general, linear is
preferred over
superlinear.

Running Time

Size of Input

142

02/07/2013

71

Algorithm complexity

Alternatively

* Yet other algorithms
might have execution
rates that grow slower
than linearly with size of
input.

* Such an algorithm is
sublinear in complexity.

* In general, sublinear is
preferable over linear.

Running Time

Size of Input

143

Algorithm complexity

Back to our search algorithm
* Overall, we have shown that
T(n) essentially depends

directly on n.

* In particular, the running
time of our search algorithm
depends linearly on the size

of input n.
« We write T(n) is O(n).
« We say T(n) is Big-Oh n.

Running Time

r

Size of Input

144

02/07/2013

72

Algorithm complexity

Big-Oh
« Informally, f(n) is O(g(n)) if
f(n) is some constant times

g(n).

145

Algorithm complexity
Big-Oh
« Informally, f(n) is O(g(n)) if
f(n) is some constant times
g(n).
 Formally, f(n) is O(g(n)) iff
there exist positive
constants C and K such that
f(nN)<C-g(n)
forall n> K.

146

02/07/2013

73

Algorithm complexity

Big-Oh

« Informally, f(n) is O(g(n)) if
f(n) is some constant times
g(n).

+ Formally, f(n) is O(g(n)) iff
there exist positive
constants C and K such that

f(n)<C-g(n)
forall n > K.

» Big-Oh gives us an estimate
of how fast running time
grows as n grows and is
thus a useful and standard
characterization of algorithm
efficiency. 147

Algorithm complexity

Exhaustive search

» The search algorithm we have considered is called
exhaustive search.

* We consider each component of the collection, start to
finish, until one matches the target or we reach the
end.

148

02/07/2013

74

Algorithm complexity

Exhaustive search

» The search algorithm we have considered is called
exhaustive search.

* We consider each component of the collection, start to
finish, until one matches the target or we reach the
end.

* We say that such a search algorithm is linear in the
number of components in the collection.

— For a collection of N components, we must
consider N items in the worst case.

Algorithm complexity

Exhaustive search

» The search algorithm we have considered is called
exhaustive search.

* We consider each component of the collection, start to
finish, until one matches the target or we reach the
end.

* We say that such a search algorithm is linear in the
number of components in the collection.

— For a collection of N components, we must
consider N items in the worst case.

* Interestingly, better (sublinear) search algorithms are
available, although they rely on some structuring of
the collection.

— You will hear more about such improvements as
your computer science education advances. 150

02/07/2013

75

Outline

* Further example usage

151

Further example usage

Using Investment

152

02/07/2013

76

Further example usage

Using Investment

/l assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{

153

Further example usage

Using Investment

/ assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)
{ Stock stkl = new Stock(“TD");

154

02/07/2013

77

Further example usage

Using Investment
/l assume the usual
import type.lib.*;
public class InvestmentTest
{ public static void main(String[] args)
{ Stock stk1 = new Stock(*TD");
output.printin(“stk1=" + stk1l.toString()); / TD...

155

Further example usage

Using Investment

/ assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stkl = new Stock(“TD");

output.printin(“stk1="“ + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1l.getPrice());

156

02/07/2013

78

Further example usage

Using Investment

/l assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stk1 = new Stock(*TD");

output.printin(“stk1=" + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1.getPrice());
output.printin(*invl=" +inv1.toString()); / TD inv...

157

Further example usage

Using Investment

/ assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stkl = new Stock(“TD");

output.printin(“stk1="“ + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1l.getPrice());
output.printin(*invl="* +inv1.toString()); / TD inv...
output.printin(“invl.getQty()=“ + inv1l.getQty()); // 100

158

02/07/2013

79

Further example usage

Using Investment

/I assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stk1 = new Stock(*TD");

output.printin(“stk1=" + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1.getPrice());
output.printin(*invl=" +inv1.toString()); / TD inv...
output.printin(“invl.getQty()=" +invl.getQty()); // 100
output.printin(“invl.getBookValue()=" +invl.getBookValue()); // TD$

159

Further example usage

Using Investment

/ assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stkl = new Stock(“TD");

output.printin(“stk1="“ + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1l.getPrice());
output.printin(*invl="* +inv1.toString()); / TD inv...
output.printin(“invl.getQty()=“ + inv1l.getQty()); // 100
output.printin(“*invl.getBookValue()="* + invl.getBookValue()); // TD$

output.printin(“invl.getStock().toString()=" +
invl.getStock().toString()); // TD...

160

02/07/2013

80

Further example usage

Using Investment

/I assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stk1 = new Stock(*TD");
output.printin(“stk1=" + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1.getPrice());
output.printin(*invl=" +inv1.toString()); / TD inv...
output.printin(“invl.getQty()=" +invl.getQty()); // 100
output.printin(“invl.getBookValue()=" +invl.getBookValue()); // TD$

output.printin(*invl.getStock().toString()=" +
invl.getStock().toString()); // TD...

output.printin(“invl.getStock().getSymbol()="* +
invl.getStock().getSymbol()); // TD

161

Further example usage

Using Investment

/ assume the usual

import type.lib.*;

public class InvestmentTest

{ public static void main(String[] args)

{ Stock stkl = new Stock(“TD");

output.printin(“stk1="“ + stk1l.toString()); / TD...
Investment invl = new Investment(stk1,100,stk1l.getPrice());
output.printin(*invl="* +inv1.toString()); / TD inv...
output.printin(“invl.getQty()=“ + inv1l.getQty()); // 100
output.printin(“*invl.getBookValue()="* + invl.getBookValue()); // TD$

output.printin(“invl.getStock().toString()=" +
invl.getStock().toString()); // TD...

output.printin(*invl.getStock().getSymbol()=" +
invl.getStock().getSymbol()); / TD

/I continued on next slide
162

02/07/2013

81

Further example usage

Using Investment
/I continued from previous slide

163

Further example usage

Using Investment
/I continued from previous slide
Stock stk2 = new Stock(*BMQO”);
output.printin(“stk2=" + stk2.toString()); // BMO...

164

02/07/2013

82

Further example usage

Using Investment
/I continued from previous slide
Stock stk2 = new Stock(*BMQ");
output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(“inv2=" +inv2.toString()); // BMO inv...

165

Further example usage

Using Investment
/I continued from previous slide
Stock stk2 = new Stock(*BMQO”);
output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(*inv2=" + inv2.toString()); // BMO inv...
output.printin(*invl.equals(inv2)=" +invl.equals(inv2)); // false

166

02/07/2013

83

Further example usage

Using Investment
/I continued from previous slide
Stock stk2 = new Stock(*BMQ");
output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(“inv2=" +inv2.toString()); // BMO inv...

output.printin(*invl.equals(inv2)=* + invl.equals(inv2)); // false
Stock stk3 =invl.getStock();

output.printin(“stk3=" + stk3.toString()); // TD...

167

Further example usage

Using Investment

/I continued from previous slide

Stock stk2 = new Stock(*BMQO”);

output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(*inv2=" + inv2.toString()); // BMO inv...
output.printin(*invl.equals(inv2)=" +invl.equals(inv2)); // false
Stock stk3 =invl.getStock();

output.printin(“stk3=" + stk3.toString()); // TD...
stk3.setSymbol(“ RY");

output.printin(“reset stk3's symbol to RY");
output.printin(“stk3=" + stk3.toString()); // RY...

168

02/07/2013

84

Further example usage

Using Investment

/I continued from previous slide

Stock stk2 = new Stock(*BMQ”);

output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(“*inv2=" +inv2.toString()); // BMO inv...
output.printin(*invl.equals(inv2)="* +invl.equals(inv2)); // false
Stock stk3 =invl.getStock();

output.printin(“stk3=" + stk3.toString()); // TD...
stk3.setSymbol(“RY");

output.printin(“reset stk3’'s symbol to RY");
output.printin(*“stk3=" + stk3.toString()); // RY...
output.printin(“invl.getStock()=" + invl.getStock().toString())

169

Further example usage

Using Investment

/I continued from previous slide

Stock stk2 = new Stock(*BMQ”);

output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(*inv2=" +inv2.toString()); // BMO inv...
output.printin(*invl.equals(inv2)=" +invl.equals(inv2)); // false
Stock stk3 =invl.getStock();

output.printin(“stk3=" + stk3.toString()); // TD...
stk3.setSymbol(“RY");

output.printin(“reset stk3's symbol to RY");
output.printin(“stk3=" + stk3.toString()); // RY...

output.printin(*invl.getStock()=" + invl.getStock().toString());//RY...

170

02/07/2013

85

Further example usage

Using Investment

/I continued from previous slide

Stock stk2 = new Stock(*BMQ”);

output.printin(“stk2=" + stk2.toString()); // BMO...
Investment inv2 = new Investment(stk2,100,stk2.getPrice());
output.printin(“*inv2=" +inv2.toString()); // BMO inv...
output.printin(*invl.equals(inv2)="* +invl.equals(inv2)); // false
Stock stk3 = inv1.getStock();

output.printin(“stk3=" + stk3.toString()); // TD...
stk3.setSymbol(“RY");

output.printin(“reset stk3’'s symbol to RY");
output.printin(*“stk3=" + stk3.toString()); // RY...

output.printin(“invl.getStock()=" + invl.getStock().toString());//RY...

/Il continued on next slide
171

Further example usage

Using Investment
/I continued from previous slide

172

02/07/2013

86

Further example usage

Using Investment
/I continued from previous slide
stk2.setSymbol(“RY");
output.printin(“reset stk2’'s symbol to RY");
output.printin(“stk2=" + stk2.toString()); // RY...

173

Further example usage

Using Investment
/I continued from previous slide
stk2.setSymbol(“RY");
output.printin(“reset stk2’s symbol to RY");
output.printin(“stk2=" + stk2.toString()); // RY...
output.printin(*inv2.getStock()=" + inv2.getStock().toString());

174

02/07/2013

87

Further example usage

Using Investment
/I continued from previous slide
stk2.setSymbol(“RY");
output.printin(“reset stk2’'s symbol to RY");
output.printin(“stk2=" + stk2.toString()); // RY...

output.printin(“inv2.getStock()=" + inv2.getStock().toString()); //RY ...

175

Further example usage

Using Investment
/I continued from previous slide
stk2.setSymbol(“RY");
output.printin(“reset stk2’s symbol to RY");
output.printin(“stk2=" + stk2.toString()); // RY...

output.printin(*inv2.getStock()=" + inv2.getStock().toString()); //RY...

output.printin(*invl.equals(inv2)=" +invl.equals(inv2)); // false

176

02/07/2013

88

Further example usage

Using Investment: Lessons learned
* We have seen that the Investment constructor uses the

Stock object passed as a component of the Investment.

* We also have seen that the getStock accessor method
returns a reference to this component.

» This allows the user to change the state of the
Investment object, sometimes with strange results.

* Investment could protect against such changes by

— Setting its component to a copy of the passed Stock
object in the constructor

— Returning a copy of its component in getStock

177

Further example usage

Using Investment: Lessons learned
* In general, to ensure that users cannot change

components of an object without the object’'s methods,...

» ...one must make a deep copy of the components
passed to/from the object.

» A deep copy is a copy where the subcomponents and
subsubcomponents also are copied.

178

02/07/2013

89

Further example usage

Iterating through a Portfolio

/I assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{

179

Further example usage

Iterating through a Portfolio
/l assume the usual template stuff
import type.lib.*;
public class PortfolioTest
{ public static void main(String[] args)
{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: O

180

02/07/2013

90

Further example usage

Iterating through a Portfolio

/l assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: O
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

181

Further example usage

Iterating through a Portfolio

/l assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: O
Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));

182

02/07/2013

91

Further example usage

Iterating through a Portfolio

/l assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: O
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stkl = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stkl = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

183

Further example usage

Iterating through a Portfolio

/l assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: O
Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stk1l = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(ptfl.toString()); // My e.qg. Portfolio: 3

184

02/07/2013

92

Further example usage

Iterating through a Portfolio

/I assume the usual template stuff
import type.lib.*;

public class PortfolioTest

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
output.printin(ptfl.toString()); // My e.g. Portfolio: 0
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stkl = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(ptfl.toString()); // My e.g. Portfolio: 3

/I continued on next slide

185

Further example usage

Iterating through a Portfolio
/I continued from previous slide

13

186

02/07/2013

93

Further example usage

Iterating through a Portfolio
/I continued from previous slide
output.printin(“Traverse over investments using indexing”);

187

1}

Further example usage

Iterating through a Portfolio
/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{

}

188

13

02/07/2013

94

Further example usage

Iterating through a Portfolio

1}

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printin(inv);

}

189

Further example usage

Iterating through a Portfolio

13

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printlin(inv);
}

output.printin(“Traverse over investments using iterator.”);

190

02/07/2013

95

Further example usage

Iterating through a Portfolio

1}

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printin(inv);
}
output.printin(“Traverse over investments using iterator.”);
for (Investment inv : ptfl)

191

Further example usage

Iterating through a Portfolio

13

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printlin(inv);
}
output.printin(“Traverse over investments using iterator.”);
for (Investment inv : ptfl)
output.printlin(inv);

192

02/07/2013

96

Further example usage

Iterating through a Portfolio

1}

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printin(inv);
}
output.printin(“Traverse over investments using iterator.”);
for (Investment inv : ptfl)
output.printin(inv);
stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,150,stk1.getPrice()));

193

Further example usage

Iterating through a Portfolio

13

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());
output.printlin(inv);
}
output.printin(“Traverse over investments using iterator.”);
for (Investment inv : ptfl)
output.printin(inv);
stkl = new Stock(“TD");
ptfl.add(new Investment(stk1,150,stk1.getPrice()));
output.printin(“Traverse again over investments using iterator.);

194

02/07/2013

97

Further example usage

Iterating through a Portfolio

1}

/I continued from previous slide
output.printin(“Traverse over investments using indexing”);
int ptflcnt = ptfl.size();
for (int j=0; j<ptflcnt; j++)
{ Investment inv = ptfl.get());

output.printin(inv);
}
output.printin(“Traverse over investments using iterator.”);
for (Investment inv : ptfl)

output.printin(inv);
stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,150,stk1.getPrice()));
output.printin(“Traverse again over investments using iterator.”);
for (Investment inv : ptfl)

output.printin(inv); 195

Further example usage

Iterating through a Portfolio: Test
% java PortfolioTest

196

02/07/2013

98

Further example usage

Iterating through a Portfolio: Test

% java PortfolioTest

My e.g. Portfolio: 0

My e.g. Portfolio: 3

Traverse over investments using indexing

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse over investments using iterator

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse again over investments using iterator
TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=39.03

RY Royal Bank of Canada QTY=100 BV=59.99
TD Toronto-Dominion Bank QTY=150 BV=81.32
%

197

Further example usage

Iterating through a Portfolio: Test

% java PortfolioTest

My e.g. Portfolio: 0

My e.g. Portfolio: 3

Traverse over investments using indexing

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse over investments using iterator

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse again over investments using iterator
TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=39.03

RY Royal Bank of Canada QTY=100 BV=59.99
TD Toronto-Dominion Bank QTY=150 BV=81.32
%

198

02/07/2013

99

Further example usage

Iterating through a Portfolio: Test

% java PortfolioTest

My e.g. Portfolio: 0

My e.g. Portfolio: 3

Traverse over investments using indexing

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse over investments using iterator

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse again over investments using iterator
TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=39.03

RY Royal Bank of Canada QTY=100 BV=59.99
TD Toronto-Dominion Bank QTY=150 BV=81.32
%

199

Further example usage

Iterating through a Portfolio: Test

% java PortfolioTest

My e.g. Portfolio: 0

My e.g. Portfolio: 3

Traverse over investments using indexing

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse over investments using iterator

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse again over investments using iterator
TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=39.03

RY Royal Bank of Canada QTY=100 BV=59.99
TD Toronto-Dominion Bank QTY=150 BV=81.32
%

200

02/07/2013

100

Further example usage

Iterating through a Portfolio: Test

% java PortfolioTest

My e.g. Portfolio: 0

My e.g. Portfolio: 3

Traverse over investments using indexing

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse over investments using iterator

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
Traverse again over investments using iterator
TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=39.03

RY Royal Bank of Canada QTY=100 BV=59.99
TD Toronto-Dominion Bank QTY=150 BV=81.32
%

201

Further example usage

A Portfolio can be modified in strange ways
/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{

202

02/07/2013

101

Further example usage

A Portfolio can be modified in strange ways
/I assume the usual
import type.lib.*;
public class PortfolioTest2
{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

203

Further example usage

A Portfolio can be modified in strange ways

/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

204

02/07/2013

102

Further example usage

A Portfolio can be modified in strange ways

/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));

205

Further example usage

A Portfolio can be modified in strange ways

/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stk1l = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

206

02/07/2013

103

Further example usage

A Portfolio can be modified in strange ways

/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stkl = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(ptfl.toString()); // My e.g. Portfolio: 3

207

Further example usage

A Portfolio can be modified in strange ways

/I assume the usual

import type.lib.*;

public class PortfolioTest2

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stk1l = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(ptfl.toString()); // My e.g. Portfolio: 3
/I continued on next slide

208

02/07/2013

104

Further example usage

A Portfolio can be modified in strange ways
/I continued from previous slide

209

Further example usage

A Portfolio can be modified in strange ways
/I continued from previous slide
for (Investment inv : ptfl)
output.printin(inv);
output.printin();

210

02/07/2013

105

Further example usage

A Portfolio can be modified in strange ways
/I continued from previous slide
for (Investment inv : ptfl)
output.printin(inv);
output.printin();
Investment invl = ptfl.get(0);

211

Further example usage

A Portfolio can be modified in strange ways
/I continued from previous slide
for (Investment inv : ptfl)
output.printin(inv);
output.printin();
Investment inv1 = ptfl.get(0);
stkl = invl.getStock();
stk1l.setSymbol(“RY”);
output.printin(“Changed first investment to RY");

212

02/07/2013

106

Further example usage

A Portfolio can be modified in strange ways

/I continued from previous slide
for (Investment inv : ptfl)

output.printin(inv);
output.printin();
Investment invl = ptfl.get(0);
stkl = invl.getStock();
stkl.setSymbol(“RY");
output.printin(“Changed first investment to RY");
output.printin(ptfl.toString());
for (Investment inv : ptfl)

output.printin(inv);

213

Further example usage

A Portfolio can be modified in strange ways: Test
% java PortfolioTest2

214

02/07/2013

107

Further example usage

A Portfolio can be modified in strange ways: Test
% java PortfolioTest2

My e.g. Portfolio: 3

TD Toronto-Dominion Bank QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99

Changed first investment to RY

My e.g. Portfolio: 3

RY Royal Bank of Canada QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
%

215

Further example usage

A Portfolio can be modified in strange ways: Test
% java PortfolioTest2

My e.g. Portfolio: 3

TD Toronto-Dominion Bank QTY=100 BVv=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99

Changed first investment to RY

My e.g. Portfolio: 3

RY Royal Bank of Canada QTY=100 BV=81.32
BMO Bank of Montreal QTY=50 BV=60.15

RY Royal Bank of Canada QTY=100 BV=59.99
%

Remark

* Not only was the app able to change a Stock in an Investment,...

e ...butit was able to leave behind an inconsistency between the

Stock and the BV of the Investment.

02/07/2013

108

Further example usage

Making a deep copy of a Portfolio
/I assume the usual
import type.lib.*;
public class PortfolioDeepCopy
{ public static void main(String[] args)

{

217

Further example usage

Making a deep copy of a Portfolio
/I assume the usual
import type.lib.*;
public class PortfolioDeepCopy
{ public static void main(String[] args)
{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

218

02/07/2013

109

Further example usage

Making a deep copy of a Portfolio
/I assume the usual
import type.lib.*;
public class PortfolioDeepCopy
{ public static void main(String[] args)
{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

219

Further example usage

Making a deep copy of a Portfolio

/I assume the usual

import type.lib.*;

public class PortfolioDeepCopy

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);

Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));

220

02/07/2013

110

Further example usage

Making a deep copy of a Portfolio

/I assume the usual

import type.lib.*;

public class PortfolioDeepCopy

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stkl = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));

221

Further example usage

Making a deep copy of a Portfolio

/I assume the usual

import type.lib.*;

public class PortfolioDeepCopy

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stk1l = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(\nPortfolio ptfl is:");
output.printin(ptfl.toString());

222

02/07/2013

111

Further example usage

Making a deep copy of a Portfolio

/I assume the usual

import type.lib.*;

public class PortfolioDeepCopy

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1l = new Stock(“TD");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO");
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stkl = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(*\nPortfolio ptfl is:”);
output.printin(ptfl1.toString());
for (Investment inv : ptfl)

output.printin(inv);

223

Further example usage

Making a deep copy of a Portfolio

/I assume the usual

import type.lib.*;

public class PortfolioDeepCopy

{ public static void main(String[] args)

{ Portfolio ptf1 = new Portfolio(“My e.g. Portfolio”, 10);
Stock stk1 = new Stock(“TD”);
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
stk1l = new Stock(“BMO”);
ptfl.add(new Investment(stk1,50,stk1.getPrice()));
stk1l = new Stock(“RY");
ptfl.add(new Investment(stk1,100,stk1.getPrice()));
output.printin(\nPortfolio ptfl is:");
output.printin(ptfl.toString());
for (Investment inv : ptfl)
output.printin(inv);

/I continued on next slide

224

02/07/2013

112

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/[l make deep copy

02/07/2013

113

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I make deep copy
Portfolio ptflc = new Portfolio(“My e.g. Portfolio”, 10);

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/[l make deep copy
Portfolio ptflc = new Portfolio(“My e.g. Portfolio”, 10);
for (Investment inv : ptfl)

{

02/07/2013

114

02/07/2013

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I make deep copy
Portfolio ptfic = new Portfolio(“My e.g. Portfolio”, 10);
for (Investment inv : ptfl)
{ Stock stkc = new Stock(inv.getStock().getSymbol());

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/[l make deep copy
Portfolio ptflc = new Portfolio(“My e.g. Portfolio”, 10);
for (Investment inv : ptfl)
{ Stock stkc = new Stock(inv.getStock().getSymbol());

Investment invc = new Investment(stkc, inv.getQty(),
inv.getBookValue());

115

02/07/2013

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I make deep copy
Portfolio ptfic = new Portfolio(“My e.g. Portfolio”, 10);
for (Investment inv : ptfl)
{ Stock stkc = new Stock(inv.getStock().getSymbol());

Investment invc = new Investment(stkc, inv.getQty(),
inv.getBookValue());

ptflc.add(invc);
}

Further example usage

Making a deep copy of a Portfolio

/I continued from previous slide

/[l make deep copy

Portfolio ptflc = new Portfolio(“My e.g. Portfolio”, 10);

for (Investment inv : ptfl)

{ Stock stkc = new Stock(inv.getStock().getSymbol());
Investment invc = new Investment(stkc, inv.getQty(),

inv.getBookValue());

ptflc.add(invc);

}

output.printin(*\nMade deep copy ptflc of ptfl:”);

ooutput.printin(ptflc.toString());

for (Investment inv : ptflc)
output.printin(inv);

116

02/07/2013

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I make deep copy
Portfolio ptfic = new Portfolio(“My e.g. Portfolio”, 10);
for (Investment inv : ptfl)
{ Stock stkc = new Stock(inv.getStock().getSymbol());

Investment invc = new Investment(stkc, inv.getQty(),
inv.getBookValue());

ptflc.add(invc);
}
output.printin(\nMade deep copy ptflc of ptfl:”);
ooutput.printin(ptflc.toString());
for (Investment inv : ptflc)
output.printin(inv);
/I continued on next slide 233

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide

} 234

117

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I Change first investment in ptfl to RY

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I Change first investment in ptfl to RY
Investment invl = ptfl.get(0);

02/07/2013

118

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I Change first investment in ptfl to RY
Investment invl = ptfl.get(0);
stkl = inv1.getStock();

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I Change first investment in ptfl to RY
Investment invl = ptfl.get(0);
stkl = invl.getStock();
stk1l.setSymbol(“RY”);

02/07/2013

119

02/07/2013

Further example usage

Making a deep copy of a Portfolio
/I continued from previous slide
/I Change first investment in ptfl to RY
Investment invl = ptfl.get(0);
stkl = inv1.getStock();
stkl.setSymbol(“RY");
output.printin(\nChanged first investment in ptfl to RY");
output.printin(“\nptf1 is now:");
output.printin(ptf1.toString());
for (Investment inv : ptfl)

output.printin(inv);

Further example usage

Making a deep copy of a Portfolio

/I continued from previous slide

/I Change first investment in ptfl to RY

Investment invl = ptfl.get(0);

stkl = invl.getStock();

stk1l.setSymbol(“RY”);

output.printin(\nChanged first investment in ptfl to RY");

output.printin(\nptf1 is now:”);

output.printin(ptfl.toString());

for (Investment inv : ptfl)
output.printin(inv);

output.printin(\nptflc is now:");

output.printin(ptflc.toString());

for (Investment inv : ptflc)
output.printin(inv);

} 240

120

Further example usage

Making a deep copy of a Portfolio: Test
% java PortfolioDeepCopy

241

Further example usage

Making a deep copy of a Portfolio: Test

% java PortfolioDeepCopy

e Try this out for yourself.

¢ Make sure you understand the results...
¢ ...and the computations that led to them.

242

02/07/2013

121

02/07/2013

Outline

» Appendix: Java class Vector o3

Java class Vector

Recall arrays

* In retrospect, we recognize that the array provides us
with a way to hold collections.

— Indeed, arrays provide a generic collection
mechanism in that we can specify the type held.

244

122

Java class Vector

Recall arrays

* In retrospect, we recognize that the array provides us
with a way to hold collections.

— Indeed, arrays provide a generic collection
mechanism in that we can specify the type held.

» Further, we recall that once an array has been
constructed in Java (necessarily with a specific
length), its length stays fixed from then on.

— Apparently, arrays (in Java) provide an example of
static allocation (once they have been created).

245

Java class Vector

Recall arrays

* In retrospect, we recognize that the array provides us
with a way to hold collections.

— Indeed, arrays provide a generic collection
mechanism in that we can specify the type held.

» Further, we recall that once an array has been
constructed in Java (necessarily with a specific
length), its length stays fixed from then on.

— Apparently, arrays (in Java) provide an example of
static allocation (once they have been created).
 If you want something akin to an array that can be
resized after creation, then Java provides the Vector
class.
246

02/07/2013

123

Vectors

Basics

» A Vector is a container for objects that grows
automatically.

— Here we see another Java provided approach to
dealing with collections.

— In this case, we encounter dynamic allocation (as
opposed to the static allocation of arrays).

247

Vectors

Basics

* A Vector is a container for objects that grows
automatically.

— Here we see another Java provided approach to
dealing with collections.

— In this case, we encounter dynamic allocation (as
opposed to the static allocation of arrays).

* The Vector class is in java.util., hence we must
explicitly import it into out programs
import java.util.Vector;

248

02/07/2013

124

Vectors

Basics

» A Vector is a container for objects that grows
automatically.

— Here we see another Java provided approach to
dealing with collections.

— In this case, we encounter dynamic allocation (as
opposed to the static allocation of arrays).

* The Vector class is in java.util., hence we must
explicitly import it into out programs
import java.util.Vector;

* We declare and construct an instance of a Vector
object in the following fashion

Vector studNames = new Vector();
249

Vectors

Basics
* Given declaration and construction
Vector studNames = new Vector();

» Subsequently we can insert elements with the add
method.

while (true)
{ output.print(“Enter a student name (return to end): “);
String s = input.nextLine();
if (s.equals(*”))
break;
else
studNames.add(s); // adds to end of the vector

250

02/07/2013

125

02/07/2013

Vectors

Basics

* We can set the value at an arbitrary position in a vector via
the set method.

studNames.set(1, “Steve”); // position 1 now has Steve

AV}

251

Vectors

Basics

* We can set (i.e., replace) the value at an arbitrary position
in a vector via the set method.

studNames.set(1, “Steve”); // position 1 now has Steve

« We also can insert an object in the middle of a vector,
while moving all the other elements down by one position.

studNames.add(1, “Eshrat”); // position 1 has Eshrat;
/ whatever was at 1 now at 2

252

126

Vectors

Basics

* We can set (i.e., replace) the value at an arbitrary position
in a vector via the set method.

studNames.set(1, “Steve”); // position 1 now has Steve

* We also can insert an object in the middle of a vector,
while moving all the other elements down by one position.

studNames.add(1, “Eshrat”); // position 1 has Eshrat;
I/l whatever was at 1 now at 2

+ We can access the number of elements in a vector with
the size method.

int n = studNames.size();

253

Vectors

Basics
« Getting data back out of a Vector is a bit more involved.
e A Vector can hold objects of any type.

* Indeed, when an object is inserted into a Vector, its
reference is automatically converted to that of type
Object, the Java abstraction of all other objects.

254

02/07/2013

127

Vectors

Basics

Getting data back out of a Vector is a bit more involved.
A Vector can hold objects of any type.

Indeed, when an object is inserted into a Vector, its
reference is automatically converted to that of type
Object, the Java abstraction of all other objects.

When reading an object back out, we use the get
method; typically we cast to the object’s original type

for (int j=0; j<studNames.size(); j++)
{ String s = (String) studNames.get());

}...

255

Vectors

Basics

Getting data back out of a Vector is a bit more involved.
A Vector can hold objects of any type.

Indeed, when an object is inserted into a Vector, its
reference is automatically converted to that of type
Object, the Java abstraction of all other objects.

When reading an object back out, we use the get
method; typically we cast to the object’s original type

for (int j=0; j<studNames.size(); j++)
{ String s = (String) studNames.get(j);

}

Remember: If in doubt about what you are about to cast,
then use instanceof.
256

02/07/2013

128

Vectors

Storing primitive types in a Vector
* We can store an object of any class in a Vector.

* In contrast, primitive types (integers, floating-point
numbers, truth values) cannot be stored in a Vector
directly as they are not objects.

257

Vectors

Storing primitive types in a Vector

* We can store an object of any class in a Vector.

* In contrast, primitive types (integers, floating-point
numbers, truth values) cannot be stored in a Vector
directly as they are not objects.

» We resort to the notion of wrapper classes.

— The classes Integer, Double, Boolean, etc. can be
used to wrap numbers and truth values inside
appropriate classes.

* Let's see how this is done...

258

02/07/2013

129

Vectors

Storing primitive types in a Vector

» Example: Getting a floating point number into a Vector
Double aMark = new Double(75.57);
Vector marks = new Vector();
marks.add(aMark);

Vectors

Storing primitive types in a Vector
» Example: Getting a floating point number into a Vector
Double aMark = new Double(75.57);
Vector marks = new Vector();
marks.add(aMark);
alternatively
Vector marks = new Vector();
marks.add(new Double(75.57));

02/07/2013

130

Vectors

Storing primitive types in a Vector

* Example: Getting a floating point number into a Vector
Double aMark = new Double(75.57);

Vector marks = new Vector();
marks.add(aMark);
alternatively

Vector marks = new Vector();
marks.add(new Double(75.57));

» Example: Getting a floating point number out of a Vector
double aMarkPrim = ((Double)marks.get(0)).doubleValue();
Notice that here we need to

1. Access via get method of Vector
2.Cast to Double

3.Invoke the doubleValue method of Double 261

Vectors

Storing primitive types in a Vector

» Example: Getting a floating point number into a Vector
Double aMark = new Double(75.57);

Vector marks = new Vector();
marks.add(aMark);
alternatively

Vector marks = new Vector();
marks.add(new Double(75.57));

» Example: Getting a floating point number out of a Vector
double aMarkPrim = ((Double)marks.get(0)).doubleValue();
Notice that here we need to

1.Access via get method of Vector ~ Remark: Yes this
2.Cast to Double is a hassle!

3.Invoke the doubleValue method of Double 5

02/07/2013

131

Vectors

Storing primitive types in a Vector
« Example: Getting an integer number into a Vector
Integer aNum = new Integer(12);
Vector nums = new Vector();
nums.add(@Num);
alternatively
Vector nums = new Vector();
nums.add(new Integer(12));

263

Vectors

Storing primitive types in a Vector

» Example: Getting an integer number into a Vector
Integer aNum = new Integer(12);

Vector nums = new Vector();
nums.add(aNum);
alternatively

Vector nums = new Vector();
nums.add(new Integer(12));

» Example: Getting an integer number out of a Vector
int aNumPrim = ((Integer)nums.get(0)).intValue();
Notice that here we need to

1. Access via get method of Vector
2.Cast to Integer

3.Invoke the intValue method of Integer -

02/07/2013

132

Vectors

Converting vectors to arrays

» Because of the overhead in getting data out of a
vector, we often

— Use a vector for reading in a data set of
unknown size

— Convert the vector to an array for subsequent
data processing.

265

Vectors

Converting vectors to arrays

» Because of the overhead in getting data out of a
vector, we often

— Use a vector for reading in a data set of
unknown size

— Convert the vector to an array for subsequent
data processing.

1.Create a new array with length equal to the
size of the vector.

2.Copy the vector elements into the array
elements.

266

02/07/2013

133

Vectors

Converting vectors to arrays

» Because of the overhead in getting data out of a
vector, we often
— Use a vector for reading in a data set of
unknown size
— Convert the vector to an array for subsequent
data processing.
1.Create a new array with length equal to the
size of the vector.

2.Copy the vector elements into the array
elements.

» This approach allows us to combine the strength
of vectors (dynamic growth) with the strength of
an array (ease of access to individual elements).

* Let's see how this is done...

267

Vectors
Converting vectors to arrays
String s;
Vector inputVector = new Vector();
while (true)

{ output.print(“Enter a student name (return to end):);
S = input.nextLine();
if (s.equals(*))
break; // this is the way out of the loop
else
inputVector.add(s);

268

02/07/2013

134

Vectors
Converting vectors to arrays
String s;
Vector inputVector = new Vector();
while (true)

{ output.print(“Enter a student name (return to end): “);
s = input.nextLine();
if (s.equals(*”))
break; // this is the way out of the loop
else
inputVector.add(s);
}

String[] studNames = new String[inputVector.size()];

269

Vectors
Converting vectors to arrays
String s;
Vector inputVector = new Vector();
while (true)

{ output.print(“Enter a student name (return to end):);
s = input.nextLine();
if (s.equals(*”))
break; // this is the way out of the loop
else
inputVector.add(s);
}
String[] studNames = new String[inputVector.size()];

inputVector.copylnto(studNames); // copies vector to array
270

02/07/2013

135

Vectors

Example: Improvements to MarksAnalysis

* We will make use of the Vector class to allow for arbitrary

amounts of input, ...

 ...without the user telling in advance how much input to

expect.
public class MarksAnalysis
{ public static void main(String[] args)
{ /I declaration
Il input
// computation
// output

}
}

271

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input

272

02/07/2013

136

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

273

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{

274

02/07/2013

137

Vectors

Example: Improvements to MarksAnalysis

/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();

275

Vectors

Example: Improvements to MarksAnalysis

/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop

276

02/07/2013

138

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input
double mark;
double[] marks = null;
Vector inputVector = new Vector();
while (true)
{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop
inputVector.add(new Double(mark));

}

277

Vectors

Example: Improvements to MarksAnalysis

/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop
inputVector.add(new Double(mark));

}

if (inputVector.size() != 0)

{

278

02/07/2013

139

Vectors

Example: Improvements to MarksAnalysis

/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop
inputVector.add(new Double(mark));

}

if (inputVector.size() = 0)

{'marks = new double[inputVector.size()];

279

Vectors

Example: Improvements to MarksAnalysis

/I declaration and input

double mark;

double[] marks = null;

Vector inputVector = new Vector();

while (true)

{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop
inputVector.add(new Double(mark));

}

if (inputVector.size() = 0)

{ marks = new double[inputVector.size()];
for (int j=0; j<marks.length; j++)

marks[j] = ((Double) inputVector.get(j)).doubleValue();

280

02/07/2013

140

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input
double mark;
double[] marks = null;
Vector inputVector = new Vector();
while (true)
{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop
inputVector.add(new Double(mark));
}
if (inputVector.size() = 0)
{'marks = new double[inputVector.size()];
for (int j=0; j<marks.length; j++)
marks[j] = ((Double) inputVector.get(j)).doubleValue();

} Remark: We cannot use theVector method copylnto as the

array we copying to has primitive type elements, double. ~ ***

Vectors

Example: Improvements to MarksAnalysis
/I declaration and input
double mark;
double[] marks = null;
Vector inputVector = new Vector();
while (true)
{ output.print(“Enter a mark (negative to stop): “);
mark = input.nextDouble();
if (mark < 0) break; // this is the way out of the loop

inputVector.add(new Double(mark)); Remark:
} » We see that input flexibility
if (inputVector.size() != 0) has come at the cost of more
{ marks = new double[inputVector.size()]; complicated code.

for (int j=0; j<marks.length; j++) * This is typical.

marks[j] = ((Double) inputVector.get(j)).doubleValue();

282

02/07/2013

141

Vectors

Example: Improvements to MarksAnalysis
/I computation and output

283

Vectors

Example: Improvements to MarksAnalysis
/I computation and output
if (marks == null)

output.printin(“No marks entered.”);

284

02/07/2013

142

Vectors

Example: Improvements to MarksAnalysis
/I computation and output
if (marks == null)
output.printin(*No marks entered.”);
else

{

285

Vectors

Example: Improvements to MarksAnalysis
/I computation and output
if (marks == null)

output.printin(“No marks entered.”);
else
{ double sum = 0;

for (int j=0; j< marks.length; j++)

sum += marksljJ;

286

02/07/2013

143

Vectors

Example: Improvements to MarksAnalysis
/I computation and output
if (marks == null)

output.printin(*No marks entered.”);
else
{ double sum =0;

for (int j=0; j< marks.length; j++)

sum += marksyjJ;
output.printin(“The class average is “ + sum / marks.length);

}

287

Vectors

Example: Improvements to MarksAnalysis

public class MarksAnalysis
{ public static void main(String[] args)
{ /I declaration
Il input
// computation
I/ output

}
}

Remark: Implementation complete.

288

02/07/2013

144

Summary

Introduction
Aggregation API
Collections

Algorithm complexity
Further example usage

Appendix: Java class Vector

289

02/07/2013

145

