
1

1

CSE 1020: Unit 5, Part I

Topics: Selection

To do: Chapter 5, Lab 5

2

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

2

3

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

4

Flow of control

So far…
• The programs we have written have limited flexibility

in behaviour.
• Each statement is executed once and in the order

that it appears in the program.
• While we have introduced the booleans in support of

changing operation based on the truth value of some
condition, …

• … we have only used this functionality to abort
operation when the condition is violated (e.g.,
assertions).

3

5

Flow of control

Now…

• We introduce two mechanisms in support of
increased flexibility of operation.

1.Selection: Take one of several branches
depending on a condition.

2. Iteration: Repeat one or more steps depending
on a condition.

• Both of these mechanisms employ boolean
conditions to make decisions about what actions to
perform.

6

Flow of control

Selection
• We consider two ways to select between alternatives.

1.Based on the truth value of a single boolean.
2.Based on scanning against a list of possibilities.

4

7

Flow of control

Selection

• We consider two ways to select between alternatives.

1.Based on the truth value of a single boolean.

2.Based on scanning against a list of possibilities.

Remark

• We also briefly consider a third, short hand, method.

8

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

5

9

Selection: if

If version 1
• The if statement is used to select which is to be

performed among some alternative set of operations.
• There are several versions.
• The simplest is used to perform a statement only if a

condition (i.e., boolean expression) is true.
• The general form is

if (condition)
statement;

• For example
double fare = 8.0;
if (age <= 17)

fare = 5.0;

10

Selection: if

If version 1
• The if statement is used to select which is to be

performed among some alternative set of operations.
• There are several versions.
• The simplest is used to perform a statement only if a

condition (i.e., boolean expression) is true.
• The general form is

if (condition)
statement

• For example
double fare = 8.0;
if (age <= 17)

fare = 5.0;

6

11

Selection: if
Nesting of statements
• Sometimes it is desirable to perform several

statements if a condition holds.
• We can always group a set of statements by

enclosing them between curly brackets {}
– We call the enclosed statements a block.

• For example
York.print(“Enter your age: “);
int age = York.readInt();
if (age < 0)
{ York.println(“Negative age!”);

York.print(“Enter your age: “);
age = York.readInt();

}

12

Selection: if
Nesting of statements
• Sometimes it is desirable to perform several

statements if a condition holds.
• We can always group a set of statements by

enclosing them between curly brackets {}
– We call the enclosed statements a block.

• For example
output.print(“Enter your age: “);
int age = input.nextInt();
if (age < 0)
{ output.println(“Negative age!”);

output.print(“Enter your age: “);
age = input.nextInt();

}

7

13

Selection: if

If version 2
• A second version of the if statement is used

– To perform one statement if a condition is true
– And another statement if the condition is false

• The general form is
if (condition)

statementT
else

statementF

14

Selection: if

If version 2
• A second version of the if statement is used

– To perform one statement if a condition is true
– And another statement if the condition is false

• Example
if (x < 0)

a = -x;
else

a = x;

8

15

Selection: if

Another example

final int DISCOUNT_AGE_LIMIT = 16;
output.print(“How old are you? “);
int age = input.nextInt();

16

Selection: if

Another example

final int DISCOUNT_AGE_LIMIT = 16;
output.print(“How old are you? “);
int age = input.nextInt();
if (age <= DISCOUNT_AGE_LIMIT)
{ output.println(“You get to pay the discount fare!”);

output.println(“Please insert $5.00.”);
}

9

17

Selection: if

Another example

final int DISCOUNT_AGE_LIMIT = 16;
output.print(“How old are you? “);
int age = input.nextInt();
if (age <= DISCOUNT_AGE_LIMIT)
{ output.println(“You get to pay the discount fare!”);

output.println(“Please insert $5.00.”);
}
else
{ output.println(“You must pay the regular fare.”);

output.println(“Please insert $8.00.”);
}

18

Selection: if
Selecting between > 2 alternatives
• We can cascade if/elses into one another to select

between multiple alternatives via the form
if (condition1)

statement1;
else if (condition2)

statement2;

else if (conditionN)
statementN;

else
statementOtherwise;



10

19

Selection: if
Selecting between > 2 alternatives
• We can cascade if/elses into one another to select

between multiple alternatives via the form
if (condition1)

statement1;
else if (condition2)

statement2;

else if (conditionN)
statementN;

else
statementOtherwise;


Remark 1: The last
statement is optional;
it provides a way to do
something if none of the
conditions are true.

20

Selection: if
Selecting between > 2 alternatives
• We can cascade if/elses into one another to select

between multiple alternatives via the form
if (condition1)

statement1;
else if (condition2)

statement2;

else if (conditionN)
statementN;

else
statementOtherwise;


Remark 2: If more than
one condition is true, then
only the statement for the
first true condition is
executed.

11

21

Selection: if
Cascaded if/else example
• Problem: Given a numerical grade print the letter grade.

if (grade >= 80)
output.println(“A”);

else if (grade >= 70)
output.println(“B”);

else if (grade >= 60)
output.println(“C”);

else if (grade >= 50)
output.println(“D”);

else
output.println(“F”);

22

Selection: if
Selection with interdependent conditions
• Nesting of one if statement inside another allows us to

represent interdependent conditions.

12

23

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();

24

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();
if (coin == HEADS)

if (choice == RECEIVE);
output.println(“You won the toss and will receive.”);

13

25

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();
if (coin == HEADS)

if (choice == RECEIVE);
output.println(“You won the toss and will receive.”);

else
output.println(“You won the toss and will kickoff.”);

26

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();
if (coin == HEADS)

if (choice == RECEIVE);
output.println(“You won the toss and will receive.”);

else
output.println(“You won the toss and will kickoff.”);

else
output.println(“You lost the toss.”);

14

27

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();
if (coin == HEADS)

if (choice == RECEIVE);
output.println(“You won the toss and will receive.”);

else
output.println(“You won the toss and will kickoff.”);

else
output.println(“You lost the toss.”);

Remark 1: An else is
matched with the most
recent unmatched if.

28

Selection: if
Selection with interdependent conditions

final int HEADS = 1;
final int RECEIVE = 1;
output.print(“Enter 1 for heads and 2 for tails: “);
int coin = input.nextInt();
output.print(“Enter 1 to receive and 2 to kickoff: “);
int choice = input.nextInt();
if (coin == HEADS)

if (choice == RECEIVE);
output.println(“You won the toss and will receive.”);

else
output.println(“You won the toss and will kickoff.”);

else
output.println(“You lost the toss.”);

Remark 2: Indentation
should reflect the
level of nesting.

15

29

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (cond1) if (cond1)

if (cond2) { if (cond2)
r = 1; r = 1;

else }
r = 2; else

r = 2;

30

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0;
if (true)

if (true)
r = 1;

else
r = 2;

// r is 1

16

31

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0;
if (true)

if (false)
r = 1;

else
r = 2;

// r is 2

32

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0;
if (false)

if (true)
r = 1;

else
r = 2;

// r is 0

17

33

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0;
if (false)

if (false)
r = 1;

else
r = 2;

// r is 0

34

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (cond1) if (cond1)

if (cond2) { if (cond2)
r = 1; r = 1;

else }
r = 2; else

r = 2;

18

35

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (true) if (true)

if (true) { if (true)
r = 1; r = 1;

else }
r = 2; else

// r is 1 r = 2;
// r is 1

36

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (true) if (true)

if (false) { if (false)
r = 1; r = 1;

else }
r = 2; else

// r is 2 r = 2;
// r is 0

19

37

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (false) if (false)

if (true) { if (true)
r = 1; r = 1;

else }
r = 2; else

// r is 0 r = 2;
// r is 2

38

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (false) if (false)

if (false) { if (false)
r = 1; r = 1;

else }
r = 2; else

// r is 0 r = 2;
// r is 2

20

39

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (false) if (false)

if (false) { if (false)
r = 1; r = 1;

else }
r = 2; else

// r is 0 r = 2;
// r is 2

40

Selection: if
Exercise
• For each possible value of cond1 and cond2, state the

value of r after the code is executed.

int r = 0; int r = 0;
if (false) if (false)

if (false) { if (false)
r = 1; r = 1;

else }
r = 2; else

// r is 0 r = 2;
// r is 2

21

41

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• It turns out that our customers find this annoying and
want two changes
1. If there are no coins of a type to be returned, then skip

reporting on that type.
2. If there is only one coin of a type to be returned, then

use the singular.

42

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• It turns out that our customers find this annoying and
want two changes
1. If there are no coins of a type to be returned, then skip

reporting on that type.
2. If there is only one coin of a type to be returned, then

use the singular.

22

43

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• It turns out that our customers find this annoying and
want two changes
1. If there are no coins of a type to be returned, then skip

reporting on that type.
2. If there is only one coin of a type to be returned, then

use the singular.

44

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• It turns out that our customers find this annoying and
want two changes
1. If there are no coins of a type to be returned, then skip

reporting on that type.
2. If there is only one coin of a type to be returned, then

use the singular.

23

45

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

Deployment (software maintenance)
• It turns out that our customers find this behaviour

annoying and want changes to make the output more
natural.

46

Selection: if

MkChange revisited
• Recall the MkChange software that we developed.
• For an input amount of money (CND) in cents it returned

the change in quarters, dimes, nickels and pennies.
• For example

% java MkChange
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

Analysis (Requirements)
• Output should be adjusted as follows.

1. If there are no coins of a type to be returned, then skip
reporting on that type.

2. If there is only one coin of a type to be returned, then
use the singular.

24

47

Selection: if

Design
• We can make the desired changes by using if statements

at time of output.

if the number of coins > 1
report using “coins”

else if number of coins == 1
report using “coin”

else skip this coin

• We repeat this construction for coin {quarters, dimes,
nickels, pennies}.

∈

48

Selection: if
Implementation

// Output

output.print(“Change is ”);

output.print(nQuarters + “ quarters, ”);

25

49

Selection: if
Implementation

// Output

IO.print(“Change is ”);

IO.print(nQuarters + “ quarters, ”);

50

Selection: if
Implementation

// Output
IO.print(“Change is ”);
if the number of coins > 1

report using “coins”
else if number of coins == 1

report using “coin”
else skip this coin

26

51

Selection: if
Implementation

// Output
output.print(“Change is”);
if (nQuarters > 1)

output.print(“ ” + nQuarters + “ quarters”);
else if (nQuarters == 1)

output.print(“ ” + nQuarters + “ quarter”);
// else when nQuarters == 0 print nothing
if (nDimes > 1)

IO.print(“ “ + nDimes + “ dimes,”);
else if (nDimes == 1)

IO.print(“ “ + nDimes + “ dime,”);

52

Selection: if
Implementation

// Output
output.print(“Change is“);
if (nQuarters > 1)

output.print(“ ” + nQuarters + “ quarters”);
else if (nQuarters == 1)

output.print(“ ” + nQuarters + “ quarter”);
// else when nQuarters == 0 print nothing
if (nDimes > 1)

output.print(“ ” + nDimes + “ dimes”);
else if (nDimes == 1)

output.print(“ ” + nDimes + “ dime”);

27

53

Selection: if

Implementation

// Output (continued)
if (nNickels > 1)

output.print(“ ” + nNickels + “ nickels”);
else if (nNickels == 1)

output.print(“ ” + nNickels + “ nickel”);
if (nPennies > 1)

IO.print(“ ” + nPennies + “ pennies”);
else if (nPennies == 1)

IO.print(“ ” + nPennies + “ penny”);
IO.println(“.”);

54

Selection: if

Implementation

// Output (continued)
if (nNickels > 1)

output.print(“ ” + nNickels + “ nickels”);
else if (nNickels == 1)

output.print(“ ” + nNickels + “ nickel”);
if (nPennies > 1)

output.print(“ ” + nPennies + “ pennies”);
else if (nPennies == 1)

output.print(“ ” + nPennies + “ penny”);
output.println(“.”);

28

55

Selection: if

Testing
• We continue in the edit/compile/run loop until we have a

nominally working MkChange3.class
• As a test of our modified code, let’s try out the offending

case that was presented earlier

% java MkChange3
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• In practice, much more extensive testing would be
appropriate.

56

Selection: if

Testing
• We continue in the edit/compile/run loop until we have a

nominally working MkChange3.class
• As a test of our modified code, let’s try out the offending

case that was presented earlier

% java MkChange3
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• In practice, much more extensive testing would be
appropriate.

29

57

Selection: if

Testing
• We continue in the edit/compile/run loop until we have a

nominally working MkChange3.class
• As a test of our modified code, let’s try out the offending

case that was presented earlier

% java MkChange3
Enter the amount in cents: 17
Change is 0 quarters, 1 dimes, 1 nickels, 2 pennies.

• In practice, much more extensive testing would be
appropriate.

58

Selection: if

Testing
• We continue in the edit/compile/run loop until we have a

nominally working MkChange3.class
• As a test of our modified code, let’s try out the offending

case that was presented earlier

% java MkChange3
Enter the amount in cents: 17
Change is 1 dime 1 nickel 2 pennies.

• In practice, much more extensive testing would be
appropriate.

30

59

Selection: if

Testing
• We continue in the edit/compile/run loop until we have a

nominally working MkChange3.class
• As a test of our modified code, let’s try out the offending

case that was presented earlier

% java MkChange3
Enter the amount in cents: 17
Change is 1 dime 1 nickel 2 pennies.

• In practice, much more extensive testing would be
appropriate.

60

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

31

61

Selection: switch

Selection between a list of alternatives

• The switch statement is a second control statement.

• It allows us to select among alternatives depending
on the value of an ordinal type, such as int or char.

62

Selection: switch
General form of switch

switch (expression)
{ case value1:

statements1
break;

case value2:
statements2
break;

case valueN:
statementsN
break;

default : // optional
statementsOtherwise

} // end switch



32

63

Selection: switch
General form of switch

switch (expression)
{ case value1:

statements1
break;

case value2:
statements2
break;

case valueN:
statementsN
break;

default : // optional
statementsOtherwise

} // end switch



Remark 1: statementsK
are executed when
expression has valueK.

64

Selection: switch
General form of switch

switch (expression)
{ case value1:

statements1
break;

case value2:
statements2
break;

case valueN:
statementsN
break;

default : // optional
statementsOtherwise

} // end switch



Remark 2:
statementsOtherwise
are executed when
expression has a value
different from all the
cases.

33

65

Selection: switch
General form of switch

switch (expression)
{ case value1:

statements1
break;

case value2:
statements2
break;

case valueN:
statementsN
break;

default : // optional
statementsOtherwise

} // end switch



Remark 3: break
sends execution of the
program beyond the
switch so as to resume
at the statement following
}.

66

Selection: switch
Example
• Input a letter grade, letGrade, and assign the numerical

grade equivalent to numGrade.
int numGrade;
output.print(“Please enter a letter grade: “);
char letGrade = input.next().charAt(0);
switch (letGrade)
{ case ‘A’ :

numGrade = 9;
break;

case ‘B’ :
numGrade = 7;
break;
// continued on next slide

34

67

Selection: switch
Example
• Input a letter grade, letGrade, and assign the numerical

grade equivalent to numGrade.
int numGrade;
output.print(“Please enter a letter grade: “);
char letGrade = input.next().charAt(0);
switch (letGrade)
{ case ‘A’ :

numGrade = 9;
break;

case ‘B’ :
numGrade = 7;
break;
// continued on next slide

68

Selection: switch
Example
• Input a letter grade, letGrade, and assign the numerical

grade equivalent to numGrade.
int numGrade;
output.print(“Please enter a letter grade: “);
char letGrade = input.next().charAt(0);
switch (letGrade)
{ case ‘A’ :

numGrade = 9;
break;

case ‘B’ :
numGrade = 7;
break;
// continued on next slide

35

69

Selection: switch
Example
• Input a letter grade, letGrade, and assign the numerical

grade equivalent to numGrade.
int numGrade;
output.print(“Please enter a letter grade: “);
char letGrade = input.next().charAt(0);
switch (letGrade)
{ case ‘A’ :

numGrade = 9;
break;

case ‘B’ :
numGrade = 7;
break;
// continued on next slide

70

Selection: switch
Example

// continued from previous slide
case ‘C’ :

numGrade = 6;
break;

case ‘D’ :
numGrade = 5;
break;

case ‘F’ :
numGrade = 4;
break;

default :
output.println(“Error: Bad letter grade.”);
numGrade = 0; // don’t leave this unbound

} // end switch on letGrade

36

71

Selection: switch
Grouping of cases
• Cases requiring the same actions can be grouped

together.
• To illustrate, let’s print store hours depending on day

of the week.
final int SUNDAY = 0;
final int MONDAY = 1;
final int TUESDAY = 2;
final int WEDNESDAY = 3;
final int THURSDAY = 4;
final int FRIDAY = 5;
final int SATURDAY = 6;
int weekday;
// continued on next slide

72

Selection: switch
Grouping of cases
• Cases requiring the same actions can be grouped

together.
• To illustrate, let’s print store hours depending on day

of the week.
final int SUNDAY = 0;
final int MONDAY = 1;
final int TUESDAY = 2;
final int WEDNESDAY = 3;
final int THURSDAY = 4;
final int FRIDAY = 5;
final int SATURDAY = 6;
int weekday;
// continued on next slide

37

73

Selection: switch
Grouping of cases

// continued from previous slide
// assume weekday somehow assigned a value
switch (weekday)
{ case MONDAY : case TUESDAY :
case WEDNESDAY : case SATURDAY :

output.println(“Hours are 10AM – 6PM.”);
break;

case THURSDAY : case FRIDAY :
output.println(“Hours are 10AM – 9PM.”);
break;

// continued on next slide

74

Selection: switch
Grouping of cases

// continued from previous slide

case SUNDAY :

output.println(“Closed.”);

break;

default:

output.println(“Error: Bad weekday.”);

} // end switch on weekday

38

75

Selection: switch

Recapitulation
• The switch statement allows for selection among a

set of alternatives.
• We must be able to represent the alternatives as an

ordinal type, e.g., int or char.

76

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

39

77

Selection: The ternary operator

Selection based on ?

• We have seen that we can select between two
possible conditions based on an if construction of the
following form.

if (condition)

{ x = value1;

} else

{ x = value2;

}

78

Selection: The ternary operator

Selection based on ?
• We have seen that we can select between two

possible conditions based on an if construction of the
following form.

if (condition)
{ x = value1;
} else
{ x = value2;
}

• In Java, we can get the same behaviour by using ?
x = condition ? value1 : value2;

• Essentially, we have a “short hand”, albeit one that is
a bit obscure.

40

79

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

80

Selection: Recapitulation

A few points to beware

• Do not have your conditionals depend on exact
equality of real variables (types float and double).

41

81

Selection: Recapitulation

A few points to beware
• Do not have your conditionals depend on exact

equality of real variables (types float and double)
• Example: The following code outputs “Not Equal!” for

many inputs.
output.print(“Enter a real: ”);
double x = input.nextDouble();
double y = Math.pow(Math.pow(x, 0.5), 2);
if (x == y)
{ output.println(“Equal!”);
} else
{ output.println(“Not equal!”);
}

82

Selection: Recapitulation

A few points to beware
• Do not have your conditionals depend on exact

equality of real variables (types float and double)
• Example: A proper way to code the previous example

would be as follows.
output.print(“Enter a real: ”);
double x = input.nextDouble();
double y = Math.pow(Math.pow(x, 0.5), 2);
if (Math.abs(x – y) < EPSILON) // EPSILON small
{ output.println(“Equal!”);
} else
{ output.println(“Not equal!”);
}

42

83

Selection: Recapitulation

A few points to beware

• When working with objects, == compares their
references, not the objects per se.

• Use the equals method to compare objects.

84

Selection: Recapitulation

A few points to beware

• When working with objects, == compares their
references, not the objects per se.

• Use the equals method to compare objects.

• Example

Stock s1 = new Stock(“BMO”);

Stock s2 = new Stock(“BMO”);

boolean compare1and2 = s1 == s2; // false

compare1and2 = s1.equals(s2); // true

43

85

Selection: Recapitulation

A few points to beware

• It is poor style to style to use a conditional to assign a
boolean value.

86

Selection: Recapitulation

A few points to beware
• It is poor style to style to use a conditional to assign a

boolean value.
• Example: We could write

boolean valid;
if (x>a && y <=b)
{ valid = true;
} else
{ valid = false;
}

However, it is much cleaner to write
boolean valid = (x>a && y<=b);

44

87

Selection: Recapitulation

A few points to beware

• Math notation is not acceptable in conditions.

88

Selection: Recapitulation

A few points to beware

• Math notation is not acceptable in conditions.

• Example: Here is something that will not compile

if ((0<x<1) || (x&&y) > 1) // error

presumably, the intent is as follows.

if ((x>0 && x<1) || (x>1 && y>1))

45

89

Selection: Recapitulation

Final remarks
• We have seen two ways to select between

alternatives.
1.Based on the truth value of a single boolean: if
2.Based on scanning against a list of possibilities:

switch
• We also have a seen short hand notation for simple

selection between two alternatives: ?

90

Outline

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

46

91

File I/O

More utilities
• So far our discussion of I/O has been limited to

– reading from the default standard input (keyboard), e.g.,
Scanner input = new Scanner(System.in);
int width = input.nextInt();

– Writing to the default standard output (screen), e.g.,
PrintStream output = System.out;
output.print(width);

• We also want to be able to read/write from files.
• Here we make use of the services of two additional

classes in the type package.
– Reading from a file: UniReader
– Writing to a file: UniWriter

92

File I/O

More utilities
• So far our discussion of I/O has been limited to

– reading from the default standard input (keyboard), e.g.,
Scanner input = new Scanner(System.in);
int width = input.nextInt();

– Writing to the default standard output (screen), e.g.,
PrintStream output = System.out;
output.print(width);

• We also want to be able to read/write from files.
• Here we make further use of the above classes.

– Reading from a file: Scanner
– Writing to a file: PrintStream

47

93

File I/O

Reading from a file

• In general, there are three steps to reading from a file

1. Open the file

2. Read from the opened file

3. Close the file

94

File I/O

Reading from a file
• In Java, the three steps are as follows.
1. Open: Use the Scanner constructor.
Scanner fileInput = new Scanner(new File(“myFile.txt”));

2. Read: Use the appropriate input method.
String name = fileInput.nextLine();
int age = fileInput.nextInt();

3. Close: Use the close() method.
fileInput.close();

48

95

File I/O

Reading from a file
• In Java, the three steps are as follows.
1. Open: Use the Scanner constructor.
Scanner fileInput = new Scanner(new File(“myFile.txt”));

2. Read: Use the appropriate input method.
String name = fileInput.nextLine();
int age = fileInput.nextInt();

3. Close: Use the close() method.
fileInput.close();

import java.io.File;

96

File I/O

Writing to a file
• Writing to a file is very similar to reading from a file.
1. Open: Use the PrintStream constructor.
PrintStream fileOutput = new PrintStream(“myFile.txt”);

2. Write: Use the appropriate output method.
fileOutput.println(“Here is an output line of text.”);

3. Close: Use the close() method.
fileOutput.close();

49

97

File I/O
A few fine points

• File name can be input from a
– standard input stream (e.g., a Scanner instance) as a String

(we learn about strings in Unit 6).

– dialog box (see textbook, p. 199).

• When ever a program deals with files, it is possible that
they are not present.
– An I/O exception should be thrown (we learn about

exceptions in Unit 11).

– To enable the exception we must modify the header of our
main method as follows.

public static void main(String[] args) throws java.io.IOException

• If you need to check the end of file, then you can use the
eof() method.

• As usual, the API is the best reference.

98

File I/O
A few fine points

• File name can be input from a
– standard input stream (e.g., a Scanner instance) as a String

(we learn about strings in Unit 6).

– dialog box (see textbook, p. 199).

• When ever a program deals with files, it is possible that
they are not present.
– An I/O exception should be thrown (we learn about

exceptions in Unit 11).

– To enable the exception we must modify the header of our
main method as follows.

public static void main(String[] args) throws java.io.IOException

• If you need to check the end of file, then you can use the
eof() method.

• As usual, the API is the best reference.

50

99

File I/O
A few fine points

• File name can be input from a
– standard input stream (e.g., a Scanner instance) as a String

(we learn about strings in Unit 6).

– dialog box (see textbook, p. 199).

• When ever a program deals with files, it is possible that
they are not present.
– An I/O exception should be thrown (we learn about

exceptions in Unit 11).

– To enable the exception we must modify the header of our
main method as follows.

public static void main(String[] args) throws java.io.IOException

• If you need to check that a type P is available for reading,
then you can use the hasNextP() method.

• As usual, the API is the best reference.

100

File I/O
A few fine points

• File name can be input from a
– standard input stream (e.g., a Scanner instance) as a String

(we learn about strings in Unit 6).

– dialog box (see textbook, p. 199).

• When ever a program deals with files, it is possible that
they are not present.
– An I/O exception should be thrown (we learn about

exceptions in Unit 11).

– To enable the exception we must modify the header of our
main method as follows.

public static void main(String[] args) throws java.io.IOException

• If you need to check that a type P is available for reading,
then you can use the hasNextP() method.

• As usual, the API is the best reference.

51

101

Summary

• Flow of control

• Selection: if

• Selection: switch

• Selection: The ternary operator

• Selection: Recapitulation

• File I/O

