
17/06/2013

1

1

CSE 1020: Unit 6

Topics: Strings

To do: Chapter 6, Lab 6

2

Outline

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

17/06/2013

2

3

Character strings

What

• A character string is a sequence of 0 or more
characters.

– Recall that in Java characters are of primitive type
char.

• In Java, strings are objects that are instances of the
class String.

– They are not a primitive type, e.g., like int, char, …

– However, because strings are so common, Java
allows us to initialize them like primitive types

String greeting = “Good day!”;

– Alternatively you could just as well write

String greeting = new String(“Good day!”);

4

Character strings

Why

• Strings allow us to represent

– Words

– Sentences

– Any amount of text (upto approx. 2 billion chars)

• Since text is such a common type of data it is
convenient to be able to manipulate it in larger
chunks than individual characters;

• hence we abstract to strings.

17/06/2013

3

5

Character strings

The double quote syntax
• String literals are written between double quotes
• All of the following are legal strings

String eg;
eg = “Hi there!”;
eg = “R2d2”;
eg = “ ”; // a blank space
eg = “”; // the empty string

Remark
• Since a character string is an object instance of the

class String, we also can write
String str = null;

6

Character strings

The double quote syntax
• String literals are written between double quotes
• All of the following are legal strings

String eg;
eg = “Hi there!”;
eg = “R2d2”;
eg = “ ”; // a blank space
eg = “”; // the empty string

Remark
• Since a character string is an object instance of the

class String, we also can write
String str = null;

17/06/2013

4

7

Character strings
Concatenation
• We can join together two (or more) strings to form a

larger string via application of the + operator.
• We call this concatenation.

String greeting = “Good day!”;
String lhs = “Good”;
String rhs = “day”;
// the next 3 statements produce the same result
output.println(“Good day!”);
output.println(greeting);
output.println(lhs + “ “ + rhs +”!”);

8

Character strings

Concatenation

• We can join together two (or more) strings to form a
larger string via application of the + operator.

• We call this concatenation.

// and in French

String lhsFr = “Bon”;

String rhsFr = “jour”;

String greetingFr = lhsFr + rhsFr + “!”;

output.println(greetingFr);

17/06/2013

5

9

Character strings
Concatenation
• We can join together two (or more) strings to form a

larger string via application of the + operator.
• We call this concatenation.

// and in French
String lhsFr = “Bon”
String rhsFr = “jour”
String greetingFr = lhsFr + rhsFr + “!”;
output.println(greetingFr);

• If one argument to + is a string, then all others will be
so converted.

int code = 2;
String name = “R” + code + “d” + code; // R2d2

10

Character strings
Methods
• The String class provides a variety of methods for

operating on string objects.
• When exploiting these, it is important to note that we

index the elements of a string from left-to-right,
starting at 0.

• Suppose that we want to extract the i-th character
from a string

String greetingSad = “Not so good day!”;
char c1 = greetingSad.charAt(0); // sets c1 to ‘N’
char c2 = greetingSad.charAt(4); // sets c2 to ‘s’

• Suppose we want to find the length of a string
int howLong = greetingSad.length(); // 16

17/06/2013

6

11

Character strings

String methods (Cont.)

• Suppose that we want to extract the substring from
the i-th to the j-th character of a string

String greetingSad = “Not so good day!”;

String s = greetingSad.subString(4, 6); // so

• Note that the second argument is one past the last
character that we want.

• If the second argument to subString is not given, then
it returns from the specified position through the end.

String greeting = greetingSad.subString(7);

// greeting has “good day!”

12

Character strings

String methods (Cont.)
• There are many additional methods in the String

class.
• Examples: toUpperCase(), toLowerCase(), trim(),..
• To learn about these (and more), see the Java API.

17/06/2013

7

13

Character strings

Conversion to/from numbers

• To convert a number to a string

int dateNum = 16;

String dateStr = “” + dateNum; // using the empty string “”

or

String dateStr = Integer.toString(dateNum);

• To convert from a string of digits to a number we can use

dateNum = Integer.parseInt(dateStr);

• Similar methods are available for dealing with other
number types.

14

Character strings

Conversion to/from numbers

• To convert a number to a string

int dateNum = 16;

String dateStr = “” + dateNum; // using the empty string “”

or

String dateStr = Integer.toString(dateNum);

• To convert from a string of digits to a number we can use

dateNum = Integer.parseInt(dateStr);

• Caveat: parseInt will not work on non-numeric characters
(e.g., ‘,’, ‘ ‘).

17/06/2013

8

15

Character strings
Wrapper classes

• Just as there is the Integer class, there are similar classes
with associated methods for the other primitive types. In
particular, we have

primitive type wrapper class

byte Byte

short Short

char Char

int Integer

long Long

float Float

double Double

boolean Boolean

• We refer to these as wrapper classes, because they allows
us to encapsulate the values of each type within a class.

16

Character strings

Immutability
• Once a string has been created it cannot be changed

(in Java).
• We say that the objects of the String class are

immutable.
• When we invoke a String method (or an operator,

e.g., +) it creates a new string every time it is called.
String s1, s2, s3;
s1 = “York”;
s2 = s1;
s3 = s1.toUpperCase();
output.println(s3); // YORK
output.println(s1); // York
s1 = s1.toUpperCase();
output.println(s1); // YORK
output.println(s2); // York

17/06/2013

9

17

Character strings

Keep in mind: In Java
• String is really a class.

– Any particular string that you manipulate is an
object.

• Because strings are so common, they can be treated
a bit like a primitive data type
– e.g., in initialization

• To add to the (potential) confusion, instances of
String are immutable.

18

Outline

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

17/06/2013

10

19

Comparing strings
You cannot…
• You cannot use the relational operators to compare

objects.
• Such operators will apply to the references, not the

objects.
• Since in Java a string is an object (of class String),

you cannot use the relational operators for
comparison.

You can…
• You can make use of two methods for comparing

strings
1. equals(s)
2. compareTo(s)

20

Comparing strings
The method equals(s)
• The method equal(s) returns true iff the string object is

identical to the string argument s.
• That is, equality is judged as the strings having

– the same length
– and the same characters in corresponding

positions.
• Examples

String s1 = “abc”;
s1.equals(“abc”) returns true
s1.equals(“abc ”) returns false
s1.equals(“aBc”) returns false
s1.equalsIgnoreCase(“aBc”) returns true

17/06/2013

11

21

Comparing strings
The method equals(s)
• The method equal(s) returns true iff the string object is

identical to the string argument s.
• That is, equality is judged as the strings having

– the same length
– and the same characters in corresponding

positions.
• Examples

String s1 = “abc”;
s1.equals(“abc”) returns true
s1.equals(“abc ”) returns false
s1.equals(“aBc”) returns false
s1.equalsIgnoreCase(“aBc”) returns true

22

Comparing strings

The method compareTo(s)

• The method compareTo(s) returns

– 0, if the object is identical to the string argument s

– a negative integer, if the object comes before s in
lexicographic ordering,

– a positive integer, if the object comes after s.

Lexicographic ordering

• Lexicographic ordering is essentially dictionary
ordering.

• In Java, implemented by comparison of Unicode
values to compare each character.

17/06/2013

12

23

Comparing strings

The method compareTo(s)

• The method compareTo(s) returns

– 0, if the object is identical to the string argument s

– a negative integer, if the object comes before s in
lexicographic ordering,

– a positive integer, if the object comes after s.

Lexicographic ordering

• Lexicographic ordering is essentially dictionary
ordering.

• In Java, implemented by comparison of Unicode
values to compare each character.

24

Comparing strings

Examples: Lexicographic ordering
• “abc” < “acc”
• “abc” < “abcd”
• “Zoo” < “at”

Examples: compareTo(s)
String s1 = “abc”;
s1.compareTo(“abc”) == 0 returns true
s1.compareTo(“acc”) < 0 returns true

In general
s1.compareTo(s2) op 0 returns true

iff
s1 op s2

17/06/2013

13

25

Comparing strings

Examples: Lexicographic ordering
• “abc” < “acc”
• “abc” < “abcd”
• “Zoo” < “at”

Examples: compareTo(s)
String s1 = “abc”;
s1.compareTo(“abc”) == 0 returns true
s1.compareTo(“acc”) < 0 returns true

In general
s1.compareTo(s2) op 0 returns true

iff
s1 op s2

26

Comparing strings

Examples: Lexicographic ordering
• “abc” < “acc”
• “abc” < “abcd”
• “Zoo” < “at”

Examples: compareTo(s)
String s1 = “abc”;
s1.compareTo(“abc”) == 0 returns true
s1.compareTo(“acc”) < 0 returns true

In general
s1.compareTo(s2) op 0 returns true, e.g.,

iff
s1 op s2; with op taken here in the lexicographic

sense.

},,{ ><==∈op

17/06/2013

14

27

Comparing strings
You cannot…
• You cannot use the relational operators to compare

objects.
• Such operators will apply to the references, not the

objects.
• Since in Java a character string is an object (of class

String), you cannot use the relational operators for
comparison.

You can…
• You can make use of two methods for comparing

strings
1. equals(s)
2. compareTo(s)

28

Outline

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

17/06/2013

15

29

String search

Method indexOf(s2,p)
• We can search for the (sub)string s2 within a String

object starting at position p usingthe indexOf method.
• If a match is found, the method returns the starting

position of the match.
• Otherwise, -1 is returned.

Remarks
• indexOf(s2) works as indexOf(s2,0).
• There also is a method lastIndexOf, which searches

from the right end of the string.

30

String search

Method indexOf(s2,p)
• We can search for the (sub)string s2 within a String

object starting at position p usingthe indexOf method.
• If a match is found, the method returns the starting

position of the match.
• Otherwise, -1 is returned.

Remarks
• indexOf(s2) works as indexOf(s2,0).
• There also is a method lastIndexOf, which searches

from the right end of the string.

17/06/2013

16

31

String search

Examples

String s1 = “abracadabra”;

String s2 = “br”;

int pm = s1.indexOf(s2);

output.println(pm); // prints 1

pm = s1.indexOf(s2, pm + s2.length());

IO.println(pm); // prints 8

pm = s1.indexOf(s2, pm + s2.length());

IO.println(pm); // no match, prints –1

32

String search

Examples

String s1 = “abracadabra”;

String s2 = “br”;

int pm = s1.indexOf(s2);

output.println(pm); // prints 1

pm = s1.indexOf(s2, pm + s2.length());

output.println(pm); // prints 8

pm = s1.indexOf(s2, pm + s2.length());

IO.println(pm); // no match, prints –1

17/06/2013

17

33

String search

Examples

String s1 = “abracadabra”;

String s2 = “br”;

int pm = s1.indexOf(s2);

output.println(pm); // prints 1

pm = s1.indexOf(s2, pm + s2.length());

output.println(pm); // prints 8

pm = s1.indexOf(s2, pm + s2.length());

output.println(pm); // no match, prints –1

34

String search

Method indexOf(s2,p)
• We can search for the (sub)string s2 within a String

object starting at position p usingthe indexOf method.
• If a match is found, the method returns the starting

position of the match.
• Otherwise, -1 is returned.
• indexOf(s2) works as indexOf(s2,0).

Method lastIndexOf
• The method lastIndexOf searches from the right end

of the string.

17/06/2013

18

35

Outline

• Character strings

• Comparing strings

• String search

• Class StringBuffer

• Regular expressions

• Software engineering examples

36

Class StringBuffer

Java offers two ways to represent strings

1. We have seen use of the Java class String

• Encapsulation of immutable strings.

• For optimal implementation of common tasks.

2. An alternative is the Java class StringBuffer

• Encapsulation of mutable strings.

• For full flexibility of object manipulation.

17/06/2013

19

37

Class StringBuffer

Construction

• The default constructor allows creation of an empty
object, to which one might subsequently add characters.

StringBuffer empty = new StringBuffer();

• The customizing constructor allows creation of an object
with an initial character sequence.

StringBuffer myStrBuf = new StringBuffer(“I’m mutable.”);

38

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer append(???)
Appends the sequence of this string
buffer by the string representation of the
passed parameter.

• Example
StringBuffer sb = StringBuffer(“soft”);
sb.append(“ware”);
IO.println(sb); // prints software

17/06/2013

20

39

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer append(String str)
Appends the string to this string buffer.

Example
StringBuffer sb = StringBuffer(“soft”);
sb.append(“ware”);
IO.println(sb); // prints software

40

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer append(String str)
Appends the string to this string buffer.

Example
StringBuffer sb = new StringBuffer(“soft”);
sb.append(“ware”);
output.println(sb); // prints software

17/06/2013

21

41

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer insert(int offset, String str)
Inserts the string into this string buffer.

Example
StringBuffer sb = StringBuffer(“sore”);
sb.insert(2, “ftwa”);
IO.println(sb); // prints software

42

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer insert(int offset, String str)
Inserts the string into this string buffer.

Example
StringBuffer sb = new StringBuffer(“sore”);
sb.insert(2, “ftwa”);
output.println(sb); // prints software

17/06/2013

22

43

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators
are of most interest.

Method Summary

StringBuffer delete(int start, int end)
Removes the characters in a substring of
this StringBuffer.

Example
StringBuffer sb = StringBuffer(“softheadware”);
sb.delete(4,8);
IO.println(sb); // prints software

44

Class StringBuffer
A few methods
• The class StringBuffer offers a variety of methods for

manipulating its objects. (See Java API for details.)
• Since a key feature of this class is its ability to alter its

objects without creating new instances, the mutators are
of most interest.

Method Summary

StringBuffer delete(int start, int end)
Removes the characters in a substring of
this StringBuffer.

Example
StringBuffer sb = new StringBuffer(“softheadware”);
sb.delete(4,8);
output.println(sb); // prints software

17/06/2013

23

45

Class StringBuffer

Converting between String and StringBuffer
• In some cases it is desirable to change between the

String and StringBuffer representation of a string.
• For example, if only one part of a program involves

the need to mutate, then use StringBuffer for only that
part and gain efficiency of String elsewhere.

• Conversion: StringBuffer String
StringBuffer sb = new StringBuffer(“Example”);
String s = sb.toString();

• Conversion: String StringBuffer
String s = “Example”;
StringBuffer sb = new StringBuffer(s);

46

Outline

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

17/06/2013

24

47

Regular expressions

So far…
• All of the string searches that we have performed are

with respect to an exact match.
• That is, we insist on character by character

correspondence to declare a match.

Now…
• We seek to allow for matches that are defined with

respect to more general patterns.
• Example: We might want to find occurrences of a

valid time: digit sequences 1-6, followed by a space,
followed by either the character sequence am or pm.

48

Regular expressions
A formalism
• Regular expressions (sometimes called regexes) are

a formalism that allow us to describe a language as
strings over an alphabet in an unambiguous way.

• Example: Valid times “[1-6] [ap]m”
– The alphabet is {1, 2, 3, 4, 5, 6, a, m, p, ‘ ‘}.
– Stings in the language are {1 am, 1 pm, 2 am, 2

pm, 3 am, 3 pm, …, 6 pm}.
– The angle brackets, e.g., [ap] state that anything

enclosed (but nothing else) is allowable at the
corresponding position.

– The 1-6 states that any digit from 1 through 6 (but
nothing else) is allowable at the corresponding
position.

– The ‘ ’ and ‘m’ state that only those characters are
allowable at the corresponding positions.

17/06/2013

25

49

Regular expressions
A formalism
• Regular expressions (sometimes called regexes) are

a formalism that allow us to describe a language as
strings over an alphabet in an unambiguous way.

• Example: Valid times “[1-6] [ap]m”
– The alphabet is {1, 2, 3, 4, 5, 6, a, m, p, ‘ ‘}.
– Stings in the language are {1 am, 1 pm, 2 am, 2

pm, 3 am, 3 pm, …, 6 pm}.
– The square brackets, e.g., [ap] state that anything

enclosed (but nothing else) is allowable at the
corresponding position.

– The 1-6 states that any digit from 1 through 6 (but
nothing else) is allowable at the corresponding
position.

– The ‘ ’ and ‘m’ state that only those characters are
allowable at the corresponding positions.

50

Regular expressions
A formalism
• Regular expressions (sometimes called regexes) are a

formalism that allow us to describe a language as strings over an
alphabet in an unambiguous way.

• Example: Valid strings “[^0-9]*[+-]?[0-9]+[^0-9]*”
– The alphabet is the characters.
– Stings in the language are of the form

{non-digit characters or nothing}{integer}{non-digit characters
or nothing}.

– [], 0-9, +, -, as before.
– The ^ denotes not, i.e., anything except what follows.
– The * denotes that the preceding must be present zero or

more times.
– The + denotes that the preceding must be present 1 or more

times.
– The ? denotes that the preceding must be present once or not

at all.

17/06/2013

26

51

Regular expressions
A formalism

• Regular expressions (sometimes called regexes) are
a formalism that allow us to describe a language as
strings over an alphabet in an unambiguous way.

• Remark: The given examples are merely illustrations
of the formalism to show its power.

• For more information see:

– the 1020 textbook, 6.4.2 for additional examples;

– Elements of the Theory of Computation by Lewis &
Papadimitriou for a nice introduction to the general
theory.

52

Regular expressions

Applications

• Regular expressions can be used in conjunction with
methods in the string class.

• Example

output.println(“Enter the time to the nearest hour…”);

String s = input.nextLine();

if (! s.matches(“[1-6] [ap]m”))

output.println(“Invalid entry.”);

17/06/2013

27

53

Regular expressions

Applications

• In the Java String class

Method summary

boolean matches(String regex)

Tells whether or not this string matches the
given regular expression.

54

Regular expressions

Applications
• Regular expressions can be used in conjunction with

methods in the string class.
• Example

output.println(“Enter the time to the nearest hour…”);
String s = input.nextLine();
if (! s.matches(“[1-6] [ap]m”))

output.println(“Invalid entry.”);
• As another application: Regular expressions are

recognized by the Unix operating system, e.g., to help
with searching at the command line.

17/06/2013

28

55

Outline

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

56

Software engineering examples

Problem

• Convert a long form date to short form.

17/06/2013

29

57

Software engineering examples

Analysis

• Input: Date in form February 9, 2004.

• Output: Date in form 02/09/04

• Format:

Enter long date: February 9, 2004

Short form is: 02/09/04

58

Software engineering examples

Design

• Given the long form date, we see the following
subtasks

1.Parse the month

2.Parse the day

3.Parse the year

4.Assemble the short form date from the parsed
components

17/06/2013

30

59

Software engineering examples

Design
• Given the long form date, we see the following

subtasks
1.Parse the month
2.Parse the day
3.Parse the year
4.Assemble the short from date from the parsed

components
• To extract the month, day and year from the input, we

note that the prescribed form dictates two distinct
position separators:
1.The first space
2.The comma

e.g., February 11, 2004

60

Software engineering examples

Design
• Given the long form date, we see the following

subtasks
1.Parse the month
2.Parse the day
3.Parse the year
4.Assemble the short from date from the parsed

components
• To extract the month, day and year from the input, we

note that the prescribed form dictates two distinct
position separators:
1.The first space: posSep1
2.The comma: posSep2

17/06/2013

31

61

Software engineering examples

Design
1. Parse the month, e.g., February 9, 2004: February  02.

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12December

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

62

Software engineering examples

Design
1. Parse the month, e.g., February 9, 2004: February  02

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12December

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

17/06/2013

32

63

Software engineering examples

Design
1. Parse the month, e.g., February 9, 2004: February  02

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12December

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

64

Software engineering examples

Design
1. Parse the month, e.g., February 9, 2004: February  02

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12december

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

17/06/2013

33

65

Software engineering examples

Design

2. Parse the day, e.g., February 9, 2004: 9  09

2.1 Extract the day: longDate substring from
posSep1+1 upto (but not including) posSep2

2.2 Convert the day: Allow for some variability.

• Remove extra “whitespace”.

• Pad out a single digit with a preceding 0.

66

Software engineering examples

Design

2. Parse the day, e.g., February 9, 2004: 9  09

2.1 Extract the day: longDate substring from
posSep1+1 upto (but not including) posSep2

2.2 Convert the day: Allow for some variability.

• Remove extra “whitespace”.

• Pad out a single digit with a preceding 0.

17/06/2013

34

67

Software engineering examples

Design

2. Parse the day, e.g., February 9, 2004: 9  09

2.1 Extract the day: longDate substring from
posSep1+1 upto (but not including) posSep2

2.2 Convert the day: Allow for some variability.

• Remove extra “whitespace”.

• Pad out a single digit with a preceding 0.

68

Software engineering examples

Design
3. Parse the year, e.g., February 9, 2004: 2004  04

3.1 Extract the year: longDate substring from
posSep2+1 through the end.
3.2 Convert the year: Allow for some variability;
remove the leading 20

• Remove extra “whitespace”.
• Take year substring starting at length-2 through

the end.

17/06/2013

35

69

Software engineering examples

Design
3. Parse the year, e.g., February 9, 2004: 2004  04

3.1 Extract the year: longDate substring from
posSep2+1 through the end.
3.2 Convert the year: Allow for some variability;
remove the leading 20

• Remove extra “whitespace”.
• Take year substring starting at length-2 through

the end.

70

Software engineering examples

Design
3. Parse the year, e.g., February 9, 2004: 2004  04

3.1 Extract the year: longDate substring from
posSep2+1 through the end.
3.2 Convert the year: Allow for some variability;
remove the leading 20

• Remove extra “whitespace”.
• Take year substring starting at length-2 through

the end.

17/06/2013

36

71

Software engineering examples

Design
4. Assemble the components

– Concatenate the parsed month / day / year

72

Software engineering examples

Design
• Given the long form date, we see the following

subtasks.
1.Parse the month
2.Parse the day
3.Parse the year
4.Assemble the short from date from the parsed

components
• We need variables as follows (all strings).

– monthTbl: maintains correspondence digit vs.
alphabetical

– longDate, shortDate: input, output
– month, day, year: date components

17/06/2013

37

73

Software engineering examples

Design
• Given the long form date, we see the following

subtasks.
1.Parse the month
2.Parse the day
3.Parse the year
4.Assemble the short from date from the parsed

components
• We need variables as follows (all strings).

– monthTbl: maintains correspondence digit vs.
alphabetical

– longDate, shortDate: input, output
– month, day, year: date components

74

Software engineering examples
Implementation

// assume all the usual template components

public class ShortenDate

{ public static void main(String[] args)

{ DICO

}

}

17/06/2013

38

75

Software engineering examples
Implementation

// Declaration

final String monthTbl = “01january02february03march”

+ “04april05may06june” + “07july08august09september”

+ “10october11november12december”;

String longDate, shortDate, month, day, year;

76

Software engineering examples
Implementation

// Declaration

monthTbl: maintains correspondence digit vs. alphabetical

17/06/2013

39

77

Software engineering examples
Implementation

// Declaration

final String monthTbl = “01january02february03march”

+ “04april05may06june” + “07july08august09september”

+ “10october11november12december”;

String longDate, shortDate, month, day, year;

78

Software engineering examples
Implementation

// Declaration

monthTbl: maintains correspondence digit vs. alphabetical

longDate, shortDate: input, output

month, day, year: date components

17/06/2013

40

79

Software engineering examples
Implementation

// Declaration

final String MONTHTBL = “01january02february03march”

+ “04april05may06june” + “07july08august09september”

+ “10october11november12december”;

String longDate, shortDate, month, day, year;

80

Software engineering examples
Implementation

// Input

IO.print(“Enter long date: ”);

longDate = IO.readLine();

17/06/2013

41

81

Software engineering examples
Implementation

// Input

output.print(“Enter long date: ”);

longDate = input.nextLine();

82

Software engineering examples
Implementation

// Computation

• To extract the month, day and year from the input, we
note that the prescribed form dictates two distinct
position separators:

1.The first space: posSep1

2.The comma: posSep2

17/06/2013

42

83

Software engineering examples
Implementation

// Computation

// find the two key separators

int posSep1 = longDate.indexOf(“ ”);

int posSep2 = longDate.indexOf(“,”);

84

Software engineering examples
Implementation

// Computation

• Given the long form date, we see the following
subtasks

1.Parse the month

2.Parse the day

3.Parse the year

4.Assemble the short from date from the parsed
components

17/06/2013

43

85

Software engineering examples
Implementation

// Computation
.
.
.
// parse the month

// parse the day

// parse the year

// assemble the short form date

86

Software engineering examples
Implementation

// parse the month
1. Parse the month, e.g., February  02

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12December

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

17/06/2013

44

87

Software engineering examples

Implementation

// parse the month

month = longDate.substring(0,posSep1);

month = month.toLowerCase();

int posTbl = monthTbl.indexOfMonth();

month = monthTbl.substring(posTbl-2, posTbl);

88

Software engineering examples
Implementation

// parse the month
1. Parse the month, e.g., February  02

1.1 Extract the month: longDate substring from 0 upto
(but not including) posSep1

1.2 Convert the month: Essentially a “look-up”
operation.
• Employ a table of correspondences: monthTbl

01january02february … 12December

• Find the index of month in monthTbl
• Take the previous two digits as the short form

month.

17/06/2013

45

89

Software engineering examples

Implementation
// parse the month

month = longDate.substring(0,posSep1);

month = month.toLowerCase();

int posTbl = MONTHTBL.indexOf(month);

month = MONTHTBL.substring(posTbl-2, posTbl);

Example

• For month == february

mnthTbl == “01january02february03march…12december

posTblposTbl-2

90

Software engineering examples

Implementation
// parse the month

month = longDate.substring(0,posSep1);

month = month.toLowerCase();

int posTbl = MONTHTBL.indexOf(month);

month = MONTHTBL.substring(posTbl-2, posTbl);

17/06/2013

46

91

Software engineering examples
Implementation

// parse the day

Parse the day, e.g., 9  09

2.1 Extract the day: longDate substring from
posSep1+1 upto (but not including) posSep2

2.2 Convert the day: Allow for some variability.

• Remove extra “whitespace”.

• Pad out a single digit with a preceding 0.

92

Software engineering examples
Implementation

// parse the day

day = longDate.substring(posSep1+1, posSep2);

day = day.trim();

If (day.length() < 2)

{ day = “0” + day;

}

17/06/2013

47

93

Software engineering examples
Implementation

// parse the day

Parse the day, e.g., 9  09

2.1 Extract the day: longDate substring from
posSep1+1 upto (but not including) posSep2

2.2 Convert the day: Allow for some variability.

• Remove extra “whitespace”.

• Pad out a single digit with a preceding 0.

94

Software engineering examples
Implementation

// parse the day

day = longDate.substring(posSep1+1, posSep2);

day = day.trim();

If (day.length() < 2)

{ day = “0” + day;

}

17/06/2013

48

95

Software engineering examples
Implementation

// parse the year
3. Parse the year, e.g., 2004  04

3.1 Extract the year: longDate substring from
posSep2+1 through the end.
3.2 Convert the year: Allow for some variability;
remove the leading 20

• Remove extra “whitespace”.
• Take year substring starting at length-2 through

the end.

96

Software engineering examples
Implementation

// parse the year

year = longDate.substring(posSep2 +1);

year = year.trim();

year = year.substring(year.length()-2, year.length());

17/06/2013

49

97

Software engineering examples
Implementation

// parse the year
3. Parse the year, e.g., 2004  04

3.1 Extract the year: longDate substring from
posSep2+1 through the end.
3.2 Convert the year: Allow for some variability;
remove the leading 20

• Remove extra “whitespace”.
• Take year substring starting at length-2 through

the end.

98

Software engineering examples
Implementation

// parse the year

year = longDate.substring(posSep2 +1);

year = year.trim();

year = year.substring(year.length()-2, year.length());

17/06/2013

50

99

Software engineering examples
Implementation

// assemble the short form date

4. Assemble the components

– Concatenate the parsed month / day / year

100

Software engineering examples
Implementation

// assemble the short form date

shortDate = month + “/” + day + “/” + year;

17/06/2013

51

101

Software engineering examples
Implementation

// Output

output.println(“Short form is: ” + shortDate);

102

Software engineering examples
Test

% java ShortenDate

17/06/2013

52

103

Software engineering examples
Test

% java ShortenDate

Enter long date:

104

Software engineering examples
Test

% java ShortenDate

Enter long date: January 1, 2001

17/06/2013

53

105

Software engineering examples
Test

% java ShortenDate

Enter long date: January 1, 2001

Short form is: 01/01/01

106

Software engineering examples

Problem

• Replace all occurrences of string pat in string s by
string rep.

17/06/2013

54

107

Software engineering examples
Analysis
• Input: String s, String pat, String rep.
• Output: String the same as s, but with all

occurrences of pat replaced by rep.
• Format:

Enter original string…
abracadabra
Enter substring to be replaced…
br
Enter replacement string…
brr
Modified string is…
abrracadabrra

108

Software engineering examples

Design

• We need to repeatedly search through the input
string, s, for all occurrences of the pattern, pat.

• Don’t know in advance how many repetitions
conditional loop.

• Typically, suggests use of while; however,…

• … here to illustrate flexibility of for we will make use
of it in a non-idiomatic fashion.

17/06/2013

55

109

Software engineering examples

Design

• Our initial observations suggest an algorithm in
pseudocode

loop

{ look for position of next occurrence

if there are no more occurrences exit loop

perform replacement

move beyond replacement

}

110

Software engineering examples

Design
• Our initial observations suggest an algorithm in

pseudocode

loop
{ look for position of next occurrence

if we there are no more occurrences exit loop
perform replacement

- extract substrings prior to and after pat
- insert rep between prior and after substrings

move beyond replacement
}

17/06/2013

56

111

Software engineering examples
Design
• Our initial observations suggest an algorithm in

pseudocode
loop
{ look for position of next occurrence

if we there are no more occurrences exit loop
perform replacement

- extract substrings prior to and after pat
- insert rep between prior and after substrings

move beyond replacement
}

• Example
s: “herethereeverywhere”; pat: “there”

 prior: “here”; after: “everywhere”

112

Software engineering examples
Design
• Our initial observations suggest an algorithm in

pseudocode
loop
{ look for position of next occurrence

if we there are no more occurrences exit loop
perform replacement

- extract substrings prior to and after pat
- insert rep between prior and after substrings

move beyond replacement
}

• Example
rep: “nowhere”; prior: “here”; after: “everywhere”

 “herenowhereeverywhere”

17/06/2013

57

113

Software engineering examples

Design
• Our initial observations suggest an algorithm in

pseudocode

loop
{ look for position of next occurrence

if we there are no more occurrences exit loop
perform replacement

- extract substrings prior to and after pat
- insert rep between prior and after substrings

move beyond replacement
}

114

Software engineering examples

Design

Method summary

int indexOf(String str, int fromIndex)

Returns the index within this string of the first
occurrence of the specified substring, starting
at the specified index.

17/06/2013

58

115

Software engineering examples

Design

Method summary

String substring(int beginIndex, int endIndex)

Returns a new string that is a substring
of this string.

116

Software engineering examples

Design

Method summary

String substring(int beginIndex)

Returns a new string that is a substring
of this string.

17/06/2013

59

117

Software engineering examples

Design

We need variables as follows.

• Original string

• Substring to be replaced

• Substring replacement

• Lengths of substrings as parameters to String
methods

• variable to keep track of position during scan through
string

118

Software engineering examples
Implementation

// assume the usual template

public class ReplaceAll

{ public static void main(String[] args)

{ DICO

}

}

17/06/2013

60

119

Software engineering examples
Implementation

// Declaration and input

120

Software engineering examples
Implementation

// Declaration and input

We need

• Original string

17/06/2013

61

121

Software engineering examples
Implementation

// Declaration and input
output.println(“Enter original string…”);
String s = input.nextLine();
IO.println(“Enter substring to be replaced…”);
String pat = IO.readLine();
IO.println(“Enter replacement string…”);
String rep = IO.readLine();
int patLen = pat.length();
int repLen = rep.length();

122

Software engineering examples
Implementation

// Declaration and input

We need

• Original string

• Substring to be replaced

17/06/2013

62

123

Software engineering examples
Implementation

// Declaration and input
output.println(“Enter original string…”);
String s = input.nextLine();
output.println(“Enter substring to be replaced…”);
String pat = input.nextLine();
IO.println(“Enter replacement string…”);
String rep = IO.readLine();
int patLen = pat.length();
int repLen = rep.length();

124

Software engineering examples
Implementation

// Declaration and input

We need

• Original string

• Substring to be replaced

• Substring replacement

17/06/2013

63

125

Software engineering examples
Implementation

// Declaration and input
output.println(“Enter original string…”);
String s = input.nextLine();
output.println(“Enter substring to be replaced…”);
String pat = input.nextLine();
output.println(“Enter replacement string…”);
String rep = input.nextLine();
int patLen = pat.length();
int repLen = rep.length();

126

Software engineering examples
Implementation

// Declaration and input
We need
• Original string
• Substring to be replaced
• Substring replacement
• Lengths of substrings as parameters to String

methods
• variable to keep track of position during scan through

string

17/06/2013

64

127

Software engineering examples
Implementation

// Declaration and input
output.println(“Enter original string…”);
String s = input.nextLine();
output.println(“Enter substring to be replaced…”);
String pat = input.nextLine();
output.println(“Enter replacement string…”);
String rep = input.nextLine();
int patLen = pat.length();
int repLen = rep.length();
int pos=0;

128

Software engineering examples
Implementation

// Computation

loop

{ find position of next occurrence

(how to get out)

perform replacement

- extract substrings prior to and after pat

- insert rep between prior and after substrings

move beyond replacement

}

17/06/2013

65

129

Software engineering examples
Implementation

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

130

Software engineering examples
Implementation

// Computation

loop

{ look for position of next occurrence

(how to get out)

perform replacement

- extract substrings prior to and after pat

- insert rep between prior and after substrings

move beyond replacement

}

17/06/2013

66

131

Software engineering examples
Implementation

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

132

Software engineering examples
Implementation

// Computation

loop

{ look for position of next occurrence

if there are no more occurrences exit loop

perform replacement

- extract substrings prior to and after pat

- insert rep between prior and after substrings

move beyond replacement

}

17/06/2013

67

133

Software engineering examples
Implementation

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

134

Software engineering examples
Implementation

// Computation

loop

{ look for position of next occurrence

if there are no more occurrences exit loop

perform replacement

- extract substrings prior to and after pat

- insert rep between prior and after substrings

move beyond replacement

}

17/06/2013

68

135

Software engineering examples
Implementation

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

136

Software engineering examples
Implementation

// Computation

loop

{ look for position of next occurrence

if there are no more occurrences exit loop

perform replacement

- extract substrings prior to and after pat

- insert rep between prior and after substrings

move beyond replacement

}

17/06/2013

69

137

Software engineering examples
Implementation

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

138

Software engineering examples
Implementation

// Output

IO.println(“Modified string is…”);

IO.println(s);

17/06/2013

70

139

Software engineering examples
Implementation

// Output

output.println(“Modified string is…”);

output.println(s);

140

Software engineering examples
Test

% java ReplaceAll

17/06/2013

71

141

Software engineering examples
Test

% java ReplaceAll

Enter original string…

142

Software engineering examples
Test

% java ReplaceAll

Enter original string…

color orange results from mixing colors red and yellow.

17/06/2013

72

143

Software engineering examples
Test

% java ReplaceAll

Enter original string…

color orange results from mixing colors red and yellow.

Enter substring to be replaced…

144

Software engineering examples
Test

% java ReplaceAll

Enter original string…

color orange results from mixing colors red and yellow.

Enter substring to be replaced…

color

17/06/2013

73

145

Software engineering examples
Test

% java ReplaceAll

Enter original string…

color orange results from mixing colors red and yellow.

Enter substring to be replaced…

color

Enter replacement substring…

146

Software engineering examples
Test

% java ReplaceAll

Enter original string…

color orange results from mixing colors red and yellow.

Enter substring to be replaced…

color

Enter replacement substring…

colour

17/06/2013

74

147

Software engineering examples
Test
% java ReplaceAll
Enter original string…
color orange results from mixing colors red and yellow.
Enter substring to be replaced…
color
Enter replacement substring…
colour
Modified string is…
colour orange results from mixing colours red and yellow.

148

Software engineering examples

Design: Revisited
• Our initial observations suggest an algorithm in

pseudocode

loop
{ look for position of next occurrence

if there are no more occurrences exit loop
perform replacement

- extract substrings prior to and after pat
- insert rep between prior and after substrings

move beyond replacement
}

17/06/2013

75

149

Software engineering examples
Implementation: Revisited

// Computation

boolean done = false;

for (; !done ;)

{ pos = s.indexOf(pat,pos);

if (pos >=0)

{ s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

else

{ done = true;

}

}

150

Software engineering examples
Implementation: Revisited and improved

// Computation

while (true)

{ pos = s.indexOf(pat,pos);

if (pos < 0) break; // this is the way out of the loop

s = s.substring(0,pos) + rep + s.substring(pos+patLen);

pos = pos + repLen;

}

17/06/2013

76

151

Summary

• Character strings

• Comparing strings

• String search

• StringBuffer

• Regular expressions

• Software engineering examples

