
1

1

CSE 1020: Unit 4

Topics: Object abstraction & usage

To do: Read Chapter 4; Lab 4

2

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

2

3

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

4

Objects

The object abstraction

• In addition to modules (static classes), there is an allied
abstraction for grouping related data and operations.

• An object is an abstraction that combines data
(attributes) with ways to operate on the data (methods).

– Now we have additional leeway in customization.

3

5

Objects
The object abstraction
• In addition to modules (static classes), there is an allied

abstraction for grouping related data and operations.
• An object is an abstraction that combines data

(attributes) with ways to operate on the data (methods).
– Now we have additional leeway in customization.

Example
• An object for a stock on the Toronto Stock Exchange

(TSX) might have …
• Attributes

– name
– price

• Methods
– update (refresh) the price

6

Objects

Templates and classes
• We can have many similar objects that differ in the data

they contain.
– For example, stocks for BMO vs. TD vs. …

• All these similar objects belong to the same class.
– For example, the Stock class

• The class serves as a template for the objects.
• To deal with a particular individual of the class, called

an object instance of the class…
– Create a new object
– That is a customized to your specifications
– For example, a particular stock, say BMO

• Alternatively, we can think of the class as a factory for
objects.

4

7

Objects

Templates and classes
• We can have many similar objects that differ in the data

they contain.
– For example, stocks for BMO vs. TD vs. …

• All these similar objects belong to the same class.
– For example, the Stock class

• The class serves as a template for the objects.
• To deal with a particular individual of the class, called

an object instance of the class…
– Create a new object
– That is a customized to your specifications
– For example, a particular stock, say BMO

• Alternatively, we can think of the class as a factory for
objects.

8

Objects

Templates and classes
• We can have many similar objects that differ in the data

they contain.
– For example, stocks for BMO vs. TD vs. …

• All these similar objects belong to the same class.
– For example, the Stock class

• The class serves as a template for the objects.
• To deal with a particular individual of the class, called

an object instance of the class…
– Create a new object
– That is a customized to your specifications
– For example, a particular stock, say BMO

• Alternatively, we can think of the class as a factory for
objects.

5

9

Objects

Static vs. non-static classes
• Last unit we saw

– static classes (modules)
– here the class serves to group conceptually related data and

operations
– There is no capability of creating customized copies (instances) of

the class (no objects)
– We do not create our own customized versions of ToolBox or Math.

• This unit we encounter
– non-static classes (object factories)
– Once again, the class serves to related data and operations
– But now, the we can create customized instances of the class

(objects)
– We do create individual instances of Stock that differ in their

attributes.

10

Objects

Static vs. non-static classes
• Last unit we saw

– static classes (modules)
– here the class serves to group conceptually related data and

operations
– There is no capability of creating customized copies (instances) of

the class (no objects)
– We do not create our own customized versions of ToolBox or Math.

• This unit we encounter
– non-static classes (object factories)
– Once again, the class serves to organize related data and

operations
– But now, the we can create customized instances of the class

(objects)
– We do create individual instances of Stock that differ in their

attributes.

6

11

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

12

APIs and class use

API anatomy: A second pass

• Last unit we considered APIs for static classes.

• This unit we elaborate by considering non-static
classes.

– Here we can create and manipulate customized
instances of a class, i.e., objects.

– We will exploit the Stock class as an example.

7

13

APIs and class use

API anatomy: A second pass

• Last unit we considered APIs for static classes.

• This unit we elaborate by considering non-static
classes.

– Here we can create and manipulate customized
instances of a class, i.e., objects.

– We will exploit the Stock class as an example.

Remark
• Static classes do not support the creation of customized

objects.

14

APIs and class use

API anatomy: Basic terminology
• The term field refers to a piece of information that is

maintained about …
– the class as a a whole.

• e.g., IO.fillChar.
• We will see more this unit for non-static classes.

– particular object instances of a class.
• We will see these this week for non-static

classes, e.g, the name of a particular stock
created through the non-static class Stock.

• We did not see these last week as static classes
do not support the creation of objects.

8

15

APIs and class use

API anatomy: Basic terminology

• The term field refers to a piece of information that is
maintained about …

– the class as a a whole.

• e.g., IO.fillChar.

• We will see more this unit for non-static classes.

– particular object instances of a class.

• We will see these this unit for non-static classes,
e.g, the name of a particular stock created
through the non-static class Stock.

• We did not see these last unit, as static classes
do not support the creation of objects.

16

APIs and class use

API anatomy: Basic terminology
• The term method will refer an operation that can be

performed…
– in general with respect to the class; such methods

do not change or examine object instances of the
class

• We saw these last unit for static classes (e.g.,
Math.sqrt() in the Math class)

• We will see more this unit for non-static classes.
– On particular object instances of the class

• We will see these this week (e.g., get the price of
a particular stock)

• We did not see these last week

9

17

APIs and class use

API anatomy: Basic terminology
• The term method will refer an operation that can be

performed…
– in general with respect to the class; such methods

do not change or examine object instances of the
class

• We saw these last unit for static classes (e.g.,
Math.sqrt() in the Math class)

• We will see more this unit for non-static classes.
– On particular object instances of the class

• We will see these this unit (e.g., get the price of a
particular stock)

• We did not see these last unit

18

APIs and class use

API anatomy: Basic terminology

• The term constructor will refer to an operation that can
create a particular object instance of a class (e.g., used
to create a particular stock).

• Note: We did not encounter constructors last unit, as
static classes do not support construction of objects.

10

19

APIs and class use

API anatomy: Structure
• The documentation is divided into 3 main parts
1. Descriptive paragraph: Provides a high level

overview of the class.
2. Summary: A terse specification of the interfaces to

the fields, methods and constructors that are
available.

3. Detail: Provides additional information about the
fields, methods and constructors that are available.

20

APIs and class use

API anatomy: The descriptive paragraph

public class Stock

extends java.lang.Object

This class encapsulates a stock. It holds attributes relevant to

a stock, …

Version:

7.0 (Summer 2010)

Author:

H. Roumani, roumani@cse.yorku.ca

11

21

APIs and class use
API anatomy: Fields
Field Summary

char delimiter
This field determines what character is inserted
between the stock symbol and its name

String name
The name of this stock as listed on the exchange.

static boolean titleCaseName
This field controls the format of the stock name.

• Same as last unit
– type, symbolic name, terse descriptor.
– Keyword static specifies that the field pertains to the class as

a whole

• New for this week
– Absence of the keyword static specifies that the field

pertains to particular object instances of the class.

22

APIs and class use
API anatomy: Fields
Field Summary

char delimiter
This field determines what character is inserted
between the stock symbol and its name

String name
The name of this stock as listed on the exchange.

static boolean titleCaseName
This field controls the format of the stock name.

• Same as last unit
– type, symbolic name, terse descriptor.
– Keyword static specifies that the field pertains to the class as

a whole

• New for this week
– Absence of the keyword static specifies that the field

pertains to particular object instances of the class.

12

23

APIs and class use

API anatomy: Fields
Field Detail

name

public java.lang.String name

The name of this stock as listed on the Exchange. If the name
could not be determined (either because no such stock is listed
or a Exchange connection could not be established), the name
is set to null. (Bad design --this field should not be made
public.)

Here we see specification of
• visibility (public)
• if a field is constant (final)
• more descriptive detail

24

APIs and class use
API anatomy: Methods
Method Summary

double getPrice()
Determine the price of this Stock.

void refresh()
Establish a connection with the exchange and update
this stock’s attributes accordingly.

boolean setDelimiter(char myDelimiter)
Change delimiter of this stock to the passed one.

• Same as last unit
– signature, return type, terse descriptor.
– Keyword static specifies that the method pertains to

the class as a whole.
• New for this week

– Absence of static specifies that the method is
applied to particular object instances of the class.

13

25

APIs and class use
API anatomy: Methods
Method Summary

double getPrice()
Determine the price of this Stock.

void refresh()
Establish a connection with the exchange and update
this stock’s attributes accordingly.

boolean setDelimiter(char myDelimiter)
Change delimiter of this stock to the passed one.

• Same as last unit
– signature, return type, terse descriptor.
– Keyword static specifies that the method pertains to

the class as a whole.
• New for this week

– Absence of static specifies that the method is
applied to particular object instances of the class.

26

APIs and class use
API anatomy: Methods
Method Detail
getPrice

public double getPrice()

Determine the price of this Stock.
Returns:

the price of this Stock as last obtained from the exchange.

setDelimiter

public boolean setDelimiter(char myDelimeter)

Mutator to change the delimiter of this stock to the passed one...
Parameters:

myDelimiter – the new delimiter character
Returns:

true if the change was made…

Here we see specification of
• visibility (public)
• greater explanatory detail

14

27

APIs and class use
API anatomy: Constructors
Constructor Summary

Stock()
Construct a default Stock.

Stock(Stock stock)
Construct a copy of the passed Stock.

Stock(java.lang.String symbol)
Construct a Stock having the (capitalized) passed symbol.

• There are no columns for type, return or static.
• The name must be the same as that of the class.
• Parameters may be present to provide information for

instantiating an object.
• It is okay for there to be more than one constructor as

long as they have different signatures (overloading).

28

APIs and class use

API anatomy: Constructors
Constructor Detail

Stock

public Stock(java.lang.String symbol)

Construct a Stock having the (capitalized) passed symbol. The
stock attributes are set as per the refresh() method.
Parameters:

symbol - the (ticker) symbol of the stock to construct.

Stock

public Stock(Stock stock)

Construct a copy of the passed stock.
Parameters: stock – the Stock to copy.
Throws: java.lang.RuntimeException –if Stock is null.

Here we see specification of
• visibility (public)
• greater explanatory detail

15

29

APIs and class use

Object creation

• Different objects belong to different classes.

• We say that an object is an instance of its class.

• Declaration is the same as that of primitive types

Stock s;

• To instantiate the object we must have it constructed

s = new Stock(“BMO”);

Operator new
• Allocates memory

for the object.

Constructor
• Initializes the
object.

30

APIs and class use

Object creation

• Different objects belong to different classes.

• We say that an object is an instance of its class.

• Declaration is the same as that of primitive types

Stock s;

• To instantiate the object we must have it constructed

s = new Stock(“BMO”);

Operator new
• Allocates memory

for the object.

Constructor
• Initializes the
object.

BTW, don’t forget to
import type.lib.* to make
make these examples work
in an actual program.

16

31

APIs and class use

Object creation

• Different objects belong to different classes.

• We say that an object is an instance of its class.

• Declaration is the same as that of primitive types

Stock s;

• To instantiate the object we must have it constructed

s = new Stock(“BMO”);

• Also can combine declaration and construction

Stock s = new Stock(“BMO”);

32

APIs and class use

Object creation
• Different objects belong to different classes.
• We say that an object is an instance of its class.
• Declaration is the same as that of primitive types

Stock s;
• To instantiate the object we must have it constructed

s = new Stock(“BMO”);
• Also can combine declaration and construction

Stock s = new Stock(“BMO”);
• Distinguish object vs. object reference

– The object is something in memory
– The object reference, s, points to the object in

memory

17

33

APIs and class use

• Upon seeing the declaration
MyClass mine;

• The processor associates the
symbol mine with a memory
location.

• Upon seeing the construction
mine = new MyClass();

• The processor makes a copy
of the entire class MyClass in
memory and loads that
memory location into the
contents of mine.

Memory diagram: Object declaration and construction

1

2

312

34

APIs and class use

• Upon seeing the declaration
MyClass mine;

• The processor associates the
symbol mine with a memory
location.

• Upon seeing the construction
mine = new MyClass();

• The processor makes a copy
of the entire class MyClass in
memory and loads that
memory location into the
contents of mine.

Memory diagram: Object declaration and construction

1

2

Copy of MyClass
312

312

18

35

APIs and class use

• Upon seeing the declaration
MyClass mine;

• The processor associates the
symbol mine with a memory
location.

• Upon seeing the construction
mine = new MyClass();

• The processor makes a copy
of the entire class MyClass in
memory and loads that
memory location into the
contents of mine.

Memory diagram: Object declaration and construction

1

2

Copy of MyClass
312

312

Remark 1: We see that an object is a copy
(instance) of the class that resides in memory.

36

APIs and class use

• Upon seeing the declaration
MyClass mine;

• The processor associates the
symbol mine with a memory
location.

• Upon seeing the construction
mine = new MyClass();

• The processor makes a copy
of the entire class MyClass in
memory and loads that
memory location into the
contents of mine.

Memory diagram: Object declaration and construction

1

2

Copy of MyClass
312

312

Remark 2: We see that the declared symbol
is merely a pointer (reference) to the object.

19

37

APIs and class use

• We have
MyClass mine = new MyClass();

• Suppose we add
MyClass yours = mine;

• From now on, if we change the
object referred to by mine, the
same changes to occur to
yours.
– If mine is a person object

with an age and the age of
mine increases; so does the
age of yours.

Memory diagram: Object declaration and construction

1

2

Copy of MyClass
312

312

38

APIs and class use

• We have
MyClass mine = new MyClass();

• Suppose we add
MyClass yours = mine;

• From now on, if we change the
object referred to by mine, then
the same changes occur to
yours, e.g.,
– If mine is a Stock object with

a price and the price of mine
increases; so does the price
of yours.

Memory diagram: Object declaration and construction

1

2

Copy of MyClass
312

312

312

20

39

APIs and class use

The null reference
• An object variable contains a reference to an object.
• Unlike variables of the primitive types, an object

variable can refer to no particular object.
• We use the Java keyword null to accomplish this.
• Note, however, that attempts to invoke a method on a

null object reference terminates the offending
program.

40

APIs and class use

The null reference

• Example

String greeting = “Hello”;

String message = “”; // the empty string

String comment = null; // refers to no string at all

int g = greeting.length(); // 5

int m = message.length(); // 0

int c = comment.length(); // program terminates

21

41

APIs and class use

The null reference

• Example

String greeting = “Hello”;

String message = “”; // the empty string

String comment = null; // refers to no string at all

int g = greeting.length(); // 5

int m = message.length(); // 0

int c = comment.length(); // program terminates

42

APIs and class use

Using instance methods
• To invoke an instance (non-static) method m in a class

C, the following steps are followed:
1.Create an instance x of C: C x = new C(parameters)
2.Determine the signature of m: parameters, their data

type and their order.
3. Invoke using the dot: x.m(parameters)

• Example: Stock s = new Stock(“BMO”);
double tradingPrice = s.getPrice();

Remarks
• A void method, e.g., setSymbol() is often in a statement

by itself.
• A non-void method getPrice() is usually part of a

statement.

22

43

APIs and class use

Using instance methods
• To invoke an instance (non-static) method m in a class

C, the following steps are followed:
1.Create an instance x of C: C x = new C(parameters)
2.Determine the signature of m: parameters, their data

type and their order.
3. Invoke using the dot: x.m(parameters)

• Example: Stock s = new Stock(“BMO”);
double tradingPrice = s.getPrice();

Remarks
• A void method, e.g., setSymbol() is often in a statement

by itself.
• A non-void method getPrice() is usually part of a

statement.

44

APIs and class use

Using static methods in a non-static class
• To access a static method m in a (non-static) class C,

the following steps can be followed:
1.Ensure that class C is reachable (already

available or imported).
2.Access using the dot: C.m

• Alternatively,
1.Create an instance object, o, of the class C.
2.Access using the dot: o.m

23

45

APIs and class use

Using static methods in a non-static class
• Example: There could be (but there is not) a static method in

the Stock class
getExchangeCompIndexValue();

• One could invoke such a method either through
import type.lib.*;
output.println(Stock.getExchangeCompIndexValue());

or through
import type.lib.*;
Stock myStock = new Stock(“BMO”);
output.println(myStock.getExchangeCompIndexValue());

46

APIs and class use

Using instance attributes
• To access an instance (non-static) attribute a in a

class C, the following steps can be followed:
1.Ensure that an instance object o of the class C

has been created.
2.Access using the dot: o.a

• Example:
Stock myStk = new Stock(“BMO”);
output.println(myStk.name);

24

47

APIs and class use

Remarks
• It is preferable to access instance attributes through

methods designed for this purpose.
• Example

output.println(myStk.getName());
• Indeed, good class design typically only allows

access to instance attributes through methods.
– The attributes will be encapsulated and not even

appear in the API.
• This practice prevents users from operations that can

lead to inconsistency within an object.
• Example

// bad practice follows
mkStk.name = “Inconsistent with other fields”;

48

APIs and class use

Using static attributes in a non-static class
• To access a static attribute a in a (non-static) class C,

the following steps can be followed:
1.Ensure that class C is reachable (already

available or imported).
2.Access using the dot: C.a

• Alternatively,
1.Create an instance object, o, of the class C.
2.Access using the dot: o.a

25

49

APIs and class use
Using static attributes in a non-static class
• Example

import type.lib.*;
output.println(Stock.titleCaseName); // false
Stock.titleCaseName = true;
IO.println(Stock.titleCaseName); // true
Stock stk1 = new Stock(“HR.X”);
Stock stk2 = new Stock(“HR.Y”);
IO.println(stk1.getName()); // printed in title case
stk2.titleCaseName = false;
IO.println(stk1.getName()); // printed in all caps
Stock.titleCaseName = true;
IO.println(stk2.getName()); // printed in title case

50

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

IO.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

IO.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

26

51

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

IO.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

IO.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

52

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

IO.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

27

53

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

IO.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

54

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

output.println(stk1.getName()); // printed in ???

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

28

55

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

output.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

56

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

output.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

IO.println(stk2.getName()); // printed in title case

29

57

APIs and class use
Using static attributes in a non-static class

• Example

import type.lib.*;

output.println(Stock.titleCaseName); // false

Stock.titleCaseName = true;

output.println(Stock.titleCaseName); // true

Stock stk1 = new Stock(“HR.X”);

Stock stk2 = new Stock(“HR.Y”);

output.println(stk1.getName()); // printed in title case

stk2.titleCaseName = false;

output.println(stk1.getName()); // printed in all caps

Stock.titleCaseName = true;

output.println(stk2.getName()); // printed in title case

58

APIs and class use

The toString() method
• Here we have a standard method that returns a string

representing the object upon which it is invoked.
• Example

Stock stk1 = new Stock(“BMO”);
// print BMO Bank of Montreal
output.println(stk1.toString());

• Indeed, output methods automatically invoke the
toString method when outputting object references.

• Example, the following fragments yield the same
output

IO.println(stk1.toString());
IO.println(stk1);

30

59

APIs and class use

The toString() method
• Here we have a standard method that returns a string

representing the object upon which it is invoked.
• Example

Stock stk1 = new Stock(“BMO”);
// print BMO Bank of Montreal
output.println(stk1.toString());

• Indeed, output methods automatically invoke the
toString method when outputting object references.

• Example, the following fragments yield the same
output

output.println(stk1.toString());
output.println(stk1);

60

APIs and class use

The toString() method
• Getting an intuitive return from toString depends on

the class to which it is being applied having
appropriately defined toString for that particular class.

• For example, we have seen good design in this
regard for the Stock class.

• If the designer of the class has not done this task,
then Java makes use of a default toString operation.
– Returns the the name and address of the object

(in hex).
• Example

StockNS myStk = new StockNS(“NT”);
// prints something like type.lib.StockNS@86d4c1
IO.println(myStk.toString());

31

61

APIs and class use

The toString() method
• Getting an intuitive return from toString depends on the

class to which it is being applied having appropriately
defined toString for that particular class.

• For example, we have seen good design in this regard
for the Stock class.

• If the designer of the class has not done this task, then
Java makes use of a default toString operation.
– Returns the the name and address of the object (in

hex).
• Example

StockNS myStk = new StockNS(“BMO”);
// prints something like type.lib.StockBMO@86d4c1
output.println(myStk.toString());

62

APIs and class use
Comparing objects
• You cannot use the relational operators to compare

two objects.
• For example, given two objects o1 and o2, in the

statement
boolean test = o1 == o2;

test is true if the object references are the same, not
whether the objects are the same.

• As an example with the Stock class
Stock s1 = new Stock(“BMO”);
Stock s2 = new Stock(“BMO);
Stock s3 = s2;
boolean compare2and3 = s2 == s3; // true
boolean compare1and2 = s1 == s2; // false

32

63

APIs and class use
Comparing objects
• You cannot use the relational operators to compare

two objects.
• For example, given two objects o1 and o2, in the

statement
boolean test = o1 == o2;

test is true if the object references are the same, not
whether the objects are the same.

• As an example with the Stock class
Stock s1 = new Stock(“BMO”);
Stock s2 = new Stock(“BMO”);
Stock s3 = s2;
boolean compare2and3 = s2 == s3; // true
boolean compare1and2 = s1 == s2; // false

64

APIs and class use

Comparing objects
• Use of == is only appropriate for comparing object

references.
• Java is set up so that for any two objects o1 and o2,

o1.equals(o2) is always defined.
• However, for arbitrary objects Java has no idea what

it means to perform a comparison
– It defaults to using ==
– This can have unintended effects in the hands of a

naïve user!

33

65

APIs and class use

Comparing objects
• The designer of a class can (but need not) override

the default and sensibly define equals(o) for a given
class
– e.g., as has been done for Stock

Stock s1 = new Stock(“BMO”);
Stock s2 = new Stock(“BMO”);
boolean compare1and2 = s1 == s2; // false
compare1and2 = s1.equals(s2); // true

• Always check to see if equals() is appropriately
defined for a class of objects before employing it
– e.g., by consulting the class API

66

APIs and class use

Comparing objects

Method Summary

boolean equals(java.lang.Object other)

Test the equality of stock objects.

34

67

APIs and class use
Comparing objects

Method Detail
equals

public boolean equals(java.lang.Object other)

Test the equality of stock objects. An object is considered equal to this
one if it is a stock object with the same symbol as this one.

Overrides:
equals in class java.lang.Object

Parameters:
other - a reference to the object to test equality with.

Returns:
true if other is not null and it points to an object that is equal (as

defined above) to this object. The return is false otherwise.

68

APIs and class use

Testing for the null object reference

• It is appropriate to use == when we want to test for
the null object reference.

Stock s = null;

boolean test = s == null; // test is true

• This make sense, since == compares object
references (as opposed to the objects themselves).

35

69

APIs and class use

Checking for object class
• In some situations it is desirable to make sure that an

object belongs to (is an instance of) a particular
class.
Stock myStock;
boolean test = (myStock instanceof Stock); // error
myStock = new Stock (“BMO”);
test = (myStock instanceof Stock); // true
myStock = null;
test = (myStock instanceof Stock); // false

• For example, such tests can help safeguard against
inappropriate actions on an object.

70

APIs and class use
Cloning
• As a way to create copies of an object, the Stock class provides

an instance method cloneMe().
• This method works by copying all the fields of the object on

which it is invoked.
• Example

Stock s1 = new Stock(“TD”);
s1.setDelimiter(‘$’);
Stock s2 = new Stock(s1.getSymbol());
Stock s3 = s1.cloneMe();
IO.println(s1 == s2); // false
IO.println(s1 == s3); // false
IO.println(s1.equals(s2)); // true
IO.println(s1.equals(s3)); // true
IOprintln(s1); // NT$Nortel Networks Corp
IO.println(s2); // NT Nortel Networks Corp
IO.println(s3); // NT$Nortel Networks Corp

36

71

APIs and class use
Cloning
• As a way to create copies of an object, the Stock class provides

an instance method cloneMe().
• This method works by copying all the fields of the object on

which it is invoked.
• Example

Stock s1 = new Stock(“TD”);
s1.setDelimiter(‘$’);
Stock s2 = new Stock(s1.getSymbol());
Stock s3 = s1.cloneMe();
output.println(s1 == s2); // false
output.println(s1 == s3); // false
IO.println(s1.equals(s2)); // true
IO.println(s1.equals(s3)); // true
IOprintln(s1); // NT$Nortel Networks Corp
IO.println(s2); // NT Nortel Networks Corp
IO.println(s3); // NT$Nortel Networks Corp

72

APIs and class use
Cloning
• As a way to create copies of an object, the Stock class provides

an instance method cloneMe().
• This method works by copying all the fields of the object on

which it is invoked.
• Example

Stock s1 = new Stock(“TD”);
s1.setDelimiter(‘$’);
Stock s2 = new Stock(s1.getSymbol());
Stock s3 = s1.cloneMe();
output.println(s1 == s2); // false
output.println(s1 == s3); // false
output.println(s1.equals(s2)); // true
output.println(s1.equals(s3)); // true
IOprintln(s1); // NT$Nortel Networks Corp
IO.println(s2); // NT Nortel Networks Corp
IO.println(s3); // NT$Nortel Networks Corp

37

73

APIs and class use
Cloning
• As a way to create copies of an object, the Stock class provides

an instance method cloneMe().
• This method works by copying all the fields of the object on

which it is invoked.
• Example

Stock s1 = new Stock(“TD”);
s1.setDelimiter(‘$’);
Stock s2 = new Stock(s1.getSymbol());
Stock s3 = s1.cloneMe();
output.println(s1 == s2); // false
output.println(s1 == s3); // false
output.println(s1.equals(s2)); // true
output.println(s1.equals(s3)); // true
output.println(s1); // TD$Toronto-Dominion Bank
output.println(s2); // TD Toronto-Dominion Bank
output.println(s3); // TD$Toronto-Dominion Bank

74

APIs and class use

Cloning
• As a way to create copies of an object, the Stock

class provides an instance method cloneMe().
• This method works by copying all the fields of the

object on which it is invoked.

Remark
• Do not confuse the cloneMe method (as defined in

the Stock class) with the Java clone method.
• At this point, we are not concerned with Java clone.

38

75

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

76

Patterns

A class can have
• constructors

– Used to create instances (objects) that belong to
the class,

– e.g., the Stock constructors.
• instance methods (non-static)

– Operators that belong to and can be invoked on
each object that is an instance of the class,

– e.g., myStk.getPrice().
• instance attributes (non-static)

– Stores for data associated with the object and
which can be retrieved and changed (unless final)
by users

– e.g., myStk.getName().

39

77

Patterns

A class can have
• constructors

– Used to create instances (objects) that belong to
the class,

– e.g., the Stock constructors.
• instance methods (non-static)

– Operators that belong to and can be invoked on
each object that is an instance of the class,

– e.g., myStk.getPrice().
• instance attributes (non-static)

– Stores for data associated with the object and
which can be retrieved and changed (unless final)
by users

– e.g., myStk.getName().

78

Patterns

A class can have
• constructors

– Used to create instances (objects) that belong to
the class,

– e.g., the Stock constructors.
• instance methods (non-static)

– Operators that belong to and can be invoked on
each object that is an instance of the class,

– e.g., myStk.getPrice().
• instance attributes (non-static)

– Stores for data associated with the object and
which can be retrieved and changed (unless final)
by users

– e.g., myStk.name.

40

79

Patterns

A class can have
• static methods

– That belong to the class as a whole,
– e.g., the hypothetical

Stock.getTSXcompIndexValue().
• static attributes

– Stores for data associated with the class as a
whole and which can be retrieved and changed
(unless final) by users

– e.g., Stock.titleCaseName.

80

Patterns

A class can have
• static methods

– That belong to the class as a whole,
– e.g., the hypothetical

Stock.getExchangeCompIndexValue().
• static attributes

– Stores for data associated with the class as a
whole and which can be retrieved and changed
(unless final) by users

– e.g., Stock.titleCaseName.

41

81

Patterns

A class can have
• static methods

– That belong to the class as a whole,
– e.g., the hypothetical

Stock.getExchangeCompIndexValue().
• static attributes

– Stores for data associated with the class as a
whole and which can be retrieved and changed
(unless final) by users

– e.g., Stock.titleCaseName.

82

Patterns

Non-static classes can have Static classes can have

constructors

instance (non-static) methods

instance (non-static) attributes

static methods static methods

static attributes static attributes

42

83

Patterns

Types of methods
• accessor methods

– Used to retrieve the value of an attribute of the
object,

– e.g., in Stock we have getSymbol, getName,
getDelimiter, etc.

• mutator methods
– Used to change the value of an attribute of an

object
– e.g., in Stock we have setSymbol, setDelimiter,

etc.

84

Patterns

Types of methods
• standard methods

– Defined for all classes (even if not by the class
designer),

– e.g., toString, equals, etc.
• specialized methods

– Particular to a class,
– e.g., in Stock we have refresh.

43

85

Patterns

Visibility
• All of the constructors, methods and attributes that

are available to the user of a class are said to be
public or visible.

• All such features appear in the API for the class so
you know they are there for you to exploit.

• We notice that in the API detail these features are
marked with the Java keyword public.

• There also may be private features, but these are not
available to the user and are not visible in the API.

86

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

44

87

(More) class usage
Object vs. object reference

12

32

800











40

100

200

88

(More) class usage

import type.lib.*;

Object vs. object reference

12

32

800











40

100

200

45

89

(More) class usage

import type.lib.*;

int x;

Object vs. object reference

12

32

800











40

100

200

x

90

(More) class usage

import type.lib.*;

int x;

x = -12;

Object vs. object reference

12

32

800



-12









40

100

200

x

46

91

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

Object vs. object reference

12

32

800



-12









40

100

200

x

s

Stock class

92

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

Object vs. object reference

800

12

32

800



-12









40

100

200

x

s

Stock class

Stock object

47

93

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Object vs. object reference

-12

800

12

32

800



-12









40

100

200

x

y

s

Stock class

Stock object

94

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Object vs. object reference

-12

800

12

32

800



-12









40

100

200

x

y

s

Stock class

Stock object

Don’t forget: To enable
assertions use
% java –ea app

48

95

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Stock t = s;

assert s == t;

Object vs. object reference

-12

800

12

32

800


800

-12









40

100

200

x

y

s

t

Stock class

Stock object

96

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Stock t = s;

assert s == t; // assert okay

Object vs. object reference

-12

800

12

32

800


800

-12









40

100

200

x

y

s

t

Stock class

Stock object

49

97

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Stock t = s;

assert s == t; // assert okay

t = null;

assert s == t;

Object vs. object reference

-12

800

12

32

800



-12









40

100

200

x

y

s

t

Stock class

Stock object

null

98

(More) class usage

import type.lib.*;

int x;

x = -12;

Stock s;

s = new Stock(“RY”);

int y = x;

assert x == y; // assert okay

Stock t = s;

assert s == t; // assert okay

t = null;

assert s == t; // assert fails

Object vs. object reference

-12

800

12

32

800



-12









40

100

200

x

y

s

t

Stock class

Stock object

null

50

99

(More) class usage

import type.lib.*;
int x;
x = -12;
Stock s;
s = new Stock(“RY”);
int y = x;
assert x == y; // assert okay
Stock t = s;
assert s == t; // assert okay
t = null;
assert s == t; // assert fails
t = new Stock(“RY”);
assert s == t;

Object vs. object reference

800

900

32

40

Stock Class

900 Stock Object



-12









100

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Stock Object

t

y

100

(More) class usage

import type.lib.*;
int x;
x = -12;
Stock s;
s = new Stock(“RY”);
int y = x;
assert x == y; // assert okay
Stock t = s;
assert s == t; // assert okay
t = null;
assert s == t; // assert fails
t = new Stock(“RY”);
assert s == t; // assert fails

Object vs. object reference

800

900

32

40

Stock Class

900 Stock Object



-12









100

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Stock Object

t

y

51

101

(More) class usage

• Upon importing

import type.lib.*;

we have: memory diagram

Customization

12

32

800











40

100

200

102

(More) class usage

• Upon importing

import type.lib.*;

we have: memory diagram

• Upon declaration

Stock s;

we have: memory diagram

Customization

12

32

Symbol = ?
Name = ?
Price =?

800











40

100

200

s

52

103

(More) class usage

• Upon importing

import type.lib.*;

we have: memory diagram

• Upon declaration

Stock s;

we have: memory diagram

• Upon creation

s = new Stock(“RY);

we have: memory diagram

Customization

800

12

32

Symbol = ?
Name = ?
Price =?

800











40

100

200

s

Symbol = RY
Name = Royal
Price = $61.89

104

(More) class usage

IO.println(x);
IO.println(s);
IO.println(t);
IO.println(s.toString());
IO.println(t.toString());

• Upon seeing println(s) Java
asks if toString() is defined for
s.

• If so, then it invokes
s.toString() for the value to be
printed.

• Otherwise it prints the value of
the reference (e.g., 800).

Method toString()

-12

800

12

32

800


800

-12









40

100

200

x

y

s

t

Stock class

Stock object

53

105

(More) class usage

IO.println(x);
IO.println(s);
IO.println(t);
IO.println(s.toString());
IO.println(t.toString());

• Upon seeing println(s) Java
asks if toString() is defined for
s.

• If so, then it invokes
s.toString() for the value to be
printed.

• Otherwise it prints the value of
the reference (e.g., 800).

Method toString()

-12

800

12

32

800


800

-12









40

100

200

x

y

s

t

Stock class

Stock object

To gain access
import type.lang.*;

106

(More) class usage
Accessing & setting field values

800

12

32

800


800









40

100

200

s

t

Symbol = ?
Name = ?
Price = ?

Symbol = RY
Name = Royal
Price = $61.68

54

107

(More) class usage

double p = s.getPrice();

// next 2 lines yield same result

IO.println(p);

IO.println(t.getPrice());

Accessing & setting field values

800

12

32

800


800

61.68









40

100

200

p

s

t

Symbol = ?
Name = ?
Price = ?

Symbol = RY
Name = Royal
Price = $61.68

108

(More) class usage

double p = s.getPrice();

// next 2 lines yield same result

IO.println(p);

IO.println(t.getPrice());

// but not the next 2

IO.println(s.getName());

IO.println(s.getSymbol());

Accessing & setting field values

800

12

32

800


800

61.68









40

100

200

p

s

t

Symbol = ?
Name = ?
Price = ?

Symbol = RY
Name = Royal
Price = $61.68

55

109

(More) class usage

double p = s.getPrice();

// next 2 lines yield same result

IO.println(p);

IO.println(t.getPrice());

// but not the next 2

IO.println(s.getName());

IO.println(s.getSymbol());

s.setSymbol(“BMO”);

// what about these 2

IO.println(s);

IO.println(t);

Accessing & setting field values

800

12

32

800


800

61.68









40

100

200

p

s

t

Symbol = ?
Name = ?
Price = ?

Symbol = BMO
Name = Montreal
Price = $63.00

110

(More) class usage

double p = s.getPrice();

// next 2 lines yield same result

IO.println(p);

IO.println(t.getPrice());

// but not the next 2

IO.println(s.getName());

IO.println(s.getSymbol());

s.setSymbol(“BMO”);

// what about these 2: also same

IO.println(s);

IO.println(t);

Accessing & setting field values

800

12

32

800


800

61.68









40

100

200

p

s

t

Symbol = ?
Name = ?
Price = ?

Symbol = BMO
Name = Montreal
Price = $63.00

56

111

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t =s;

r = new Stock(“BMO”);

== vs. equals()

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = BMO
Name = Montreal
Price = $63.00



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

112

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t =s;

r = new Stock(“BMO”);

assert s == t;

assert s != r;

== vs. equals()

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = BMO
Name = Montreal
Price = $63.00



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

57

113

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t =s;

r = new Stock(“BMO”);

assert s == t; // okay

assert s != r; // okay

== vs. equals()

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = BMO
Name = Montreal
Price = $63.00



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

114

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t =s;

r = new Stock(“BMO”);

assert s == t; // okay

assert s != r; // okay

r.setSymbol(“RY”);

assert s != r;

assert s.equals (r);

== vs. equals()

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = RY
Name = Royal
Price = $61.68



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

58

115

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t =s;

r = new Stock(“BMO”);

assert s == t; // okay

assert s != r; // okay

r.setSymbol(“RY”);

assert s != r; // okay

assert s.equals(r); // okay

== vs. equals()

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = RY
Name = Royal
Price = $61.68



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

116

(More) class usage

Stock s = new Stock(“RY”);

Copying

12

32

Symbol = ?
Name = ?
Price = ?

900



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

59

117

(More) class usage

Stock s = new Stock(“RY”);

Stock t = s;

Copying

800

12

32

Symbol = ?
Name = ?
Price = ?

900



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

118

(More) class usage

Stock s = new Stock(“RY”);

Stock t = s;

Stock r = s.cloneMe();

Copying

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = RY
Name = Royal
Price = $61.68



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

60

119

(More) class usage

Stock s = new Stock(“RY”);

Stock t = s;

Stock r = s.cloneMe();

boolean case1 = s==t;

boolean case2 = s==r;

case1 = s.equals(t);

case2 = s.equals(r);

Copying

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = RY
Name = Royal
Price = $61.68



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

120

(More) class usage

Stock s = new Stock(“RY”);

Stock t = s;

Stock r = s.cloneMe();

boolean case1 = s==t; // true

boolean case2 = s==r; // false

case1 = s.equals(t); // true

case2 = s.equals(r); // true

Copying

800

900

12

32

Symbol = ?
Name = ?
Price = ?

900
Symbol = RY
Name = Royal
Price = $61.68



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
Name = Royal
Price = $61.68

t

r

61

121

(More) class usage

Stock s, t, r;

s = new Stock(“HR.A”);

t = s;

r = new Stock(“HR.B”);

static vs. non-static

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = HR.B
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = HR.A
delimiter = ‘ ‘
…

t

r

122

(More) class usage

Stock s, t, r;

s = new Stock(“HR.A”);

t = s;

r = new Stock(“HR.B”);

IO.println(s); //HR.A ACOMP CORP

static vs. non-static

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = HR.B
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = HR.A
delimiter = ‘ ‘
…

t

r

62

123

(More) class usage

Stock s, t, r;

s = new Stock(“HR.A”);

t = s;

r = new Stock(“HR.B”);

IO.println(s);

s.delimiter = ‘*’;

IO.println(s); // HR.A*ACOMP CORP

IO.println(r); // HR.B BTECH INC.

static vs. non-static

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = HR.B
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = HR.A
delimiter = *
…

t

r

124

(More) class usage

Stock s, t, r;

s = new Stock(“HR.A”);

t = s;

r = new Stock(“HR.B”);

IO.println(s);

s.delimiter = ‘*’;

IO.println(s);

IO.println(r);

Stock.titleCaseName = true;

IO.println(s.getName()); //Acomp Corp

static vs. non-static

800

900

12

32

Symbol = ?
titleCaseName = true
delimiter = ?

900
Symbol = HR.B
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = HR.A
delimiter = *
…

t

r

63

125

(More) class usage

Stock s, t, r;
s = new Stock(“HR.A”);
t = s;
r = new Stock(“HR.B”);
IO.println(s);
s.delimiter = ‘*’;
IO.println(s);
IO.println(r);
Stock.titleCaseName = true;
IO.println(s.getName()); // Acomp Corp

r.titleCaseName = false;
IO.println(r.getName()); //BTECH INC.

IO.println(s.getName()); //ACOMP CORP

static vs. non-static

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = HR.B
Delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = HR.A
delimiter = *
…

t

r

126

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

Losing objects: 3 ways

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

t

r

64

127

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

1. Point elsewhere

s = r;

t = r;

// now nothing points to 800

Losing objects: 3 ways

900

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…



900









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

t

r

128

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

Losing objects: 3 ways

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

t

r

65

129

(More) class usage

Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

2. Set to null

s = null;

t = null;

// now nothing points to 800

Losing objects: 3 ways

null

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…



null









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

t

r

130

(More) class usage

{ Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

}

Losing objects: 3 ways

800

900

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…



800









40

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

t

r

66

131

(More) class usage

{ Stock s, t, r;

s = new Stock(“RY”);

t = s;

r = new Stock(“BMO”);

}

/* nothing points to 800 or 900

here beyond the curly brackets

*/

3. Leave the scope.

Losing objects: 3 ways

12

32

Symbol = ?
titleCaseName = false
delimiter = ?

900
Symbol = BMO
delimiter = ‘ ‘
…











40

200

800
Symbol = BMO
Name = Montreal
Price = $39.29

Symbol = RY
delimiter = ‘ ‘
…

132

(More) class usage

Parting comments

• Be sure that you understand class usage as
illustrated by the previous examples.

• Create additional examples for yourself; try them out
on your computer.

• Think in terms of memory diagrams to keep matters
clear.

67

133

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

134

Abstraction: Objects, classes & methods

Why Object Oriented Programming (OOP)?

• OOP lends itself to highly modular programs.

• OOP lends itself to high reuse of software.

68

135

Abstraction: Objects, classes & methods

Why make use of classes

• Data abstraction

• Modularity

136

Abstraction: Objects, classes & methods

Why make use of classes: Data abstraction
• We want to work with data pertaining to some entity.

– For example, we might consider stocks…
– …with attributes of symbol and price

• We find there are a related set of operations that allow
us to manipulate the data
– So for stocks, we might consider ways to get/set

symbols…
– …and ways to get/refresh prices

• It is useful to group together the data and the operations
that manipulate it, e.g., into a class
– Combining these operations with the data itself, we

abstract to a class Stock.

69

137

Abstraction: Objects, classes & methods

Why make use of classes: Data abstraction
• To avoid confusion and inadvertent corruption of the data,

we hide the details of
– How the data is represented
– How the operations are manipulated

• We provide a public interface to only a set of operations
that allow the user access to critical pieces of information
– For Stock, provide methods to alter symbols and

prices.
– But no direct access to the symbols and prices.

• Users of the class instantiate objects of the class and
work through the (public) interface on this objects.
– Create a Stock object myStock
– Provide a symbol and price through methods

138

Abstraction: Objects, classes & methods

Why make use of classes: Modularity
• We want to group together a set of related operations in a

module.
– For example, the Math class.
– The operations are instantiated as methods with public

interfaces.
– Again, details of operation are hidden from the user.

• In this case, users of the class
– Will not instantiate objects of the class.
– Instead, they work just with the methods through their

public interfaces.
float x = Math.sin(Math.PI/2.0); // x has value 1.0
output.println(“I hope you understand this.”);

70

139

Abstraction: Objects, classes & methods

Why make use of classes

• Data abstraction

• Modularity

• In both cases, we say that the class encapsulates, i.e.,
hides, the details of its definition and implementation.

140

Abstraction: Objects, classes & methods

Methods provide procedural abstraction
• When we define a method, we take steps required to

solve a subproblem and give them a name.
• Afterwards, the method can be called without

knowing how it is implemented.

We can distinguish 2 types of methods
1. Instance methods: Provide ways to operate on

instances of a class, i.e., objects
“How long am I?”.length();

2. Class methods: Directly associated with the class;
combined the methods in the class provide a
functional module, e.g., the methods of the Math
class.

71

141

Abstraction: Objects, classes & methods
Methods provide procedural abstraction
• When we define a method, we take steps required to

solve a subproblem and give them a name.
• Afterwards, the method can be called without

knowing how it is implemented.

We can distinguish 2 types of methods
1. Instance (non-static) methods: Provide ways to

operate on instances of a class, i.e., objects
int strLen = “How long am I?”.length();

2. Class (static) methods: Directly associated with the
class; combined the methods in the class provide a
functional module, e.g., the methods of the Math
class.

double x = Math.abs(-2.0);

142

Abstraction: Objects, classes & methods

A class provides
• A declaration of the attributes (fields, variables, …)

– Contain (static) data regarding the class as a whole
(e.g., titleCaseName for Stock)

– Contain (non-static) data regarding instances of the
class (e.g., name and delimiter for a Stock object).

• Constructors
– These are used to instantiate the object (in conjunction

with the new operator).
Stock myStock = new Stock(“BMO”);

• Instance (non-static) methods
– Those that operate on instances of the class (objects)

myStock.getPrice();

72

143

Abstraction: Objects, classes & methods

A class provides (Cont.)

• Class (Static) methods

– Those associated directly with the class

x = Math.pow(2, 3); // 8.0

or

Stock.getExchangeCompIndexValue(); // hypothetical

• Implementation

– All the gory details.

– But, hidden away from the user of the class.

144

Abstraction: Objects, classes & methods

A class provides (Cont.)

• Class (Static) methods

– Those associated directly with the class

x = Math.pow(2, 3); // 8.0

or

Stock.getExchangeCompIndexValue(); // hypothetical

• Implementation

– All the gory details.

– But, hidden away from the user of the class.

Remark

• Static classes do not provide constructors, instance
methods, instance attributes.

73

145

Abstraction: Objects, classes & methods

What we now understand

• Object oriented programming supports modular
software development and high reuse.

• Classes provide data abstraction and modular
design.

• Objects are instances of classes.

• Methods provide procedural abstraction.

146

Outline

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

74

147

Software engineering example

Requirements: Problem definition

• We have been asked to write a program that
generates lottery (lotto) numbers.

148

Software engineering example

Requirements: Analysis

• Input: No input is required.

• Output: Lottery (lotto) numbers, 6 random integers in
the range 1-49.

• Format: i1 i2 i3 i4 i5 i6

75

149

Software engineering example

Design

150

Software engineering example

Design
• Algorithm:

1.Generate a random number in [1,49].
2.Print out the random number.
3.Repeat steps 1 & 2 five more times.

76

151

Software engineering example

Design: What extant software can we use?
• Surely, someone has written a random number

generator.
• In java.util we find the class Random

Constructor Summary

Random()
Creates a new random number generator.

Random(long seed)
Creates a new random number generator using a single

long seed:

152

Software engineering example

Design: What extant software can we use?
• Surely, someone has written a random number

generator.
• In java.util we find the class Random

public class Random
extends Object

An instance of this class is used to generate a stream of pseudorandom
numbers. The class uses a 48-bit seed, which is modified using a linear
congruential formula. (See Donald Knuth, The Art of Computer
Programming, Volume 2, Section 3.2.1.)

77

153

Software engineering example

Design: What extant software can we use?

Constructor Summary

Random()

Creates a new random number generator.

Random(long seed)

Creates a new random number generator using a single
long seed:

154

Software engineering example

Design: What extant software can we use?

Method summary

int nextInt()

Returns the next pseudorandom, uniformly
distributed int value from this random number
generator's sequence.

78

155

Software engineering example

Design
• Algorithm:

1.Generate a random number in [1,49].
2.Print out the random number.
3.Repeat steps 1 & 2 five more times.

156

Software engineering example

Design
• Algorithm:

1.Generate a random number in [1,49].
1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,48]

(for integer n, n%49 in [0,48]).
1.4 Shift the number to be in [1,49]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

79

157

Software engineering example

Design
• Algorithm:

1.Generate a random number in [1,MAX].
1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

• Constants: 49  MAX

158

Software engineering example

Design
• Algorithm:

1.Generate a random number in [1,MAX].
1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

• Constants: 49  MAX
• Variables: random number; generator.

80

159

Software engineering example

Example: Implementation:

• Declaration

• Input

• Computation

• Output

160

Software engineering example

/*
Class to ???.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

Our 1020 program template

81

161

Software engineering example

/*
Class to Class to generate lotto numbers: 6 random integers in

[1,49].

Author: R. Wildes Date: 05/09/13
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;
import java.util.Random; // import random number facilities

// Definition of the LottoNumbers class.
public class LottoNumbers
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

Our 1020 program template

162

Software engineering example

DICO: Declaration

// Declaration.

82

163

Software engineering example

DICO: Declaration

// Declaration.
• During design we had isolated that we would want to

manipulate data and/or objects having to do with
– A random number (int)
– A maximum value (int)
– A generator of random values (Random)

164

Software engineering example

DICO: Declaration

// Declaration.
• During design we had isolated that we would want to

manipulate data and/or objects having to do with
– A random number (int)
– A maximum value (int)
– A generator of random values (Random)

• Some of these items should not change during the
course of the program: Constants.

83

165

Software engineering example

DICO: Declaration

// Declaration.

final int MAX = 49;

166

Software engineering example

DICO: Declaration
// Declaration.
• During design we had isolated that we would want to

manipulate data and/or objects having to do with
– A random number (int)
– A maximum value (int)
– A generator of random values (Random)

• Some of these items should not change during the
course of the program: Constants.

• Some of these items should have a primitive type and
vary during the course of the program: primitive type
variables.

84

167

Software engineering example

DICO: Declaration

// Declaration.

final int MAX = 49;

int rn;

168

Software engineering example

DICO: Declaration
// Declaration.
• During design we had isolated that we would want to

manipulate data and/or objects having to do with
– A random number (int)
– A maximum value (int)
– A generator of random values (Random)

• Some of these items should not change during the
course of the program: Constants.

• Some of these items should be of primitive type and
vary during the course of the program: primitive type
variables.

• Some of these items should be our own copy of a
predefined class: Objects type variables.

85

169

Software engineering example

DICO: Declaration

// Declaration.
final int MAX = 49;
int rn;
Random gen = new Random();

170

Software engineering example

DICO: Input

// Input.

86

171

Software engineering example

DICO: Input

// Input.

• Input: No input is required.

172

Software engineering example

DICO: Input

// Input: This app requires no input from user.

87

173

Software engineering example

DICO: Computation

// Computation.

174

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,48].
1.4 Shift the number to be in [1,49]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

88

175

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,48].
1.4 Shift the number to be in [1,49]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

176

Software engineering example

DICO: Computation

// Computation.

rn = gen.nextInt();
rn = Math.abs(rn);
rn = rn % MAX;
rn = rn + 1;
IO.print(rn + “ ”);

89

177

Software engineering example

DICO: Computation

// Computation.

rn = gen.nextInt(); // get a random number
rn = Math.abs(rn);
rn = rn % MAX;
rn = rn + 1;
IO.print(rn + “ ”);

178

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,48].
1.4 Shift the number to be in [1,49]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

90

179

Software engineering example

DICO: Computation

// Computation.

rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX;
rn = rn + 1;
IO.print(rn + “ ”);

180

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

91

181

Software engineering example

DICO: Computation

// Computation.

rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1;
IO.print(rn + “ ”);

182

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

92

183

Software engineering example

DICO: Computation

// Computation.

rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
IO.print(rn + “ ”);

184

Software engineering example

DICO: Computation

// Computation.
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

93

185

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

Recall
• Output had the format: i1 i2 i3 i4 i5 i6

186

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1

94

187

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

188

Software engineering example

Incremental edit/compile/run

• Prior to repeating the calculation...

• … let’s pause to make sure that things are
working as expected, so far.

95

189

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1

Remark
• There is no need to enter debugging statements as

the code segment ended with a useful output
statement.

190

Software engineering example

Incremental edit/compile/run

• Prior to repeating the calculation...

• … let’s pause to make sure that things are
working as expected, so far.

%

96

191

Software engineering example

Incremental edit/compile/run

• Prior to repeating the calculation...

• … let’s pause to make sure that things are
working as expected, so far.

% javac LottoNumbers.java

192

Software engineering example

Incremental edit/compile/run

• Prior to repeating the calculation...

• … let’s pause to make sure that things are
working as expected, so far.

% javac LottoNumbers.java

%

97

193

Software engineering example

Incremental edit/compile/run

• Prior to repeating the calculation...

• … let’s pause to make sure that things are
working as expected, so far.

% javac LottoNumbers.java

% java LottoNumbers

194

Software engineering example

Incremental edit/compile/run
• Prior to repeating the calculation...
• … let’s pause to make sure that things are

working as expected, so far.
% javac LottoNumbers.java
% java LottoNumbers
39

98

195

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

196

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

Remark
• There is a better way.

99

197

Software engineering example

Design: What extant software can we use?

Method summary

int nextInt()
Returns the next pseudorandom, uniformly
distributed int value from this random number
generator's sequence.

int nextInt(int n)
Returns a pseudorandom, uniformly distributed int
value between 0 (inclusive) and the specified value
(exclusive), drawn from this random number
generator's sequence.

198

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an arbitrary random number
1.2 Make the number non-negative.
1.3 Scale the number to be in [0,MAX-1].
1.4 Shift the number to be in [1,MAX]

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

Remark
• There is a better way.

100

199

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an random number in [0,MAX-1].
1.2 Shift the number to be in [1,MAX].

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

200

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1

101

201

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]

202

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]

102

203

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 2

204

Software engineering example

DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 2

Remark
• Now is a good time for incremental edit/compile/run.

103

205

Software engineering example

DICO: Computation and Output

// Computation.and Output
1. Generate a random number in [1,MAX].

1.1 Generate an random number in [0,MAX-1].
1.2 Shift the number to be in [1,MAX].

2. Print the random number.
3. Repeat steps 1 & 2 five more times.

206

Software engineering example
DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 2

104

207

Software engineering example
DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 2
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 3

208

Software engineering example
DICO: Computation and Output

// Computation and Output
rn = gen.nextInt(); // get a random number
rn = Math.abs(rn); // make non-negative
rn = rn % MAX; // scale to be in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 1
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 2
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 3
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 4

105

209

Software engineering example
DICO: Computation and Output

// Computation and Output

.

.

.

210

Software engineering example
DICO: Computation and Output

// Computation and Output
.
.
.
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 5

106

211

Software engineering example
DICO: Computation and Output

// Computation and Output
.
.
.
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.print(rn + “ ”); // that’s 5
rn = gen.nextInt(MAX); // get random in [0,MAX-1]
rn = rn + 1; // shift to be in [1,MAX]
output.println(rn); // that’s 6

Remark
• Notice that the last printing statement is slightly

different than the previous ones.

212

Software engineering example

Completing the implementation cycle

• We now save our code to a file LottoNumbers.java…

• …and continue with the edit/compile/run cycle until

• …we have nominally working LottoNumbers.class

• Since we have been working incrementally through
the edit/compile/run cycle, final compilation should go
relatively smoothly.

107

213

Software engineering example

Test

%

214

Software engineering example

Test

% java LottoNumbers

108

215

Software engineering example

Test

% java LottoNumbers

11 42 18 24 3 7

%

216

Software engineering example

Test

% java LottoNumbers

11 42 18 24 3 7

% java LottoNumbers

109

217

Software engineering example

Test

% java LottoNumbers
11 42 18 24 3 7
% java LottoNumbers
31 36 4 46 43 39
%

218

Software engineering example

Test

% java LottoNumbers
11 42 18 24 3 7
% java LottoNumbers
31 36 4 46 43 39
% java LottoNumbers

110

219

Software engineering example

Test

% java LottoNumbers
11 42 18 24 3 7
% java LottoNumbers
31 36 4 46 43 39
% java LottoNumbers
25 33 26 38 41 37
%

220

Software engineering example

Test

% java LottoNumbers
11 42 18 24 3 7
% java LottoNumbers
31 36 4 46 43 39
% java LottoNumbers
25 33 26 38 41 37
%

Remark
• In practice, would submit program to a more

extensive battery of tests.

111

221

Software engineering example

Deployment

• In real life you now ship/install your product.

• Here, as usual, I’ve placed the source code on our
section website.

222

Summary

• Objects

• API and usage

• Patterns

• (More) usage

• Abstraction: Objects, classes & methods

• Software engineering example

