
1

1

CSE 1020: Week 3

Topic: Using classes and APIs

To do: Textbook Chapter 3; Lab 3

2

Outline

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

2

3

Outline

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

4

Modules

Abstraction
• A typical app makes use of predefined components.
• For convenience, we group related components

together in classes.
• For example,

– in MkChange we used print from the PrintStream
class.

• Other components that provide services related to
output also reside in the PrintStream class.

• Similarly, many components related to mathematical
concepts are grouped together in the Math class.

• Such components are abstractions that can be used
without knowing how they are implemented.

3

5

Modules
Information hiding
• The class hides the details of how the operations of the class are

implemented from users of the class.
• Those aspects of the class that are visible to the user are said to

be public.
• Other aspects of the class, having to do with how it is

implemented, are not available to the user and are said to be
private.

• Information on the public aspects of the class are collected
together in the class API, which users can consult.

6

Modules

Static classes
• The simplest kind of class is a static class or a module.
• As examples:

– ToolBox is a static class;
– Math is a static class.

• Such classes simply work as a grouping mechanism
for related data and operations.

4

7

Modules

A static class provides
• static methods: operations that belong to the class that

can be used by users (without knowing
implementation)
– e.g., ToolBox.getBMI;

• static constants: whose values can be retrieved by
users
– e.g., Integer.MAX_INT;

• static variables: whose values can be retrieved and
changed by users
– e.g., IO.fillChar.

• Remark: All features (methods, constants, variables) of
a static class are static.

8

Modules

How to refer to static class components

• Methods: ClassName.methodName(parameters)

– e.g., ToolBox.getBMI(165.0,”6’1”);

• Constants: ClassName.constantName

– e.g., Math.PI;

• Variables: ClassName.variableName

– e.g., IO.fillChar;

5

9

Modules (and beyond)
Static classes
• The simplest kind of class is a static class or a module.
• For example, Math is a static class.

Non-static classes
• There also is another kind of class where the user can

create customized versions, called instances,
according to a predefined template.

• The instances are called objects.
• Such classes have non-static methods and fields.

Terminology
• A class is static if it does not allows us to define our

own copies.
• A class is non-static if it does allow us to define our

own copies.

10

Outline

• Modules

• APIs and class use

• Input/output

• Boolean expressions and relational operators

• Software (re)engineering

6

11

APIs and class use

What is an API
• The term API stands for Application Programming

Interface
• Documents how another program can access a given

class.
• Hides implementation detail.

Why we care: Guide to ready made software modules
• As an applications programmer, we use the API of a

class for two main reasons
1.By perusing the API of a class we can determine if it

provides useful functionality for the task that we are
addressing.

2. If we discover useful functionality, then the API tells
us how to access it.

12

APIs and class use

API anatomy: Overview

• There is variability in the layout of particular APIs.

• We will review a fairly standard layout and the one
that we try to adhere to in CSE1020.

• As a particular example, we consider the Math class.

7

13

APIs and class use

API anatomy: Basic terminology

• The term field will refer to a piece of information that is
maintained about the class as a whole.

• Examples:

– Math.E;

– Math.PI.

14

APIs and class use

API anatomy: Basic terminology

• The term method will refer an operation that can be
performed with respect to the class.

• Examples:

– Math.abs;

– Math.min.

8

15

APIs and class use

API anatomy: Basic terminology

• The terms field and method are not standard.

• Following are terms that can be deemed equivalent.

– field = attribute = variable = data member = property

– method = message = member function = sub

16

APIs and class use

API anatomy: Overall layout

9

17

APIs and class use

API anatomy: Structure
• The documentation is divided into 3 main parts
1. Descriptive paragraph: Provides a high level

overview of the class.
2. Summary: A terse specification of the interfaces to

the fields and methods that are available.
3. Detail: Provides additional information about the

fields and methods that are available.

18

APIs and class use

API anatomy: The descriptive paragraph

public final class Math
extends Object

The class Math contains methods for performing basic
numeric operations such as the elementary exponential,
logarithm, square root, and trigonometric functions.
…

Since:
JDK1.0

10

19

APIs and class use

API anatomy: Fields

• The first column specifies if the field pertains to the
class as whole (or instances of the class).

• The term static denotes that the field pertains to the
class as a whole

• (A blank denotes that the field pertains to instances
of the class.)

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

20

APIs and class use

API anatomy: Fields

Fiel

• The second column specifies the data type of the
field.

• The data type can be any primitive type (or any
object type.)

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

11

21

APIs and class use

API anatomy: Fields

• The third column specifies the name of the field.

• Follow Java and CSE1020 style manual naming
conventions.

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

22

APIs and class use

API anatomy: Fields

• The text provides a terse human language
description of the field.

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

12

23

APIs and class use

API anatomy: Fields

Here we see specification of
• visibility (public)
• if a field is constant (final)
• more descriptive detail

Field Detail

PI
public static final double PI

The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

See Also: Constant Field Values

24

APIs and class use

API anatomy: Methods

• The first column specifies if the method is for the class
as a whole (or instances of the class).

• The term static denotes that the method is for the class
as a whole (a blank indicates applicability to instances).

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

13

25

APIs and class use

API anatomy: Methods

• The second column specifies the data type of what the
method returns.

• The keyword void is used if nothing is returned.

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

26

APIs and class use

API anatomy: Methods

• The third column specifies the name of the method and
its parameters (type and parameter name).
– We call this the method’s signature.

• The parameters provide the information for the method
to do its job.

• Not all methods take parameters.

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

14

27

APIs and class use

API anatomy: Methods

• The third column specifies the name of the method and
its parameters (type and parameter name).
– We call this the method’s signature.

• The parameters provide the information for the method
to do its job.

• Not all methods take parameters.

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

28

APIs and class use

API anatomy: Methods

• The text provides a terse human language description
of the method.

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

15

29

APIs and class use
API anatomy: Methods

• Notice that it is possible to define multiple methods with
the same name…

• …as long as the complete signatures all differ.
• This process is called overloading.
• Allows the conceptually same operation to be

performed on different parameter types.

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

static int abs(int a)
Returns the absolute value of an int value.

30

APIs and class use

API anatomy: Methods
Method Detail
abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is
returned. Special cases:

- If the argument is positive zero or negative zero, the result is positive zero.
- If the argument is infinite, the result is positive infinity.
- If the argument is NaN, the result is NaN.

Parameters:
a - the argument whose absolute value is to be determined

Returns:
the absolute value of the argument.

API anatomy: Methods

Here we see specification of
• visibility (public)
• greater explanatory detail

16

APIs and class use

A few other points of note

• Parameters are Passed by Value:
Values stored in your variables cannot be
inadvertently changed by passing the variables to a
method

• Binding with Most Specific:
To bind C.m(…) the compiler locates C (or else
issues No Class Definition Found) and then locates
m(…) in C (or else issues Cannot Resolve Symbol). If
more than one such m is found, it binds with the
"most specific" one.

31

32

APIs and class use

A good place for additional self study
• The ability to read and read quickly an API is an

important skill for students 1020.
• Indeed, this is a skill that will help you throughout

your programming career.
• Spend a good amount of time perusing the API of,

e.g., Math.
• Check to make sure you understand what is

presented by writing little apps that make use of what
you find.

17

33

APIs and class use

How we gain access to a class

• To refer to a class in our program, we make use of
the import statement

import packageName.ClassName;

e.g.,

import java.io.PrintStream;

• To import all classes in a package

import packageName.*

34

APIs and class use

How we gain access to a class
• To refer to a class in our program, we make use of

the import statement
import packageName.ClassName;

e.g.,
import java.io.PrintStream;

• To import all classes in a package
import packageName.*

Remark
• You do not need to explicitly import classes in

package java.lang

18

35

APIs and class use

• When an application is
launched, the class files are
loaded into memory.

• That is, a copy of the class is
loaded into memory by the
operating system.

• Import statements tell which
classes need to be loaded,
e.g.,
import type.lang.IO;

• The same copy is used for
the rest of the program run.

Memory diagram: Importing and using a class

0

1

2

IO

36

APIs and class use

Using static methods

• To invoke a static method m in a class C, the
following steps are followed:

1.Ensure that class C is reachable (already
available or imported).

2.Determine the signature of m: parameters, their
data types and their order.

3. Invoke using the dot: C.m(parameters)

• Example: double x = Math.sin(3.14);

19

37

APIs and class use
Using static methods
• To invoke a static method m in a class C, the following steps are

followed:
1. Ensure that C.class is reachable (already available or

imported).
2. Determine the signature of m: parameters, their data types

and their order.
3. Invoke using the dot: C.m(parameters)

• Example: double x = Math.sin(3.14);

Remarks
• To call the methods we supply an argument (or actual

parameter) for each formal parameter.
• When the call occurs

1. The values of the arguments are assigned to the formal
parameters.

2. The method is executed.

38

APIs and class use
Using static methods
• To invoke a static method m in a class C, the following steps are

followed:

1. Ensure that C.class is reachable (already available or
imported).

2. Determine the signature of m: parameters, their data types
and their order.

3. Invoke using the dot: C.m(parameters)

• Example: double x = Math.sin(3.14);

Remarks
• A void method, e.g., println() is often in a statement by itself.

• A non-void one like nextInt() is usually part of a statement.

20

39

APIs and class use

Using static attributes

• To access a static attribute a in a class C, the
following steps are followed:

1.Ensure that class C is reachable (already
available or imported).

2.Access using the dot: C.a

• Example:

– double x = Math.PI;

40

APIs and class use

Using static attributes
• To access a static attribute a in a class C, the

following steps are followed:
1.Ensure that C.class is reachable (already

available or imported).
2.Access using the dot: C.a

• Examples:
– double x = Math.PI;

Remark
• Since Math.PI is defined as a constant (final), it would

be an error to attempt
Math.PI = 3.14; // Illegal

21

41

API and class use

Example: Problem definition (Requirements)

• Let’s calculate the circumference of a circle given the
radius.

42

API and class use

Example: Analysis (Requirements)

• Input: Radius of circle.

• Output: Circumference of circle.

• Format:

The circle’s circumference is <answer>.

22

43

API and class use

Example: Design
• Algorithm: We know the standard formula

• Constants:
• Variables: radius, circumference

radiusncecircumfere 2=


44

API and class use

Example: Design
• Algorithm: We know the standard formula

• Constants:
• Variables: radius, circumference

Remarks
• In the Math class we find Math.PI, which is a useful

way to represent .
• The radius and circumference are reals, following

1020 convention we will make them doubles.

radiusncecircumfere 2=




23

45

API and class use

Example: Implementation:

• Declaration

• Input

• Computation

• Output

46

API and class use
Our Template
/*
Class to ???.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

24

47

API and class use
Our Template
/*
Class to calculate circumference of a circle given radius.

Author: R. Wildes Date: 05/02/13
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the Circumference class.
public class Circumference
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

48

API and class use

DICO: Declaration

// Declaration.

double radius, circumference;

25

49

API and class use

DICO: Input

// Input .

output.print(“Enter circle radius: ”);

radius = input.nextDouble();

50

API and class use

DICO: Computation

// Computation.

radiusncecircumfere 2=

26

51

API and class use

DICO: Computation

// Computation.

circumference = 2 * Math.PI * radius;

52

API and class use

DICO: Output

// Output.
The circle’s circumference is <answer>.

27

53

API and class use

DICO: Output

// Output.
output.print(“The circle’s circumference is ”);
output.printf(“%.2f”, circumference);
output.println(“.”);

54

API and class use

Test and deploy

• Try this example out for yourself.

• It will be up on our section website (deployed).

• Modify it to perform other simple operations while you
explore the use of static classes (e.g., Math, etc.)

28

55

Outline

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

56

Input/Output

General
• We will make use of facilities provided by the classes

java.util.Scanner;
java.io.PrintStream;

• We concentrate on
– Reading input from the standard input, keyboard
– Writing to the standard output, screen

• In the upcoming examples, we assume the declarations
Scanner input = new Scanner(System.in);
PrintStream output = System.out;

29

57

Input/Output

Strings

• To read a string (from the keyboard) we can write

String name = input.nextLine();

or better

output.print(“Please enter your name: ”);

String name = input.nextLine();

• The method nextLine()

– Waits until the user has entered a text line
(terminated by hitting the enter key)

– Returns with the entire line (w/o the end-of-line
marker) as a string

58

Input/Output

Numbers

• To read an int (from the keyboard) we can write

int age = input.nextInt();

The method nextInt()

– Waits until the user has entered an entire line

– Attempts to interpret it as an integer

– Returns with an int, if the interpretation succeeds

– Returns with an error/exception, if failure

• To read a double, you can use nextDouble, which
works similarly

double amount = input.nextDouble();

30

59

Input/Output

Printing out a value

• We have been using the println() method from the
PrintStream class.

output.println(amount);

or better

output.println(“The amount is ” + amount);

• Also available, if we do not want the newline is

output.print(“The amount is “);

output.println(amount);

// amount appears on same line as previous output

60

Input/Output

Formatted output
• The printf() methods allow you to print data in a

specified format.
• The desired format is specified via an additional string

argument.
output.printf(%[flag][width][.precision]conversion, x);
where
– flag can be 0 or ,
– width total field width
– precision gives the number of decimal places
– conversion is one of d, s, f, or n

31

61

Input/Output

Formatted output
• The printf() methods allow you to print data in a

specified format.
• The desired format is specified via an additional string

argument.
output.printf(%[flag][width][.precision]conversion, x);
where
– flag can be

• 0 to left pad integers
or
• , to use a thousands separator for numbers

– width total field width
– precision gives the number of decimal places
– conversion is one of d, s, f, or n

62

Input/Output

Formatted output
• The printf() methods allow you to print data in a

specified format.
• The desired format is specified via an additional string

argument.
output.printf(%[flag][width][.precision]conversion, x);
where
– flag can be 0 or ,
– width total field width
– precision gives the number of decimal places
– conversion is one of d, s, f, or n

32

63

Input/Output
Formatted output
• The printf() methods allow you to print data in a

specified format.
• The desired format is specified via an additional string

argument.
output.printf(%[flag][width][.precision]conversion, x);
where
– flag can be 0 or ,
– width total field width
– precision gives the number of decimal places
– conversion is one of

• d valid for integer output
• s valid for string output
• f valid for real number output
• n is used to output a new line

64

Input/Output

Formatted output
• The printf() methods allow you to print data in a

specified format.
• The desired format is specified via an additional string

argument.
output.printf(%[flag][width][.precision]conversion, x);
where
– flag can be 0 (to left pad integers) or , (use a

thousands separator for numbers)
– width total field width
– precision gives the number of decimal places
– conversion is one of d, s, f, or n

• Remarks
– The % and conversion are mandatory.
– The other components are optional.

33

65

Input/Output

Formatted output
• Examples

double y = 4.3333333;
output.printf(“%.1f”,y); // prints 4.3

66

Input/Output

Formatted output
• Examples

double y = 4.3333333;
output.printf(“%.1f”,y); // prints 4.3
output.printf(“%,12d”, 1234567); // prints _ _ _ 1,234,567

34

67

Input/Output

Formatted output
• Examples

double y = 4.3333333;
output.printf(“%.1f”,y); // prints 4.3
output.printf(“%,12d”, 1234567); // prints _ _ _ 1,234,567
output.printf(”PI to 3 decimals is %.3f%n”, Math.PI);
// prints PI to 3 decimals is 3.142 with a new line at the end.

68

Input/Output

Formatted output
• Examples

double y = 4.3333333;
output.printf(“%.1f”,y); // prints 4.3
output.printf(“%,12d”, 1234567); // prints _ _ _ 1,234,567
output.printf(”PI to 3 decimals is %.3f%n”, Math.PI);
// prints PI to 3 decimals is 3.142 with a new line at the end.
// The previous examples would not add a new line!

35

69

Input/Output

Remark
• More generally, our I/O methods will input and output

from other sources (e.g., files, other programs).
• Here, we have been assuming the default values for

– Standard in: the keyboard
– Standard out: the screen

70

Outline

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

36

71

Boolean and relational operations

Boolean expressions

• A hallmark of intelligent behavior is the ability to
perform different actions based on the evaluation of
some condition.

• As a simple example, we may charge different
(transit) fares depending on age of the traveler.

72

Boolean and relational operations

Boolean expressions
• If our programs are to perform in a flexible fashion,

then they must be able to represent and evaluate
such situations.

• For example, we might want to verify that certain
conditions holds on our input (input validation) and,
say, exit if not.
output.print(“Enter your age: “);
int age = input.nextInt();
// somehow send error message to user if age<0

• We say that such conditions are represented by
boolean expressions.

37

73

Boolean and relational operations

Relational operators

• Simple boolean expressions can be obtained by
comparing two numerical values using a relational
operator.

• For example, (assuming x, y and age appropriately
declared and initialized)

boolean b1 = x < y;

boolean b2 = x >= 0;

boolean b3 = age == 17;

74

Boolean and relational operations

Relational operators
• In Java, the relational operators are as follows.

== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

38

75

Boolean and relational operations

Relational operators
• In Java, the relational operators are as follows.

== equal to
!= not equal to
< less than
<= less than or equal to
> greater than
>= greater than or equal to

Remark
• For future reference: You cannot compare Strings or

other objects using these operators.

76

Boolean and relational operations

Beware: Comparing floating point numbers
• Recall that floating point numbers are represented

with limited precision.
• Therefore, a test for strict equality (e.g., via ==) is to

be avoided.
• Instead, we check to see if two numbers of interest

are close enough
double final EPSILON = 0.00000000000001;
boolean close = Math.abs(x – y) <= EPSILON;

39

77

Boolean and relational operations

Beware: Comparing floating point numbers
• To get a little more detailed:
• Since precision decreases with magnitude…
• …it can be useful to divide by some measure of the

magnitude of the numbers being compared.
• For example, we consider

• Which is reasonably coded as
double magnitude = Math.max(Math.abs(x), Math.abs(y));
boolean close = Math.abs(x–y) <= EPSILON * magnitude;


|)||,max(|

||

yx

yx

78

Boolean and relational operations

Logical operators

• More complex boolean expressions can be built by
using logical operators, e.g., (assuming age an
initialized int)

boolean test;

test = 13 >= age && age <= 17;

test = (13 >= age && age <= 17) || age >= 65;

test = !(13 >= age && age <= 17);

40

79

Boolean and relational operations

Logical operators

• In Java, the logical operators are as follows.

&& conjunction (and)

|| disjunction (or)

! not

80

Boolean and relational operations

Precedence in between logical operators
• Precedence is as with standard logic

– ! higher precedence than &&
– && higher precedence than ||

• Example (with p, q booleans)
p && q || !p && r

is interpreted as
(p && q) || ((!p) && r)

• You can alter the interpretation by using parentheses.

41

81

Boolean and relational operations

Order of evaluation

• The && and || operators are evaluated left to right.

• Evaluation stops as soon as the answer can be
determined

– We call this lazy or short circuit evaluation.

• For example,

boolean test = d != 0 && n/d > 1;

avoids division by zero.

82

Boolean and relational operations

Flags
• It can be useful to declare (and initialize) boolean

variables to represent the truth value of certain
conditions.

• As examples (assuming age an int)

boolean senior = age >= 65;
boolean child = age < 13;
boolean discount = senior || child;

• As boolean variables are used in this fashion, we
refer to them as flags.

42

83

Boolean and relational operations

Truth tables

p q p && q

true true true

true false false

false true false

false false false

84

Boolean and relational operations

Truth tables

p q p && q

true true true

true false false

false true false

false false false

p q p || q

true true true

true false true

false true true

false false false

43

85

Boolean and relational operations

Truth tables

p q p && q

true true true

true false false

false true false

false false false

p q p || q

true true true

true false true

false true true

false false false

p !p

true false

false true

86

Outline

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

44

87

Software (re)engineering

Deployment: A call from our client

• The company that commissioned the MkChange
program is very distressed to find out that it does not
check to make sure that a non-negative value is
supplied by the user.

• We tell them that they failed to provide us with a
validation during the analysis phase of the software
development cycle.

• They are not very amused by this comment; however,
they give us a chance to rectify the situation.

88

Software (re)engineering

Requirements: Input validation

• Client tells us that if the amount entered is less than
zero the program should

– Print a message, ” Amount must be non-negative.”

– and then exit.

45

89

Software (re)engineering

Design reconsidered

• Somehow, we want to verify that amount now has a
value that is greater than or equal to zero when
entered by the user,

• i.e., want

amount >= 0

to be true to continue with the computation

• or else (if the condition is false) send user error
message and exit.

90

Software (re)engineering

Design reconsidered
• We find the following entry in the API for the ToolBox

class of type.lib

Method Summary

static void crash (boolean condition, java.lang.String msg)
Test the passed condition and throw an
exception if it is true.

46

91

Software (re)engineering

Implementation: DICO
• Because we adhered to good programming style, we

know right where to go to correct the problem.

// Input.
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();

92

Software (re)engineering

Implementation: DICO
• Because we adhered to good programming style, we

know right where to go to correct the problem.

// Input.with validation
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();
ToolBox.crash(amount<0, “Amount must be non-negative.”);

47

93

Software (re)engineering

Implementation: DICO
• Because we adhered to good programming style, we

know right where to go to correct the problem.

// Input.with validation
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();
ToolBox.crash(amount<0, “Amount must be non-negative.”);

• BTW, we also need to include a statement to gain access
to the crash: import type.lib.ToolBox

94

Software (re)engineering

Finishing up

• We (re)test.

• We (re)deploy.

• …And await the next call from our client.

48

95

Summary

• Modules

• APIs and class use

• Input/output

• Boolean and relational operations

• Software (re)engineering

