
10/06/2013

1

1

CSE 1020: Unit 5, Part II

Topics: Iteration

To do: Chapter 5, Lab 5

2

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

10/06/2013

2

3

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

4

Flow of control: Iteration & loops

Repetition in programs
• Solving a problem can require performing a set of

operations repeatedly
• In some cases, the repetition might need to be

repeated a very large number of times
– It would be tedious to explicitly code each

repetition individually.
• In some cases, the number of repetitions is not

known in advance (e.g., keep doing something as
long as some variable condition is true)
– It would be impossible to explicitly code each

repetition individually.

10/06/2013

3

5

Flow of control: Iteration & loops
Problem
• Determine how many months it takes to pay back a

loan given the loan amount, monthly payment
amount and interest rate.

Solution procedure (an algorithm)
1. Initialize monthsRequired to 0.
2. Repeat (i), (ii) and (iii) while amountOwed > 0.

(i) Add monthlyInterest to amountOwed.
(ii) Subtract monthlyPayment from amountOwed.
(iii) Increment monthsRequired by 1.

3. Report monthsRequired as the answer.

6

Flow of control: Iterations & loops

Abstraction
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops

1. for loops
2.while loops
3.do loops

• We examine these in turn.

10/06/2013

4

7

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

8

Iteration: for loops

Number of repetitions known at start of loop
• In some cases, the number of iterations to be

performed is known when the loop begins.
• In such cases it is clearest to use a loop with an

explicit counter.
• In Java, we make use of the for structure:

for (init; cond; update)
statement

10/06/2013

5

9

Iteration: for loops
Dissection of for structure
• We interpret the for structure

for (init; cond; update)
statement

as follows
• init is an expression that is executed at the start of

the loop.
– usually to initialize the counter.

• cond is a condition that is tested at the beginning of
each cycle.
– the loop continues while it is true

• update is an expression that is executed at the end of
every cycle;
– Usually to update the counter for the next cycle.

10

Iteration: for loops
Dissection of for structure
• We interpret the for structure

for (init; cond; update)
statement

as follows
• init is an expression that is executed at the start of

the loop.
– usually to initialize the counter.

• cond is a condition that is tested at the beginning of
each cycle.
– the loop continues while it is true

• update is an expression that is executed at the end of
every cycle;
– Usually to update the counter for the next cycle.

10/06/2013

6

11

Iteration: for loops
Dissection of for structure
• We interpret the for structure

for (init; cond; update)
statement

as follows
• init is an expression that is executed at the start of

the loop.
– usually to initialize the counter.

• cond is a condition that is tested at the beginning of
each cycle.
– the loop continues while it is true

• update is an expression that is executed at the end of
every cycle;
– Usually to update the counter for the next cycle.

12

Iteration: for loops
Dissection of for structure
• We interpret the for structure

for (init; cond; update)
statement

as follows
• init is an expression that is executed at the start of

the loop.
– usually to initialize the counter.

• cond is a condition that is tested at the beginning of
each cycle.
– the loop continues while it is true

• update is an expression that is executed at the end of
every cycle;
– Usually to update the counter for the next cycle.

10/06/2013

7

13

Iteration: for loops
Example
• Read a positive integer n and print the sum of the

first n positive integers.

// declaration
int n, sum = 0;

// input
York.print(“Enter a positive integer: “);
n = York.readInt();

// computation
for (int i = 1; i <= n; i++)

sum = sum + i;

// output
York.println(“The sum is “ + sum);

14

Iteration: for loops
Example
• Read a positive integer n and print the sum of the

first n positive integers.

// declaration
int n, sum = 0;

// input
York.print(“Enter a positive integer: “);
n = York.readInt();

// computation
for (int i = 1; i <= n; i++)

sum = sum + i;

// output
York.println(“The sum is “ + sum);

10/06/2013

8

15

Iteration: for loops
Example
• Read a positive integer n and print the sum of the

first n positive integers.

// declaration
int n, sum = 0;

// input
output.print(“Enter a positive integer: “);
n = input.nextInt();

// computation
for (int i = 1; i <= n; i++)

sum = sum + i;

// output
IO.println(“The sum is “ + sum);

16

Iteration: for loops
Example
• Read a positive integer n and print the sum of the

first n positive integers.

// declaration
int n, sum = 0;

// input
output.print(“Enter a positive integer: “);
n = input.nextInt();

// computation
for (int i = 1; i <= n; i++)

sum = sum + i;

// output
IO.println(“The sum is “ + sum);

10/06/2013

9

17

Iteration: for loops
Example
• Read a positive integer n and print the sum of the

first n positive integers.

// declaration
int n, sum = 0;

// input
output.print(“Enter a positive integer: “);
n = input.nextInt();

// computation
for (int i = 1; i <= n; i++)

sum = sum + i;

// output
output.println(“The sum is “ + sum);

18

Iteration: for loops

About the counter
• The counter can

– Start at any value
for (int i = 5; i < = n; i++)

– Go down as well as up
for (int i = 10; i > 0; i--)

– Change by an arbitrary amount
for (int i = 0; i <= n; i = i + 5)

10/06/2013

10

19

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

final String inputFileName = “myInputFile.txt”;
UniReader myReader = new UniReader(inputFileName);
double total = 0.0;
int count = 0;
for (double current = myReader.readDouble();

!myReader.eof());
current = myReader.readDouble())

{ total = total + current;
count++;

}
myReader.close();
IO.print(“The average of all values in the input is:”);
IO.println(total/count, “,.2”);

20

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.println(“%,.2f%n”, total/count);

10/06/2013

11

21

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.println(“%,.2f%n”, total/count);

22

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.println(“%,.2f%n”, total/count);

10/06/2013

12

23

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.println(“%,.2f%n”, total/count);

24

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.printf(“%,.2f%n”, total/count);

10/06/2013

13

25

Iteration: for loops
Another use of for
• Loops with for are sometimes used to iterate over

members or input records
• Example: Read doubles from a file; output average.

String inputFileName = “myInputFile.txt”;
Scanner myReader = new Scanner(new File(inputFileName));
double total = 0.0;
int count = 0;
for (; myReader.hasNextDouble();)
{ total = total + myReader.nextDouble();

count++;
}
myReader.close();
output.print(“The average of all values in the input is:”);
output.printf(“%,.2f%n”, total/count);

• Remark: While this code works, it arguably is a non-
idiomatic useage of for.

26

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

10/06/2013

14

27

Iteration: while loops

Test at the beginning
• Suppose we want to repeat a set of operations as

long as some condition remains true.
• In some cases, it is appropriate to test the condition

at the beginning of each cycle.
• In Java, we make use of the while structure:

while (condition)
statement

28

Iteration: while loops

Remarks
• Let’s make a few general comments on the operation

of while.
while (condition)

statement
• The body of the loop (i.e., statement) is repeatedly

executed, as long as the condition is true.
• The condition is tested at the beginning of each

cycle.
• If the condition is false initially, then the body is never

executed.
• If the condition becomes false during a loop cycle,

then the cycle is completed nevertheless.

10/06/2013

15

29

Iteration: while loops

Remarks
• Let’s make a few general comments on the operation

of while.
while (condition)

statement
• The body of the loop (i.e., statement) is repeatedly

executed, as long as the condition is true.
• The condition is tested at the beginning of each

cycle.
• If the condition is false initially, then the body is never

executed.
• If the condition becomes false during a loop cycle,

then the cycle is completed nevertheless.

30

Iteration: while loops

Remarks
• Let’s make a few general comments on the operation

of while.
while (condition)

statement
• The body of the loop (i.e., statement) is repeatedly

executed, as long as the condition is true.
• The condition is tested at the beginning of each

cycle.
• If the condition is false initially, then the body is never

executed.
• If the condition becomes false during a loop cycle,

then the cycle is completed nevertheless.

10/06/2013

16

31

Iteration: while loops

Remarks
• Let’s make a few general comments on the operation

of while.
while (condition)

statement
• The body of the loop (i.e., statement) is repeatedly

executed, as long as the condition is true.
• The condition is tested at the beginning of each

cycle.
• If the condition is false initially, then the body is never

executed.
• If the condition becomes false during a loop cycle,

then the cycle is completed nevertheless.

32

Iteration: while loops

Remarks
• Let’s make a few general comments on the operation

of while.
while (condition)

statement
• The body of the loop (i.e., statement) is repeatedly

executed, as long as the condition is true.
• The condition is tested at the beginning of each

cycle.
• If the condition is false initially, then the body is never

executed.
• If the condition becomes false during a loop cycle,

then the cycle is completed nevertheless.

10/06/2013

17

33

Iteration: while loops
Problem
• Determine how many months it takes to pay back a

loan given the loan amount, monthly payment
amount and interest rate.

Solution procedure (an algorithm)
1. Initialize monthsRequired to 0.
2. Repeat (i), (ii) and (iii) while amountOwed > 0.

(i) Add monthlyInterest to amountOwed.
(ii) Subtract monthlyPayment from amountOwed.
(iii) Increment monthsRequired by 1.

3. Report monthsRequired as the answer.

34

Iteration: while loops
In Java
// declaration & input
output.print(“Enter loan amount: “);
double amountOwed = input.nextDouble();
output.print(“Enter the monthly payment: “);
double monthlyPayment = input.nextDouble();
output.print(“Enter interest rate: “);
double interestRate = input.nextDouble();

10/06/2013

18

35

Iteration: while loops
In Java
// declaration & input
output.print(“Enter loan amount: “);
double amountOwed = input.nextDouble();
output.print(“Enter the monthly payment: “);
double monthlyPayment = input.nextDouble();
output.print(“Enter interest rate: “);
double interestRate = input.nextDouble();
int monthsRequired = 0;
while (amountOwed > 0)
{ // computation
}

36

Iteration: while loops
In Java
// declaration & input
output.print(“Enter loan amount: “);
double amountOwed = input.nextDouble();
output.print(“Enter the monthly payment: “);
double monthlyPayment = input.nextDouble();
output.print(“Enter interest rate: “);
double interestRate = input.nextDouble();
int monthsRequired = 0;
while (amountOwed > 0)
{ // computation

amountOwed = amountOwed + amountOwed * interestRate;
amountOwed = amountOwed – monthlyPayment;
monthsRequired++;

}

10/06/2013

19

37

Iteration: while loops
In Java
// output
output.println(“It will take ” + monthsRequired +

“ months to pay back the loan.”);

38

Iteration: for and while compared

Remark
• The code

for (init; test; step)
statement

is equivalent to
{ init;

while (test)
{ statement
step;

}
}

• But the former is generally much clearer than the
latter.

10/06/2013

20

39

Iteration: for and while compared

Example
• The code

for (int j=10; j>-1; j--)
output.println(j);

is equivalent to
{ int j = 10;

while (j>-1)
{ output.println(j);

j- -;
}

}

• Both code excerpts print out a “countdown” from
10 to 0.

40

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

10/06/2013

21

41

Iteration: do loops

Test at the end
• Suppose we want to repeat a set of operations as

long as some condition remains true.
• In some cases, it is appropriate to test the condition

at the end of each cycle.
• In Java, we make use of the do structure:

do
statement

while (condition);

42

Iteration: do loops

Test at the end
• Suppose we want to repeat a set of operations as

long as some condition remains true.
• In some cases, it is appropriate to test the condition

at the end of each cycle.
• In Java, we make use of the do structure:

do
statement

while (condition);

Remark
• The body of the loop is always executed at least

once.

10/06/2013

22

43

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user.

44

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
// declaration
double total = 0;
double amount;
String response;

10/06/2013

23

45

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
// declaration
double total = 0;
double amount;
String response;
output.println(“Please enter numbers to be added.”);
do
{ // input & computation
} while (??);

46

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
// declaration
double total = 0;
double amount;
String response;
output.println(“Please enter numbers to be added.”);
do
{ // input & computation

output.print(“Enter an amount to add: “);
amount = input.nextDouble();
total = total + amount;
// how to decide continuation or end

} while (??);

10/06/2013

24

47

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
do
{ // input & computation

output.print(“Enter an amount to add: “);
amount = input.nextDouble();
total = total + amount;
// how to decide continuation or end
output.print(“Continue (y/n)? ”);
response = input.nextLine();

} while (??);

48

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
do
{ // input & computation

output.print(“Enter an amount to add: “);
amount = input.nextDouble();
total = total + amount;
// how to decide continuation or end
output.print(“Continue (y/n)? ”);
response = input.nextLine();

} while (response.charAt(0) == ‘y’);

10/06/2013

25

49

Iteration: do loops
Example
• Suppose we want to sum up the numbers entered by a

user. In Java:
do
{ // input & computation

output.print(“Enter an amount to add: “);
amount = input.nextDouble();
total = total + amount;
// how to decide continuation or end
output.print(“Continue (y/n)? ”);
response = input.nextLine();

} while (response.charAt(0) == ‘y’);

// output
output.println(“The total is “ + total);

50

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

10/06/2013

26

51

Iteration: Exiting inside a cycle; infinite loops

Exiting in the middle of a cycle
• Sometimes, the natural place to test the loop

condition is somewhere in the middle of the cycle.
• For example, suppose we want to modify the

previous example so that it exits when a negative
amount is entered, i.e., (in pseudocode)

initialize total to 0.
loop

read an amount
if amount < 0 the exit the loop.
add amount to total

end loop

52

Iteration: Exiting inside a cycle; infinite loops

Exiting in the middle of a cycle
• Sometimes, the natural place to test the loop

condition is somewhere in the middle of the cycle.
• For example, suppose we want to modify the

previous example so that it exits when a negative
amount is entered, i.e., (in pseudocode)

initialize total to 0.
loop

read an amount
if amount < 0 the exit the loop.
add amount to total

end loop

10/06/2013

27

53

Iteration: Exiting inside a cycle; infinite loops

Exiting in the middle of a cycle
• Sometimes, the natural place to test the loop

condition is somewhere in the middle of the cycle.
• For example, suppose we want to modify the

previous example so that it exits when a negative
amount is entered, i.e., (in pseudocode)

initialize total to 0.
loop

read an amount
if amount < 0 the exit the loop.
add amount to total

end loop

Remark: A value that is used
to signal the end of input is
called a sentinel.

54

Iteration: Exiting inside a cycle; infinite loops

In Java
• We can make use of break

// declaration
double amount, total = 0;
while (true)
{ // input and computation

output.print(“Enter an amount (< 0 to exit): “);
amount = input.nextDouble();
if (amount < 0) break; // this is the way out of loop
total = total + amount;

}
//output
output.println(“Total is “ + total);

10/06/2013

28

55

Iteration: Exiting inside a cycle; infinite loops

On the use of break
• Previously, we encountered break in conjunction

with the switch statement.
• In general, break exits immediately from the

nearest enclosing control structure.
– i.e., from enclosing switch, while, do or for.

• It is easy to write code that is hard to understand
using break.

• It should only be used as above and in switch.

56

Iteration: Exiting inside a cycle; infinite loops
Using boolean flag to exit
• Another way to deal with exiting from inside a loop

is via use of a boolean variable to serve as flag.
• In Java
// declaration
double amount, total = 0;
boolean done = false;
while (!done)
{ // input and computation

output.print(“Enter an amount (< 0 to exit): “);
amount = input.nextDouble();
if (amount < 0)

done = true;
else

total = total + amount;
}

10/06/2013

29

57

Iteration: Exiting inside a cycle; infinite loops
Using boolean flag to exit
• Another way to deal with exiting from inside a loop

is via use of a boolean variable to serve as flag.
• In Java
// declaration
double amount, total = 0;
boolean done = false;
while (!done)
{ // input and computation

output.print(“Enter an amount (< 0 to exit): “);
amount = input.nextDouble();
if (amount < 0)

done = true;
else

total = total + amount;
}

58

Iteration: Exiting inside a cycle; infinite loops

Infinite loops
• Always make sure that a loop eventually exits.
• Otherwise, you have an infinite loop.

10/06/2013

30

59

Iteration: Exiting inside a cycle; infinite loops

Infinite loops
• Always make sure that a loop eventually exits.
• Otherwise, you have an infinite loop.
• Example 1

double amount=0, total=0;
while (true)
{ // input statement(s) left out

if (amount < 0) break;
total = total + amount;

}

Remark: Make sure that
appropriate update is
available to enable loop
exit.

60

Iteration: Exiting inside a cycle; infinite loops

Infinite loops
• Always make sure that a loop eventually exits.
• Otherwise, you have an infinite loop.
• Example 2

double amount=0, total=0;
while (true)
{ output.print(“Enter an amount (< 0 to exit): “);

amount = input.nextDouble();
// conditional left out

total = total + amount;
}

Remark: Make sure a
conditional is available
for loop exit.

10/06/2013

31

61

Iteration: Exiting inside a cycle; infinite loops

Infinite loops
• Always make sure that a loop eventually exits.
• Otherwise, you have an infinite loop.
• Example 3

output.print(“Enter an integer for count down: “)
int count = input.nextInt();
while (count != -1)
{

output.println(count);
count--;

}

Remark: Make sure that the
conditional test ultimately
will allow exiting, for all
possible inputs.

62

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

10/06/2013

32

63

Scope & recapitulation

Scope
• The scope of a variable is the part of the program

where it is visible, i.e., where it can be accessed.
• The variables declared inside a block { … } are local

to the block and are only visible in the block.

64

Scope & recapitulation
Scope
• Example

public class ScopeEg
{ public static void main(String[] args)

{ PrintStream output = System.out;
int v1 = 1;
for (int v2=2; v2<=4; v2++)
{ int v3 = 3;

output.println(v3); // ok
output.println(v2); // ok
output.println(v1); // ok

}
output.println(v3); // not ok!
output.println(v2); // not ok!
output.println(v1); // ok

}
}

10/06/2013

33

65

Scope & recapitulation
Scope
• Example

public class ScopeEg
{ public static void main(String[] args)

{ PrintStream output = System.out;
int v1 = 1;
for (int v2=2; v2<=4; v2++)
{ int v3 = 3;

output.println(v3); // ok
output.println(v2); // ok
output.println(v1); // ok

}
output.println(v3); // not ok!
output.println(v2); // not ok!
output.println(v1); // ok

}
}

66

Scope & recapitulation
Scope
• Example

public class ScopeEg
{ public static void main(String[] args)

{ PrintStream output = System.out;
int v1 = 1;
for (int v2=2; v2<=4; v2++)
{ int v3 = 3;

output.println(v3); // ok
output.println(v2); // ok
output.println(v1); // ok

}
output.println(v3); // not ok!
output.println(v2); // not ok!
output.println(v1); // ok

}
}

10/06/2013

34

67

Scope and recapitulation
Recap
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops for, while and do.

When to use each loop type.
• If number of iterations known before loop starts, then use

for (we call this a counted loop).
• If repeating as long as a condition holds (we call this a

conditional loop) and the test is…
– at beginning use while (condition) { … }
– at end use do { … } while (condition)
– in middle use while (true) { … if (condition) break; … }

• If iterating over a collection of input records, then can
use for.

68

Scope and recapitulation
Recap
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops for, while and do.

When to use each loop
• If number of iterations known before loop starts, then use

for (we call this a counted loop).
• If repeating as long as a condition holds (we call this a

conditional loop) and the test is…
– at beginning use while (condition) { … }
– at end use do { … } while (condition)
– in middle use while (true) { … if (condition) break; … }

• If iterating over a collection of input records, then can
use for.

10/06/2013

35

69

Scope and recapitulation
Recap
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops for, while and do.

When to use each loop
• If number of iterations known before loop starts, then use

for (we call this a counted loop).
• If repeating as long as a condition holds (we call this a

conditional loop) and the test is…
– at beginning use while (condition) { … }
– at end use do { … } while (condition)
– in middle use while (true) { … if (condition) break; … }

• If iterating over a collection of input records, then can
use for.

70

Scope and recapitulation
Recap
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops for, while and do.

When to use each loop
• If number of iterations known before loop starts, then use

for (we call this a counted loop).
• If repeating as long as a condition holds (we call this a

conditional loop) and the test is…
– at beginning use while (condition) { … }
– at end use do { … } while (condition)
– in middle use while (true) { … if (condition) break; … }

• If iterating over a collection of input records, then can
use for.

10/06/2013

36

71

Scope and recapitulation
Recap
• Contemporary programming languages support

repetitive structure in terms of a loop.
• Java provides three kinds of loops for, while and do.

When to use each loop
• If number of iterations known before loop starts, then use

for (we call this a counted loop).
• If repeating as long as a condition holds (we call this a

conditional loop) and the test is…
– at beginning use while (condition) { … }
– at end use do { … } while (condition)
– in middle use while (true) { … if (condition) break; … }

• If iterating over a collection of input records, then can
use for.

72

Scope and recapitulation

Control structures
• We have now seen three types of control structure

Sequence: straight
line code

Selection: if;
switch

Iteration: for;
while; do

10/06/2013

37

73

Scope and recapitulation

Control structures
• We have now seen three types of control structure

Sequence: straight
line code

Selection: if;
switch

Iteration: for;
while; do

74

Scope and recapitulation

Control structures
• We have now seen three types of control structure

Sequence: straight
line code

Selection: if;
switch

Iteration: for;
while; do

10/06/2013

38

75

Outline

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

76

Software engineering examples

Phased development
1. Requirements

1.1 Problem definition � general description.
1.2 Analysis � Input & validation; Output and format.

2. Design � representation and procedures (data
structures and algorithms)

3. Implementation � Program.
4. Testing � Empirical evaluation.
5. Deployment (incl. Maintenance) � fielded product.

10/06/2013

39

77

Software engineering examples

Phased development
1. Requirements

1.1 Problem definition � general description.
1.2 Analysis � Input & validation; Output and format.

2. Design � representation and procedures (data
structures and algorithms)

3. Implementation � Program.
4. Testing � Empirical evaluation.
5. Deployment (incl. Maintenance) � fielded product.

78

Software engineering examples

Problem
• Print a table of the squares of positive integers from 1

to 10.

10/06/2013

40

79

Software engineering examples

Analysis
• There is no user supplied input to the program; no

validation.
• The output should be the table of squares as

formatted in the following example
n n^2
1 1
2 4
3 9

etc.
10 100

80

Software engineering examples

Design
• We must print one line at a time; in each line

– print n in a column of width 2
– then three spaces
– then n^2 in column of width 3

• Printing the table is a repetitive task
– Know in advance how many repetitions

(10=N_MAX) � use for loop
– n starts at 1
– increases by 1 each iteration
– loop stops when n > N_MAX

10/06/2013

41

81

Software engineering examples

Design
• We must print one line at a time; in each line

– print n in a column of width 2
– then three spaces
– then n^2 in column of width 3

• Printing the table is a repetitive task
– Know in advance how many repetitions

(10=N_MAX) � use for loop
– n starts at 1
– increases by 1 each iteration
– loop stops when n > N_MAX

82

Software engineering examples

Design
• Our initial observations suggest an algorithm in

pseudocode

print header
for n from 1 to N_MAX incrementing by 1
{ print n in column of width 2

print 3 spaces
print n^2 in column of width 3

}

10/06/2013

42

83

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresTbl
{ public static void main(String[] args)

{ DICO
}

}

84

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresTbl
{ public static void main(String[] args)

{ final int N_MAX = 10;
IO.println(“ n n^2”); // n width 2, 3 blanks, n^2

}
}

10/06/2013

43

85

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresTbl
{ public static void main(String[] args)

{ final int N_MAX = 10;
output.println(“ n n^2”); // n width 2, 3 blanks, n^2

}
}

86

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresTbl
{ public static void main(String[] args)

{ final int N_MAX = 10;
output.println(“ n n^2”); // n width 2, 3 blanks, n^2
// for n from 1 to N_MAX incrementing by 1
for (int n = 1; n <= N_MAX; n++)
{ // compute and output
}

}
}

10/06/2013

44

87

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresTbl
{ public static void main(String[] args)

{ final int N_MAX = 10;
output.println(“ n n^2”); // n width 2, 3 blanks, n^2
// for n from 1 to N_MAX incrementing by 1
for (int n = 1; n <= N_MAX; n++)
{ output.printf(“%2d”, n); // field width 2

output.print(“ “); // 3 blanks
output.printf(“%3d%n”, n * n); // field width 3

}
}

}

88

Software engineering examples
Test
• Program does same thing every time; simple testing.

10/06/2013

45

89

Software engineering examples
Test
• Program does same thing every time; simple testing.

% java SquaresTbl

90

Software engineering examples
Test
• Program does same thing every time; simple testing.

% java SquaresTbl
n n^2
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

10 100

10/06/2013

46

91

Software engineering examples

Problem
• Repeatedly accept a number from the user and print

the square.

92

Software engineering examples
Analysis
• Individual inputs should be taken as a double

followed by newline.
• Validation only that a negative value specifies

termination.
• Output should be the square of the input; format as in

the following cases

Enter a number (< 0 to exit): 3
3.0^2 = 9.0
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): -1
Bye.

10/06/2013

47

93

Software engineering examples

Design
• We have another repetitive task.
• We do not know in advance how many cycles to

perform.
• We do know the condition for stopping (input < 0).
• So, we choose to use a conditional loop.

94

Software engineering examples

Design
• Our initial observations suggest an algorithm in

pseudocode

loop
{ print prompt

read x
if x < 0

exit loop
print x, “^2” = “ and x*x

}
print “Bye.”

10/06/2013

48

95

Software engineering examples
Implementation

// assume everything from our standard template

public class SquaresInteractive
{ public static void main(String[] args)

{ DICO
}

}

96

Software engineering examples
Implementation
// assume everything from our standard template

public class SquaresInteractive
{ public static void main(String[] args)

{ double x;
while (true)
{ // input, compute, output: must exit loop
}
output.println(“Bye.”);

}
}

10/06/2013

49

97

Software engineering examples
Implementation
// assume everything from our standard template

public class SquaresInteractive
{ public static void main(String[] args)

{ double x;
while (true)
{ output.print(“Enter a number (< 0 to exit): “);

x = input.nextDouble();
// how do we exit?
output.println(x + “^2 = “ + x * x);

}
output.println(“Bye.”);

}
}

98

Software engineering examples
Implementation
// assume everything from our standard template

public class SquaresInteractive
{ public static void main(String[] args)

{ double x;
while (true)
{ output.print(“Enter a number (< 0 to exit): “);

x = input.nextDouble();
if (x < 0)

break; // this is the way out of the loop
output.println(x + “^2 = “ + x * x);

}
output.println(“Bye.”);

}
}

10/06/2013

50

99

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

100

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

10/06/2013

51

101

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

102

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

10/06/2013

52

103

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

104

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

10/06/2013

53

105

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

106

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

10/06/2013

54

107

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

108

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

10/06/2013

55

109

Software engineering examples
Test
• Test standard operating range; boundaries; exit.

% java SquaresInteractive
Enter a number (< 0 to exit): 4.5
4.5^2 = 20.25
Enter a number (< 0 to exit): 0
0.0^2 = 0.0
Enter a number (< 0 to exit): 12345.54321
12345.54321^2 = 1.524124371499771E8
Enter a number (< 0 to exit): -1
Bye.
%

110

Software engineering examples

Problem
• Print a multiplication table.

10/06/2013

56

111

Software engineering examples

Analysis
• No input; all output generated on the basis of

internally maintained information.
• Output should be a multiplication table as shown

below (but with all entries explicitly filled in).

10010

963

642

10321

L

OM

M

K

112

Software engineering examples

Design
• We have another repetitive task.
• We see two major steps

1.Print some number of rows, 10.
2.Print some number of products, 10, in each row.

10/06/2013

57

113

Software engineering examples

Design
• Since the number of rows that are to be printed is

known
– Use a for loop

• Since the number of products in each row is known
– Use a (second) for loop

• Since we are doing products per row.
– Nest the two for loops

114

Software engineering examples

Design
• Our pseudocode becomes

for i from 1 to 10 incrementing by 1
for j from 1 to 10 incrementing by 1

print i * j
start a newline

10/06/2013

58

115

Software engineering examples

Design
• Our pseudocode becomes

for i from 1 to 10 incrementing by 1
{ for j from 1 to 10 incrementing by 1

print i * j
start a newline

}

116

Software engineering examples

Design
• Our pseudocode becomes

for i from 1 to 10 incrementing by 1
{ for j from 1 to 10 incrementing by 1

{ print i * j
}

start a newline
}

10/06/2013

59

117

Software engineering examples

Design
• Our pseudocode becomes

for i from 1 to 10 incrementing by 1
{ for j from 1 to 10 incrementing by 1

{ print i * j
}

start a newline
}

• Remark: Nested for loops are very common in the
processing of multidimensional data.

118

Software engineering examples
Implementation

// assume everything from our template

public class MultTbl

{ public static void main(String[] args)

{ // declaration, no input

// computation and output

}

}

10/06/2013

60

119

Software engineering examples
Implementation

// assume everything from our template

public class MultTbl
{ public static void main(String[] args)

{ // Declaration, no input
final int MIN_NUM = 1;
final int MAX_NUM = 10;

// computation and output
}

}

120

Software engineering examples
Implementation

// assume everything from our template

public class MultTbl
{ public static void main(String[] args)

{ // Declaration, no input
final int MIN_NUM = 1;
final int MAX_NUM = 10;

// computation and output
for (int i = MIN_NUM; i <= MAX_NUM; i++)

{ for (int j = MIN_NUM; j <= MAX_NUM; j++)
{ IO.print(i * j, “4”);
} // end for j

IO.println(“”);
} // end for i

}
}

10/06/2013

61

121

Software engineering examples
Implementation

// assume everything from our template

public class MultTbl
{ public static void main(String[] args)

{ // Declaration, no input
final int MIN_NUM = 1;
final int MAX_NUM = 10;

// computation and output
for (int i = MIN_NUM; i <= MAX_NUM; i++)

{ for (int j = MIN_NUM; j <= MAX_NUM; j++)
{ IO.print(i * j, “4”);
} // end for j

output.println(“”);
} // end for i

}
}

122

Software engineering examples
Implementation

// assume everything from our template

public class MultTbl
{ public static void main(String[] args)

{ // Declaration, no input
final int MIN_NUM = 1;
final int MAX_NUM = 10;

// computation and output
for (int i = MIN_NUM; i <= MAX_NUM; i++)

{ for (int j = MIN_NUM; j <= MAX_NUM; j++)
{ output.printf(“%4d”, i * j);
} // end for j

output.println(“”);
} // end for i

}
}

10/06/2013

62

123

Software engineering examples
Test
• Program does same thing every time; simple testing.

124

Software engineering examples
Test
• Program does same thing every time; simple testing.

% java MultTbl

10/06/2013

63

125

Software engineering examples
Test
• Program does same thing every time; simple testing.

% java MultTbl

100908070605040302010

9081726354453627189

8072645648403224168

7063564942352821147

6054484236302418126

5045403530252015105

403632282420161284

30272421181512963

2018161412108642

10987654321

126

Software engineering examples

Problem
• Accept a number from the user; print a triangle on the

screen with the height equal to the user supplied
number.

10/06/2013

64

127

Software engineering examples

Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

128

Software engineering examples
Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

• Remarks: On line i (starting at 1) we must print
– i – 1 spaces
– 2 * (nLines – i) + 1 asterisks

10/06/2013

65

129

Software engineering examples
Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

• Remarks: On line i (starting at 1) we must print
– i – 1 spaces: Line 1 � 1-1=0 spaces
– 2 * (nLines – i) + 1 asterisks: Line 1�2*(4-1)+1=7 *

130

Software engineering examples
Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

• Remarks: On line i (starting at 1) we must print
– i – 1 spaces: Line 2 � 2-1=1 spaces
– 2 * (nLines – i) + 1 asterisks: Line 2�2*(4-2)+1=5 *

10/06/2013

66

131

Software engineering examples
Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

• Remarks: On line i (starting at 1) we must print
– i – 1 spaces: Line 3 � 3-1=2 spaces
– 2 * (nLines – i) + 1 asterisks: Line 3�2*(4-3)+1=3 *

132

Software engineering examples
Analysis
• Input is an integer from the keyboard; following

prompt; no validation beyond it being an integer.
• Output should be a triangle formatted as below

Enter the number of lines in the triangle: 4

*

• Remarks: On line i (starting at 1) we must print
– i – 1 spaces: Line 4 � 4-1=3 spaces
– 2 * (nLines – i) + 1 asterisks: Line 4�2*(4-4)+1=1 *

10/06/2013

67

133

Software engineering examples

Design
• We have another repetitive task.
• First decomposition of the task

– Print prompt
– Read nLines
– Print triangle of size nLines.

134

Software engineering examples

Design
• Consider the printing triangle subtask.
• This cannot be done in one shot
• Must repeatedly print one line

– Number of repetitions known, nLines
– So, use a for loop

• We have a (coarse) algorithm in pseudocode

print prompt
read nLines
for i from 1 to nLines incrementing by 1

print line i of triangle.

10/06/2013

68

135

Software engineering examples

Design
• Consider the print line i of triangle subtask.
• Can’t be done in one shot

– Spaces/line varies with i
– Asterisks/line varies with i

• Must repeatedly print one space (asterisk) at a time
– Number of repetitions known in advance
– So, use a for loop

136

Software engineering examples
Design
• We have a refined algorithm in pseudocode

print prompt
read nLines
for i from 1 to nLines incrementing by 1
{ nSpaces = i – 1;
nAsterisks = 2 * (nLines – i) + 1;
for j from 1 to nSpaces incrementing by 1

print a space
for j from 1 to nAsterisks incrementing by 1

print an asterisk
skip to next line

}

10/06/2013

69

137

Software engineering examples
Implementation

// assume everything from our template

public class DrawTriangle
{ public static void main(String[] args)

{ DICO
}

}

138

Software engineering examples
Implementation

// assume everything from our template

public class DrawTriangle
{ public static void main(String[] args)

{ output.print(“Enter the number of lines in the triangle: “);
int nLines = input.nextInt();
for (int i = 1; i <= nLines; i++)
{ // print a line
}

}
}

10/06/2013

70

139

Software engineering examples
Implementation

// assume everything from our template

public class DrawTriangle
{ public static void main(String[] args)

{ output.print(“Enter the number of lines in the triangle: “);
int nLines = input.nextInt();
for (int i = 1; i <= nLines; i++)
{ // print a line
}

}
}

140

Software engineering examples
Implementation

// assume everything from our template

public class DrawTriangle
{ public static void main(String[] args)

{ output.print(“Enter the number of lines in the triangle: “);
int nLines = input.nextInt();
for (int i = 1; i <= nLines; i++)
{ int nSpaces = i –1;
int nAsterisks = 2 * (nLines – i) + 1;
// print the spaces
// print the asterisks

}
}

}

10/06/2013

71

141

Software engineering examples
Implementation (continued)

// print the spaces
for (int j = 1; j <= nSpaces; j++)

output.print(“ “);
// print the asterisks

142

Software engineering examples
Implementation (continued)

// print the spaces
for (int j = 1; j <= nSpaces; j++)

output.print(“ “);
// print the asterisks

for (int j = 1; j <= nAsterisks; j++)

output.print(“*”);

10/06/2013

72

143

Software engineering examples
Implementation (continued)

// print the spaces
for (int j = 1; j <= nSpaces; j++)

output.print(“ “);
// print the asterisks

for (int j = 1; j <= nAsterisks; j++)

output.print(“*”);
output.println(“”); // send the newline

144

Software engineering examples
Test
• Test standard range; boundaries; bad value.

10/06/2013

73

145

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

146

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle:

10/06/2013

74

147

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: 4

148

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: 4

*

10/06/2013

75

149

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

150

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle:

10/06/2013

76

151

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: 0

152

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: 0
%

10/06/2013

77

153

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

154

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle:

10/06/2013

78

155

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: -1

156

Software engineering examples
Test
• Test standard range; boundaries; bad value.

% java DrawTriangle

Enter the number of lines in the triangle: -1
%

10/06/2013

79

157

Software engineering examples
Top-down design
• Notice how we have been incrementally producing

our code.

158

Software engineering examples
Top-down design
• Notice how we have been incrementally producing

our code.
• We start with a very coarse “high-level” algorithm to

solve the problem
– This requires identifying steps in the solution or

subproblems
– It is okay if the subproblems must be solved latter.

10/06/2013

80

159

Software engineering examples
Top-down design
• Notice how we have been incrementally producing

our code.
• We start with a very coarse “high-level” algorithm to

solve the problem
– The requires identifying steps in the solution or

subproblems
– It is okay if the subproblems must be solved latter.

• We then work on the subproblems separately.
– Here, we apply the same problem decomposition

approach.

160

Software engineering examples
Top-down design
• Notice how we have been incrementally producing

our code.
• We start with a very coarse “high-level” algorithm to

solve the problem
– The requires identifying steps in the solution or

subproblems
– It is okay if the subproblems must be solved latter.

• We then work on the subproblems separately.
– Here, we apply the same problem decomposition

approach.
• We repeat until all the subproblems have been

solved
– With enough detail to be written in code.

10/06/2013

81

161

Software engineering examples

Problem
• Repeatedly read the marks for students in a class

and when they are all read produce a histogram
showing the distribution of the marks.

162

Software engineering examples
Analysis
• The marks are integers (out of 100).
• The end of the input is signaled by a sentinel, a negative

integer.
• Output should be as in the following example

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

10/06/2013

82

163

Software engineering examples
Analysis
• The marks are integers (out of 100).
• The end of the input is signaled by a sentinel, a negative

integer.
• Output should be as in the following example

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

164

Software engineering examples

Design
• We see that there are two main subtasks:

1.Read marks and calculate distribution
2.Print histogram

10/06/2013

83

165

Software engineering examples

Design: First subtask
• Must store a distribution

– Use a counter for each category of mark
• Reading the marks is a repetitive task

– Don’t know in advance how many repetitions
– Use a conditional loop
– Exit loop when input is negative

166

Software engineering examples

Design: First subtask
• Must store a distribution

– Use a counter for each category of mark
• Reading the marks is a repetitive task

– Don’t know in advance how many repetitions
– Use a conditional loop
– Exit loop when input is negative

10/06/2013

84

167

Software engineering examples
Design: First subtask
• Our initial observations suggest an algorithm in

pseudocode

initialize counters nA, nB, nC, nD, nF to 0
loop
{ // read input, increment counts, need to exit
}

168

Software engineering examples
Design: First subtask
• Our initial observations suggest an algorithm in

pseudocode

initialize counters nA, nB, nC, nD, nF to 0
loop
{ read mark

if mark < 0
exit loop

// increment counts
}

10/06/2013

85

169

Software engineering examples
Design: First subtask
• Our initial observations suggest an algorithm in

pseudocode

initialize counters nA, nB, nC, nD, nF to 0
loop

{ read mark
if mark < 0

exit loop

if mark >= 80
increment nA

else if mark >= 70
increment nB

…

else
increment nF

}

170

Software engineering examples

Design: Second subtask
• Must print the histogram

– Print the header
– Print line for As
– Print line for Bs
– etc.
– Print line for Fs

• Printing lines is repetitive; however,
– Must use a different counter each time
– So, cannot use a loop.

10/06/2013

86

171

Software engineering examples

Design: Second subtask
• Within the second subtask we find another subtask

– Print line for category c with count n:
– In pseudocode

print label c
print n asterisks
skip to next line

172

Software engineering examples

Design: Second subtask
• Within the second subtask we find another subtask

– Print line for category c with count n:
– In pseudocode

print label c
print n asterisks
skip to next line

• Once again, we see an additional subtask
– Print n asterisks

10/06/2013

87

173

Software engineering examples

Design: Second subtask
• Print n asterisks

– Number of asterisks varies
– Must repeatedly print 1 asterisk n times
– Know how many repetitions at start of loop
– Use for loop
– Loop counter should go from 1 to n

174

Software engineering examples

Design: Second subtask
• Print n asterisks

– Number of asterisks varies
– Must repeatedly print 1 asterisk n times
– Know how many repetitions at start of loop
– Use for loop
– Loop counter should go from 1 to n

• In pseudocode

for i from 1 to n incrementing by 1
{ print an asterisk
}

10/06/2013

88

175

Software engineering examples
Implementation

// usual assumption

public class MarksHisto
{ public static void main(String[] args)

{ // declaration
// input
// computation
// output

}
}

176

Software engineering examples
Implementation

// declaration
int mark;
int nA=0, nB=0, nC=0, nD =0, nF=0;

10/06/2013

89

177

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break; // this is the way out of the loop
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

178

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break;
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

10/06/2013

90

179

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break;
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

180

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break;
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

10/06/2013

91

181

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break;
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

182

Software engineering examples
Implementation

// input and computation
while (true)
{ mark = input.nextInt();
if (mark < 0)

break;
if (mark >= 80)

nA++;
else if (mark >= 70)

nB++;
else if (mark >= 60)

nC++;
else if (mark >= 50)

nD++;
else

nF++;
}

10/06/2013

92

183

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
York.print(“A: “);
for (int j = 1; j <= nA; j++)

York.print(“*”);
York.println(“”);
York.print(“B: “);
for (int j = 1; j <= nB; j++)

York.print(“*”);
York.println(“”);

York.print(“F: “);
for (int j = 1; j <= nF; j++)

York.print(“*”);
York.println(“”);

M

184

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
output.print(“A: “);
for (int j = 1; j <= nA; j++)

York.print(“*”);
York.println(“”);
York.print(“B: “);
for (int j = 1; j <= nB; j++)

York.print(“*”);
York.println(“”);

York.print(“F: “);
for (int j = 1; j <= nF; j++)

York.print(“*”);
York.println(“”);

M

10/06/2013

93

185

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
output.print(“A: “);
for (int j = 1; j <= nA; j++)

output.print(“*”);
York.println(“”);
York.print(“B: “);
for (int j = 1; j <= nB; j++)

York.print(“*”);
York.println(“”);

York.print(“F: “);
for (int j = 1; j <= nF; j++)

York.print(“*”);
York.println(“”);

M

186

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
output.print(“A: “);
for (int j = 1; j <= nA; j++)

output.print(“*”);
output.println(“”);
York.print(“B: “);
for (int j = 1; j <= nB; j++)

York.print(“*”);
York.println(“”);

York.print(“F: “);
for (int j = 1; j <= nF; j++)

York.print(“*”);
York.println(“”);

M

10/06/2013

94

187

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
output.print(“A: “);
for (int j = 1; j <= nA; j++)

output.print(“*”);
output.println(“”);
output.print(“B: “);
for (int j = 1; j <= nB; j++)

output.print(“*”);
output.println(“”);

York.print(“F: “);
for (int j = 1; j <= nF; j++)

York.print(“*”);
York.println(“”);

M

188

Software engineering examples
Implementation

// output
output.println(“Marks Histogram\n”);
output.print(“A: “);
for (int j = 1; j <= nA; j++)

output.print(“*”);
output.println(“”);
output.print(“B: “);
for (int j = 1; j <= nB; j++)

output.print(“*”);
output.println(“”);

output.print(“F: “);
for (int j = 1; j <= nF; j++)

output.print(“*”);
output.println(“”);

M

10/06/2013

95

189

Software engineering examples
Test

• Let’s just verify against the example used to define the
analysis; in practice more extensive testing mandatory.

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

190

Software engineering examples
Test

• Let’s just verify against the example used to define the
analysis; in practice more extensive testing mandatory.

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

10/06/2013

96

191

Software engineering examples
Test

• Let’s just verify against the example used to define the
analysis; in practice more extensive testing mandatory.

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

192

Software engineering examples
Test

• Let’s just verify against the example used to define the
analysis; in practice more extensive testing mandatory.

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

10/06/2013

97

193

Software engineering examples
Test

• Let’s just verify against the example used to define the
analysis; in practice more extensive testing mandatory.

% more marks.txt % java MarksHisto < marks.txt
72 Marks Histogram
89
76 A: **
65 B: ***
75 C: *
34 D:
95 F: *
-1

194

Software engineering examples

Problem
• Write a program that prints a square wave.

10/06/2013

98

195

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

196

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

10/06/2013

99

197

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

198

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

* amplitude

wavelength

10/06/2013

100

199

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

200

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

10/06/2013

101

201

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves
Enter amplitude: 3
Enter wavelength: 4

*

*

*

*

202

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves % java SquareWaves
Enter amplitude: 3 Enter amplitude: 4
Enter wavelength: 4 Enter wavelength: 6

****** ********
* *

****** *
* ********
****** *

* *
****** ********
* *

*

*
*

10/06/2013

102

203

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves % java SquareWaves
Enter amplitude: 3 Enter amplitude: 4
Enter wavelength: 4 Enter wavelength: 6
****** ********

* *
****** *
* ********
****** *

* *
****** ********
* *

*

*
*

Remark: Required to print
2 cycles of the waveform.

204

Software engineering examples
Analysis
• Input: Amplitude and wavelength; both positive integers, with

wavelength even.
• Output: As shown in the following examples.

% java SquareWaves % java SquareWaves
Enter amplitude: 3 Enter amplitude: 4
Enter wavelength: 4 Enter wavelength: 6
****** ********

* *
****** *
* ********
****** *

* *
****** ********
* *

*

*
*

Remark: Required to print
2 cycles of the waveform.

cycle 1

cycle 2

10/06/2013

103

205

Software engineering examples

Design
• We need to repeatedly print cycles of the wave, here

2 cycles � use a constant N_CYCLES
• Know how many repetitions� use a for loop.

206

Software engineering examples

Design
• 1st problem decomposition

print promt & read amplitude
print promt & read wavelength
for i from 1 to N_CYCLES

print a cycle

10/06/2013

104

207

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there are

4 subtasks.

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

* indented by (2*amplitude)-1 spaces

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

*

1

2

3

4

208

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there are

4 subtasks.

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

* indented by (2*amplitude)-1 spaces

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

*

1

2

3

4

10/06/2013

105

209

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there are

4 subtasks.

******** print a row of stars of length 2*amplitude

* print column of stars of length (wavelength/2)-1

* indented by (2*amplitude)-1 spaces

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

*

1

2

3

4

210

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there are

4 subtasks.

******** print a row of stars of length 2*amplitude

* print column of stars of length (wavelength/2)-1

* indented by (2*amplitude)-1 spaces

******** print a row of stars of length 2*amplitude

* print column of starts of length (wavelength/2)-1

*

1

2

3

4

10/06/2013

106

211

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there are

4 subtasks.

******** print a row of stars of length 2*amplitude

* print column of stars of length (wavelength/2)-1

* indented by (2*amplitude)-1 spaces

******** print a row of stars of length 2*amplitude

* print column of stars of length (wavelength/2)-1

*

1

2

3

4

212

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there

are 4 subtasks.

print a row of stars of length 2*amplitude
print column of starts of length (wavelength/2)-1

indented by (2*amplitude)-1 spaces
print a row of starts of length 2*amplitude
print a column of stars of length (wavelength/2)-1

10/06/2013

107

213

Software engineering examples

Design
• To “print a row of stars of length 2*amplitude”…
• … need to repeatedly print a star 2*amplitude times.
• Algorithm:

for j from 1 to 2*amplitude
print a star

skip to next line

214

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there

are 4 subtasks.

print a row of stars of length 2*amplitude
print column of stars of length (wavelength/2)-1

indented by (2*amplitude)-1 spaces
print a row of starts of length 2*amplitude
print a column of stars of length (wavelength/2)-1

10/06/2013

108

215

Software engineering examples

Design
• To “print column of starts of length (wavelength/2)-1”…
• … need to repeatedly print lines with a star on it that

many times.
• Algorithm

for j from 1 to (wavelength/2)-1
print a line with a star

216

Software engineering examples

Design
• To “print column of starts of length (wavelength/2)-1

indented by (2*amplitude)-1 spaces”…
• … need to repeatedly print such a line that many

times.
• Algorithm

for j from 1 to (wavelength/2)-1
print (2*amplitude)-1 spaces
print a star and skip to next line

10/06/2013

109

217

Software engineering examples

Design
• To “print (2*amplitude)-1 spaces”…
• … need to repeatedly print a space that many times.
• Algorithm

for k from 1 to (2*amplitude)-1
print a space

218

Software engineering examples

Design
• To “print column of starts of length (wavelength/2)-1

indented by (2*amplitude)-1 spaces”…
• Algorithm

for j from 1 to (wavelength/2)-1
for k from 1 to (2*amplitude)-1

print a space
print a star and skip to next line

10/06/2013

110

219

Software engineering examples

Design
• 2nd problem decomposition: To “print a cycle” there

are 4 subtasks.

print a row of stars of length 2*amplitude
print column of stars of length (wavelength/2)-1

indented by (2*amplitude)-1 spaces
print a row of stars of length 2*amplitude
print a column of stars of length (wavelength/2)-1

Remark
• We’ve already know how to solve the last two

problems as parts of solving the first two.

220

Software engineering examples

Design
• 1st problem decomposition

print promt & read amplitude
print promt & read wavelength
for i from 1 to N_CYCLES

print a cycle

10/06/2013

111

221

Software engineering examples
Implementation

// usual assumptions

public class SquareWaves
{ public static void main(String[] args)

{ // declaration
// input
// computation
// output

}
}

222

Software engineering examples
Implementation

// declaration
final int N_CYCLES =2;
int amplitude, wavelength;

10/06/2013

112

223

Software engineering examples
Implementation

// input
output.print(“Enter amplitude: ”);
amplitude = input.nextInt();
output.print(“Enter wavelength: ”);
wavelength = input.nextInt();

224

Software engineering examples
Implementation

// computation and output
for i from 1 to N_CYCLES

print a cycle

10/06/2013

113

225

Software engineering examples
Implementation

// computation and output
for (int i=1; i<=N_CYCLES; i++)
{ print a cycle
}

226

Software engineering examples
Implementation

// computation and output
print a cycle

10/06/2013

114

227

Software engineering examples
Implementation
// computation and output

print a row of stars of length 2*amplitude

print column of starts of length (wavelength/2)-1 indented by
(2*amplitude)-1 spaces

print a row of starts of length 2*amplitude

print a column of stars of length (wavelength/2)-1

228

Software engineering examples
Implementation
// computation and output

for (int j=1; j<=2*amplitude; j++)

output.print(“*”);

output.println();

print column of stars of length (wavelength/2)-1 indented by
(2*amplitude)-1 spaces

print a row of stars of length 2*amplitude

print a column of stars of length (wavelength/2)-1

10/06/2013

115

229

Software engineering examples
Implementation
// computation and output

for (int j=1; j<=2*amplitude; j++)

output.print(“*”);

output.println();

for (int j=1; j<=(wavelength/2)-1; j++)

{ indented by (2*amplitude)-1 spaces

output.println(“*”);

}

print a row of stars of length 2*amplitude

print a column of stars of length (wavelength/2)-1

230

Software engineering examples
Implementation
// computation and output
for (int j=1; j<=2*amplitude; j++)

output.print(“*”);
output.println();
for (int j=1; j<=(wavelength/2)-1; j++)
{ for (int k=1; k<=(2*amplitude)-1; k++)

output.print(“ ”);
output.println(“*”);

}
print a row of stars of length 2*amplitude
print a column of stars of length (wavelength/2)-1

10/06/2013

116

231

Software engineering examples
Implementation
// computation and output
for (int j=1; j<=2*amplitude; j++)

output.print(“*”);
output.println();
for (int j=1; j<=(wavelength/2)-1; j++)
{ for (int k=1; k<=(2*amplitude)-1; k++)

output.print(“ ”);
output.println(“*”);

}
for (int j=1; j<=2*amplitude; j++)

output.print(“*”);
output.println();
print a column of stars of length (wavelength/2)-1

232

Software engineering examples

Implementation
// computation and output

for (int j=1; j<=2*amplitude; j++)

output.print(“*”);

output.println();

for (int j=1; j<=(wavelength/2)-1; j++)

{ for (int k=1; k<=(2*amplitude)-1; k++)

output.print(“ ”);

output.println(“*”);

}

for (int j=1; j<=2*amplitude; j++)

output.print(“*”);

output.println();

for (int j=1; j<=(wavelength/2)-1; j++)

output.println(“*”);

10/06/2013

117

233

Software engineering examples
Test

% java SquareWaves
Enter amplitude: 4
Enter wavelength: 6

*
*

*
*

*
*

*
*

234

Software engineering examples
Test

% java SquareWaves
Enter amplitude:
Enter wavelength: 6

*
*

*
*

*
*

*
*

10/06/2013

118

235

Software engineering examples
Test

% java SquareWaves
Enter amplitude: 4
Enter wavelength: 6

*
*

*
*

*
*

*
*

236

Software engineering examples
Test

% java SquareWaves
Enter amplitude: 4
Enter wavelength:

*
*

*
*

*
*

*
*

10/06/2013

119

237

Software engineering examples
Test

% java SquareWaves
Enter amplitude: 4
Enter wavelength: 6

*
*

*
*

*
*

*
*

238

Software engineering examples
Test

% java SquareWaves
Enter amplitude: 4
Enter wavelength: 6

*
*

*
*

*
*

*
*

10/06/2013

120

239

Summary

• Flow of control: Iteration

• Iteration: for loops

• Iteration: while loops

• Iteration: do loops

• Iteration: Exiting inside a cycle; infinite loops

• Scope & recapitulation

• Software engineering examples

