CSE 1020: Unit 2

Topic: Delegation, Application
Development & Software Engineering

To do: Textbook Chapter 2; Lab 2

Outline

Delegation
Application development
Software engineering

Software engineering example

16/05/2013

Outline

» Delegation

Delegation
Why
« Consider the code inside the box for computing area of a circle.
import java.lang.System

public class Area

{ public static void main(String[] args)
{| intwidth = 8;

int height = 3;

int area = width * height;
System.out.printin(area);

}

¢ It handles both storage (of data) and computation (of area).

e This approach works here, because the there are few variables
and the computation is straightforward.

16/05/2013

Delegation
Why
e Consider the code inside the box for computing area of a circle.
import java.lang.System
public class Area
{ public static void main(String[] args)
{| intwidth = 8;
int height = 3;
int area = width * height;
System.out.printin(area);

< It handles both storage (of data) and computation (of area).

e This approach works here, because the there are few variables
and the computation is straightforward.

< Ultimately, however, we want to build (much) larger software
systems and the complexity of the programs would grow too
rapidly, if all variables and computation were uniformly exposed.

Delegation

What

Delegation is an abstraction P
strategy that allows us to deal with - * & -
the complexity inherent in large b _
systems. .

We delegate parts of the task to ; :
other mechanisms. "
We consider two ways to delegate: W/

Delegation to a static method \ l
Delegation to an object

16/05/2013

Delegation

What
» Delegation is an abstraction

strategy that allows us to deal with - ‘ 'JE ~

the complexity inherent in large g .
systems. .
» We delegate parts of the task to ‘\ ~ =~ v

other mechanisms. £
* We consider two ways to delegate: W/
—>1. Delegation to a static method \ - ‘
2. Delegation to an object

Delegation

Delegation to a static method

» Consider the following code for obtaining Body Mass Index (BMI).
double weight = 165.0;
String height = “6’1";
double bmi = ToolBox.getBMI(weight, height);

* We maintain our own our own storage, but ...

» ... delegate the computation to a class.

16/05/2013

Delegation

Delegation to a static method

« Consider the following code for obtaining Body Mass Index (BMI).
double weight = 165.0;
String height = “6’1";
double bmi = ToolBox.getBMI(weight, height);

« We maintain our own our own storage, but ...

e ... delegate the computation to a class.

What do we mean by “static method”?
« A method performs an action.

— Its name (typically) is a verb (getBMI) or a predicate (isEnabled).

« Methods belong to classes.
e The invocation syntax is class_name.method(...).

— With the method'’s parameters (if any) substituted for “...".
« Methods terminate with a return, which might be void.

« The keyword static notes that the method neither inspects nor
modifies class copies. (Look back to Unit 1!)

Interlude: UML

Unified Modeling Language (UML)
e UML is a visual specification language that allows us to
document software in a visual fashion.

* We will consider it in some detail in Unit 7, which is
devoted to more advanced concepts in software
engineering.

< Here, we introduce its depiction of classes and objects to
clarify delegation.

10

16/05/2013

Delegation

UML class diagram

» A class diagram depicts critical features of a class that are
needed to make use of it.

« Example: The class diagram of a utility in the Type library.

« utility »
type::1ib: :ToolBox

computeBMI (int, String): double

11

Delegation

UML class diagram

« A class diagram depicts critical features of a class that are
needed to make use of it.

« Example: The class diagram of a utility in the Type library.

« utility »

type::1lib::ToolBox
computeBMI(double, String): double

The top box contains the name of the
class. Optionally, it is fully qualified
(type::lib::ToolBox) and stereotyped
(<<utility>>).

12

16/05/2013

Delegation

UML class diagram

» A class diagram depicts critical features of a class that are
needed to make use of it.

« Example: The class diagram of a utility in the Type library.

« utility »
type::1ib: :ToolBox

computeBMI(double, String): double \

The bottom box contains a list of methods
in the class. The list provides the signature
of each method: Its name (computeBMI)
together with the types of its parameters
(double, String). The return type (double)
Also is specfied. 13

Delegation

UML class diagram

» A class diagram depicts critical features of a class that are
needed to make use of it.

« Example: The class diagram of a utility in the Java library.

« utility »
java::lang: :Math

PI: double

sqrt (double) : double \

Sometimes there is another box,
that specifies attributes, here a
constant (PI).

14

16/05/2013

Delegation

What

Delegation is an abstraction
strategy that allows us to deal with
the complexity inherent in large
systems.

We delegate parts of the task to
other mechanisms.

We consider two ways to delegate:

Delegation to a static method

. Delegation to an object

15

Delegation

Delegation to an object

Consider the following code for dealing with rectangles.
Rectangle r = new Rectangle(3, 4);
Rectangle s = new Rectangle(2, 5);
System.out.printin(r.getArea());

Now, we delegate both storage and computation.

16

16/05/2013

Delegation
Delegation to an object
« Consider the following code for dealing with rectangles.
Rectangle r = new Rectangle(3, 4);
Rectangle s = new Rectangle(2, 5);
System.out.printin(r.getArea());
* Now, we delegate both storage and computation.

What is an object?

« An object is a software entity that can both store data and perform
computation.

« We create an instance (a.k.a. object) of a class using new and the
class name.

e The instance has a name, e.g., r, known as the object reference.
« Methods are invoked on the instance (not on the class).

« Each object can store different values in its attributes; these values
are known as the state of the object.

* Aclass has attributes and methods; additionally, an object has state
and reference.

Delegation

UML class diagram

» A class diagram depicts critical features of a class that are
needed to make use of it.

« Example: The class diagram of a non-utility in the Type
library.

type::1lib: :Rectangle —— Name of class

width: int

height: int
getArea(): int
getCircumference(): int
. getDiagonal(): double
Attributes getWidth () : int
setWidth(int): void

Methods

18

16/05/2013

Delegation

UML object diagram

* The object diagram is similar to a class diagram, except it
focuses on the object’s state and identity.

* We indicate how individual objects relate to the class via
the instance-of relationship (shown with dotted arrows).

type: :1ib: :Rectangle

width: int
height: int

getArea(): int

A
r: Rectangle s: Rectangle
width = 3 width = 2
height = 4 height = 5
Delegation

A unified view

* When using objects, we copy the
class and subsequently use the v, &
created copy (i.e., object Gl

. - 2
instance). - ta.
— State is held in the object. :
— We invoke methods on the object. ". r

» Utility classes cannot be copied.
So, L\
— We invoke their methods on the class. \ {
— We access their (constant) attributes on
the class.
» Either way, we achieve a way to
manage complexity by
delegating to other resources.

20

16/05/2013

10

Outline

» Application development

21

Application development

Applications programming

» Our first program, Hello, is an example of an
application (app).

* An app is meant to be run by the Java intepreter to
provide a service to an end user.

* An app does not provide anything that can be used
by other programmers (only for end users).

Remarks on the internals of an app

* An app is a class that contains one and only one
main method.

* The main method runs first when the app starts
executing.

* An app may use methods from predefined classes
(i.e., it might delegate).

22

16/05/2013

1

Application development

Client vs. Implementer

The client is the developer of the main class. He understands
the big picture, the purpose of the application.

The implementer is the developer of a component. He focuses
on the inner details of the component.

Separation of concerns means the client and implementer share
information on a need-to-know basis.

23

Application development

Client vs. Implementer

The client is the developer of the main class. He understands
the big picture, the purpose of the application.

The implementer is the developer of a component. He focuses
on the inner details of the component.

Separation of concerns means the client and implementer share
information on a need-to-know basis.

CSE 1020 focuses on the client; CSE 1030 is more implementer
focused.

24

16/05/2013

12

Application development

The client view

e The client knows how to shop for components and how to read
their specifications.

« Given a component, the client does not care how it
accomplishes its tasks, only what it does.

« The client views a component via its Application Programming
Interface (API).

» The class of a component thus encapsulates it.

CLIENT
Interface

3 s

5| IMPLEMENTER |&

S
Interface -

Application development

The client view
» Aclass is made up of features. A feature is an attribute or a
method.

attribute
feature

method
26

16/05/2013

13

Application development

The client view

A class is made up of features. A feature is an attribute or a
method.

The class of a component classifies each feature as either
public or private depending, respectively, on whether the client
needs or does not need to know about it.

private
attribute <
public

public

method <
private 21

feature

Application development

The client view

A class is made up of features. A feature is an attribute or a
method.

The class of a component classifies each feature as either
public or private depending, respectively, on whether the client
needs or does not need to know about it.

The API (interface) of a component lists only the headers of its
public methods and the declarations of its public attributes
(a.k.a. fields).

private

attribute <
public = field
feature } interfac
public

method <
private 28

16/05/2013

14

Ready-made I/O components

Keyboard input
Scanner input = new Scanner(System.in);
int width = input.nextint();

Screen output

PrintStream output = System.out;
output.print(width);

java::util::Scanner java::io: :PrintStream
nextInt(): int print(int): wvoid
nextDouble () : double print(String): void
nextLine(): String println (double): void
7 A
input: Scanner | ‘ output: PrintStream
29
» Software engineering
30

16/05/2013

15

Software engineering

A methodology for developing software
» Development of software is similar to development in

other areas of engineering.

* We seek to systematically apply scientific knowledge

to the solution of practical software problems.

31

Software engineering

Contracts

Each method in a component comes with a contract that spells
out the responsibilities of the client and the implementer.

The client must supply parameters that satisfy the precondition
of the method.

The implementer must supply a return that satisfy the
postcondition of the method.

Liability:

— If pre=false, the client is at fault.

— If pre=true and post=false then the implementer is at fault.
— If pre=post=true then everything is OK.

Remark: if a method has pre=true then its client does not have
to ensure anything.

32

16/05/2013

16

Software engineering

Contracts

» Methods in the Java standard library specify their pre and post
as follows:

— pre is always true unless stated otherwise
— post is specified under Returns and Throws

e Example: This contract specifies pre=true (i.e. no condition on
the parameter). The post states that the method will return the

square root if x is non-negative and will throw an exception
otherwise.

double squareRoot (double x)
Returns the square root of the given argument.

Parameters:

X — anargument,
Returns:

the positive square root of x .
Throws:

an exception if x < 0. 33

Software engineering

Two guidelines

1. Risk mitigation by early exposure: If you are not sure about
something during software development, confront it as early as

possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

16/05/2013

17

Software engineering

Two guidelines

1. Risk mitigation by early exposure: If you are not sure about
something during software development, confront it as early as

possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

2. Handling constants: Replace all magic numbers (literals) in your
program with finals.

Example:

Instead of:

width = width / 12;

Write:

final int INCH_PER_FOOT = 12;
width = width / INCH_PER_FOOT;

Software engineering

Two guidelines

1. Risk mitigation by early exposure: If you are not sure about
something during software development, confront it as early as

possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

2. Handling constants: Replace all magic numbers (literals) in your
program with finals.

Example:

Instead of:

width = width / 12; Compared to the above:
Write: e The name of the constant is

,) Specification as final allows
width = width / INCH_PER_FOO

final int INCH_PER_FOOT = 12; | = SIf documenting.
T compiler to prevent you from

inadvertently changing the value.

16/05/2013

18

Software engineering

Phased development
1. Requirements

Software engineering

Phased development
1. Requirements
1.1 Problem definition

16/05/2013

19

Software engineering

Phased development
1. Requirements
1.1 Problem definition > general description.

Software engineering

Phased development
1. Requirements
1.1Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

40

16/05/2013

20

Software engineering

Phased development
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

41

Software engineering

Phased development
1. Requirements
1.1Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.

42

16/05/2013

21

Software engineering

Phased development
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.

43

Software engineering

Phased development
1. Requirements
1.1Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) —> fielded product.

44

16/05/2013

22

Software engineering

Phased development
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) —> fielded product.

Remark

» This classical paradigm now augmented to include

early prototyping for user feedback.
45

Software engineering

Phased development
1. Requirements
1.1Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) —> fielded product.

Remark Waterfall method

» This classical paradigm now augmented to include

early prototyping for user feedback.
46

16/05/2013

23

Software engineering

Phased development
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) —> fielded product.

Remark Waterfall method

» This classical paradigm now augmented to include
early prototyping for user feedback.

Spiral development

Software engineering

Phased development
1. Requirements
1.1Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

=—=p>3_|Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) —> fielded product.

Remark

» This classical paradigm now augmented to include

early prototyping for user feedback.
48

16/05/2013

24

Software engineering

3 steps in implementation

1. Edit
2. Compile
3. Run
49
Software engineering
Edit Remember this?

* In an editor we enter /

import type.lang.*;

public class Hello
{ public static void main(String[] args)
{ 10.printin(“Hello, world!");

}
}

* and save to a file Hello.java
50

16/05/2013

25

Software engineering

3 steps in implementation
1. Edit

el 2. Compile
3. Run

51

Software engineering

Compile

» At our command line prompt...

» we invoke the compiler...

 to produce byte code to be interpreted by computer.

% javac Hello.java

52

16/05/2013

26

Software engineering

Typically initial attempts to compile
* Yield errors.

e These compile-time errors are usually errors of syntax in your
programming (sometimes called syntax errors).

e The compiler will produce diagnostic messages.

53

Software engineering

Typically initial attempts to compile
e Yield errors.

e These compile-time errors are usually errors of syntax in your
programming (sometimes called syntax errors).

e The compiler will produce diagnostic messages.

Response

¢ Return to editor.

« Correct errors.

¢ Reattempt compile.

* Repeat until no more error messages...

e ... and the compiler has produced Hello.class

— The byte code version that can be interpreted by computer
(via the Java interpreter).

54

16/05/2013

27

Software engineering

3 steps in implementation

1. Edit
2. Compile
» 3. Run
55
Software engineering
Run
* We now convert the byte code produced by the
compiler...

e ... to native code that executes on the machine at hand.

» At the command line prompt we invoke
the interpreter
% java Hello

Success
» Will produce on the screen

Hello, world!

56

16/05/2013

28

Software engineering

Run

* We now convert the byte code produced by the
compiler...

+ ... to native code that executes on the machine at
hand.

* At the command line prompt we invoke the interpreter
% java Hello

Failure

1. Run-time errors/crashes - attempt syntactically
correct; but, illegal operation.

» Return to editor and iterate process until correct.
57

Software engineering

Run

* We now convert the byte code produced by the
compiler...

* ... to native code that executes on the machine at
hand.

* Atthe command line prompt we invoke the interpreter
% java Hello

Failure

2. Logical errors > Program syntactically okay,
executes; but, produces incorrect output.

* May require return to design, analysis or definition.

58

16/05/2013

29

Software engineering

Run

* We now convert the byte code produced by the
compiler...

« ... to native code that executes on the machine at hand.

» At the command line prompt we invoke
the interpreter
% java Hello

Success
» Will produce on the screen

Hello, world!

59

Software engineering

runtime and logic errors

EDIT COMPILE RUN
create or edit read source file launch main class
save the file Java to bytecode interact with user

compile-time errors

60

16/05/2013

30

Software engineering

General program structure
» Declaration

* Input

» Computation

e Output

61

Software engineering
DICO analysis example
/*
Java program to print a greeting. Upon invocation it
prints “Hello, world!” to standard out.

Author: Richard Wildes Date: 05/14/13
*/

Import type.lang.*; // import type package for general utils.

/I Definition of the Hello class.
public class Hello
{ public static void main(String[] args)
{ /I Print to standard out.
[O.printin(“Hello, world”);

}
} 62

16/05/2013

31

Software engineering
DICO analysis example
/*
Java program to print a greeting. Upon invocation it
prints “Hello, world!” to standard out.

Author: Richard Wildes Date: 05/14/13
*/

import type.lang.*; // import type package for general utils.

D | Il Dgfinition of the Hello class. Remark: 1 and C
public class Hello are vacuous for
{ public static void main(String[] args) this simple
OJ { /Il Print to standard out. program.
10.printin(“Hello, world”);
} 63
}
A template for CSE 1020 programs
[
Class to ???.
Author: ??7? Date: ???

*/

import type.lang.*;

import java.util. Scanner;
import java.io.PrintStream;

/I Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)
{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
/I App specific DICO.

}

} 64

16/05/2013

32

A template for CSE 1020 programs
/*
Class to ??7?.
Author: ??7? Date: ???
*
import type.lang.*;
import java.util. Scanner;

import java.io. PrintStream; \ Preferred 1020
1/0. Recall: We

/I Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)
{ |Scanner input = new Scanner(System.in);
PrintStream output = System.out;
Il App specific DICO.

introduced these
earlier in this unit

Software engineering

First pass has introduced

« Contracts

« A few guidelines: Risk mitigation; dealing with constants
* Phased development.

* Alook at error types.

» Abstraction to basic program form: DICO.

¢ Program template.

Remark

« For a nice discussion of programming style in Java see Textbook
Appendix C.

66

16/05/2013

33

Outline

» Software engineering example

67

Software engineering example

Phased development: A program to make change
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis = Input & validation; Output and format.

2. Design —> representation and procedures (data
structures and algorithms)

3. Implementation - Program.
4. Testing - Empirical evaluation.
5. Deployment (incl. Maintenance) > fielded product.

68

16/05/2013

34

Software engineering example

Phased development: A program to make change
1. Requirements
1.1 Problem definition - general description.
1.2 Analysis - Input & validation; Output and format.

69

Software engineering example

Requirements: Problem definition

* Want a program that can calculate the conversion of
an amount of money (CND) into a corresponding
amount of change (quarters, dimes, nickels and
pennies).

70

16/05/2013

35

Software engineering example

Requirements: Analysis
* Input: Amount of money in cents.

* Output: The corresponding amount of change
(quarters, dimes, nickels and pennies).

* Format:
Change is g quarters, d dimes, n nickels, p pennies.

71

Software engineering example

Phased development: A program to make change

2. Design —> representation and procedures (data
structures and algorithms)

72

16/05/2013

36

Software engineering example

Design
» Algorithm: Let's do it the way people do it.

67 cents

| -------- - 2 quarters
17 cents

| -------- 2> 1ldime

7 cents

| -------- - 1 nickel

2 cents

| -------- - 2 pennies

73

Software engineering example

Design

» Algorithm: Let's do it the way people do it.

1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.

74

16/05/2013

37

Software engineering example
Design
» Algorithm: Let's do it the way people do it.
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.
» Variables: In red are likely variables or constants

75

Software engineering example
Design
» Algorithm: Let's do it the way people do it.
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.
» Variables: In red are likely variables or constants

— Type int is appropriate as algorithm uses integer
operations. 76

16/05/2013

38

Software engineering example

Phased development: A program to make change

3. Implementation - Program.

7

Software engineering example

Implementation: General program structure
» Declaration

* Input

» Computation

* Output

78

16/05/2013

39

Software engineering example

Our Template
/*
Class to ??7.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

/I Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)
{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
/I App specific DICO.

Software engineering example

Make change skeleton

/*

Class to make change. Based on an example by YL.

Author: Richard Wildes Date: 05/16/2013
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

/I Definition of the MkChange class.
public class MkChange
{ public static void main(String[] args)
{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
/I App specific DICO.

}

80

}

16/05/2013

40

Software engineering example

Fill in the DICO details

/1 Definition of the MkChange class
public class MkChange
{ public static void main(String[] args)

{
/I Declaration
/Il Input

// Computation

// Output

81

Software engineering example

DICO: Declaration

/I Declaration

82

16/05/2013

41

Software engineering example

DICO: Declaration
/I Declaration

Scanner input = new Scanner(System.in);
PrintStream output = System.out;

83

Software engineering example

DICO: Declaration

/I Declaration

» During design we had isolated that we would want to
manipulate data having to do with

— Amount of input money
— Value of quarter, dimes and nickels
— Number of quarters, dimes, nickels and pennies

84

16/05/2013

42

Software engineering example

DICO: Declaration

/I Declaration

» During design we had isolated that we would want to
manipulate data having to do with

— Amount of input money
— Value of quarter, dimes and nickels
— Number of quarters, dimes, nickels and pennies

» Some of these entities will not change during our
computation: These should be constants.

85

Software engineering example

DICO: Declaration

/I Declaration

final int QUARTER_VALUE = 25;
final int DIME_VALUE = 10;

final int NICKEL_VALUE = 5;

86

16/05/2013

43

Software engineering example

DICO: Declaration

/I Declaration

» During design we had isolated that we would want to
manipulate data having to do with

— Amount of input money
— Value of quarter, dimes and nickels
— Number of quarters, dimes, nickels and pennies

» Some of these entities will not change during our
computation: These should be constants.

» Some will vary during the computation: VVariables.
87

Software engineering example

DICO: Declaration

I/l Declaration

final int QUARTER_VALUE = 25;

final int DIME_VALUE = 10;

final int NICKEL_VALUE =5;

int amount, nQuarters, nDimes, nNickels, nPennies;

88

16/05/2013

44

Software engineering example

DICO: Input

/I Input

89

Software engineering example

DICO: Input

/I Input
* We need to prompt user for an input amount,

90

16/05/2013

45

Software engineering example

DICO: Input

/I Input
* We need to prompt user for an input amount,

java::io: :PrintStream

print(int): void
print(String): void
println(double): void

output: PrintStream

91

Software engineering example

DICO: Input

/I Input
* We need to prompt user for an input amount,

— In the PrintStream class we find print

java::io::PrintStream

print(int): void
print (String): wvoid
println(double): wvoid

output: PrintStream

92

16/05/2013

46

Software engineering example

DICO: Input

/I Input

* We need to prompt user for an input amount,
— In the PrintStream class we find print

* We need to read the user’s response (an int)

93

Software engineering example

DICO: Input

/I Input

* We need to prompt user for an input amount,
— In the PrintStream class we find print

* We need to read the user’s response (an int)

java::util: :Scanner

nextInt(): int
nextDouble () : double
nextLine () : String

input: Scanner | ‘ 94

16/05/2013

47

Software engineering example

DICO: Input

/I Input

* We need to prompt user for an input amount,
— In the PrintStream class we find print

* We need to read the user’s response (an int)
— In the Scanner class we find nextint

95

Software engineering example

DICO: Input
/I Input

output.print(“Enter the amount in cents: ”);
amount = input.nextint();

96

16/05/2013

48

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what
has been done so far.

* Finding errors in incrementally written code is
far easier than working with larger chunks.

97

Software engineering example

DICO: Input

/Il Input
output.print(“Enter the amount in cents: ”);
amount = input.nextint();

98

16/05/2013

49

Software engineering example

DICO: Input

/I Input

output.print(“Enter the amount in cents: ”);
amount = input.nextint();

/l following are 2 test/debugging statements
output.print(“After input amount is:);
output.printin(amount);

99

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

%

100

16/05/2013

50

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

101

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java
%

102

16/05/2013

51

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java
% java MkChange

103

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java
% java MkChange
Enter the amount in cents:

104

16/05/2013

52

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java
% java MkChange
Enter the amount in cents: 100

105

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 100
After input amount is: 100

%

106

16/05/2013

53

Software engineering example

DICO: Input

/I Input

output.print(“Enter the amount in cents: ”);
amount = input.nextint();

/l following are 2 test/debugging statements
output.print(“After input amount is:”);
output.printin(amount);

107

Software engineering example

DICO: Input

/I Input

output.print(“Enter the amount in cents: ”);
amount = input.nextint();

[* following are 2 test/debugging statements
output.print(“After input amount is:”);
output.printin(amount);

*/

108

16/05/2013

54

Software engineering example

DICO: Computation

/[Computation

109

Software engineering example

DICO: Computation

/[Computation
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

110

16/05/2013

55

Software engineering example

DICO: Computation

/[Computation
nQuarters = amount / QUARTER_VALUE;

111

Software engineering example

DICO: Computation

/[Computation
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

112

16/05/2013

56

Software engineering example

DICO: Computation

/[Computation
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;

113

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors in incrementally written code is
far easier than working with larger chunks.

114

16/05/2013

57

16/05/2013

Software engineering example

DICO: Computation
/I Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;

115

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

/I following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is *);
output.print(amount);

output.print(* and quarters are “);

output.printin(nQuarters);

116

58

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

%

117

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

118

16/05/2013

59

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
%

119

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
% java MkChange

120

16/05/2013

60

Software engineering example

Incremental edit/compile/run

About now would be a good time to test what has been
done so far.

Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents:

121

Software engineering example

Incremental edit/compile/run

About now would be a good time to test what has been
done so far.

Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 110

122

16/05/2013

61

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
% java MkChange
Enter the amount in cents: 110

After calculation and removal of quarters amount
is 10 and quarters are 4

123

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;

/I following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is *);

output.print(amount);
output.print(* and quarters are “);
output.printin(nQuarters);

124

16/05/2013

62

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

/* following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is “);
output.print(amount);

output.print(* and quarters are “);

output.printin(nQuarters);

*/

125

Software engineering example

DICO: Computation

/[Computation
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.

126

16/05/2013

63

Software engineering example

DICO: Computation

/[Computation
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;

127

Software engineering example

DICO: Computation

/[Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;

128

16/05/2013

64

Software engineering example

DICO: Computation

/[Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;

129

Software engineering example

Incremental edit/compile/run

* About now would be a good time to test what
has been done so far.

» Finding errors in incrementally written code is
far easier than working with larger chunks.

130

16/05/2013

65

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;

amount = amount % DIME_VALUE;

/I following are 6 test/debugging statements
output.print(“After calculation and removal of dimes amount is *);
output.print(amount);

output.print(* and quarters are “);
output.print(nQuarters);

output.print(* and dimes are “);

output.printin(nDimes); 131

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

%

132

16/05/2013

66

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

133

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
%

134

16/05/2013

67

16/05/2013

Software engineering example

Incremental edit/compile/run

About now would be a good time to test what has been
done so far.

Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

135

Software engineering example

Incremental edit/compile/run

About now would be a good time to test what has been
done so far.

Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents:

136

68

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
% java MkChange
Enter the amount in cents: 113

137

Software engineering example

Incremental edit/compile/run

» About now would be a good time to test what has been
done so far.

» Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java
% java MkChange
Enter the amount in cents: 113

After calculation and removal of dimes amount
is 3 and quarters are 4 and dimes are 1

138

16/05/2013

69

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

nDimes = amount / DIME_VALUE;

amount = amount % DIME_VALUE;

/I following are 6 test/debugging statements

output.print(“After calculation and removal of dimes amount is *);
output.print(amount);

output.print(* and quarters are “);

output.print(nQuarters);

output.print(* and dimes are “);

output.printin(nDimes); 139

Software engineering example

DICO: Computation

/I Computation

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

nDimes = amount / DIME_VALUE;

amount = amount % DIME_VALUE;

/* following are 6 test/debugging statements

output.print(“After calculation and removal of dimes amount is “);
output.print(amount);

output.print(* and quarters are “);

output.print(nQuarters);

output.print(* and dimes are “);

output.printin(nDimes); 140
*/

16/05/2013

70

Software engineering example

DICO: Computation

/[Computation

1. Calculate the maximum quarters that you can use.

- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.

141

Software engineering example

DICO: Computation

/[Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;

142

16/05/2013

71

Software engineering example

DICO: Computation

/[Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;

Remark

» Now is a good time for incremental edit/compile/runl.43

Software engineering example

DICO: Computation

/[Computation
1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

2. Remove the quarters from the amount
- Set amount to the remainder of the previous
division.
3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.

144

16/05/2013

72

Software engineering example

DICO: Computation

/[Computation

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

Remark
* Now is a good time for incremental edit/compile/run.

145

Software engineering example

DICO: Output

// Output

146

16/05/2013

73

Software engineering example

DICO: Output
/[Output

 Format:
Change is g quarters, d dimes, n nickels, p pennies.

147

Software engineering example

DICO: Output

// Output
output.print(“Change is ”);

148

16/05/2013

74

Software engineering example

DICO: Output

/[Output
output.print(“Change is ”);
output.print(nQuarters + “ quarters, ”);

149

Software engineering example

DICO: Output

// Output

output.print(“Change is ");
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + * dimes, ”);

150

16/05/2013

75

Software engineering example

DICO: Output

// Output

output.print(“Change is ");
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + “ dimes, ”);
output.print(nNickels + “ nickels, ”);

151

Software engineering example

DICO: Output

/[Output

output.print(“Change is ”);
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + “ dimes, ”);
output.print(nNickels + “ nickels, ”);
output.printin(nPennies + “ pennies.”);

152

16/05/2013

76

Software engineering example

Completing the implementation cycle

* We now save our code to a file MkChange.java...
e ...and continue with the edit/compile/run cycle until
» ...we have nominally working MkChange.class

153

Software engineering example

Completing the implementation cycle

* We now save our code to a file MkChange.java...
e ...and continue with the edit/compile/run cycle until
* ...we have nominally working MkChange.class

Remarks

* We have been working incrementally through the
edit/compile/run cycle as we wrote our code.

» Therefore, final compilation will go relatively
smoothly.

* Such incremental implementation has a significant
positive impact on:
— the quality of code produced,;
— minimizing the time required to yield working
programs. 154

16/05/2013

77

Software engineering example

Phased development: A program to make change

4. Testing - Empirical evaluation.

155

Software engineering example

Test

%

156

16/05/2013

78

Software engineering example
Test

% java MkChange

157

Software engineering example

Test

% java MkChange
Enter the amount in cents:

158

16/05/2013

79

Software engineering example
Test

% java MkChange
Enter the amount in cents: 67

159

Software engineering example
Test

% java MkChange

Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
%

160

16/05/2013

80

Software engineering example
Test
% java MkChange
Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange

161

Software engineering example

Test

% java MkChange

Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange

Enter the amount in cents:

162

16/05/2013

81

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.

% java MkChange
Enter the amount in cents: 0

163

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.

% java MkChange
Enter the amount in cents: 0

Change is 0 quarters, 0 dimes, 0 nickels, O pennies.

%

164

16/05/2013

82

16/05/2013

Software engineering example

Test

% java MkChange

Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange

Enter the amount in cents: 0

Change is 0 quarters, 0 dimes, 0 nickels, 0 pennies.
%

Remark

* In practice, would submit program to a more

extensive battery of tests. 165

Software engineering example

Phased development: A program to make change

5. Deployment (incl. Maintenance) > fielded product.

166

83

16/05/2013

Software engineering example

Deployment
* Inreal life you now ship/install your product.

* Here, just for fun, I've placed the source code on our
section website.

167

Software engineering example

Recapitulation

* We have gone through our first nontrivial software
engineering example.

* Followed the phased development methodology.

* Made use of our Java program template.

» Coded the program in terms of DICO structure.

» Employed incremental approach to implementation.
» This exercise has yielded our second app.

168

84

Summary

Delegation
Application development
Software engineering

Software engineering example

169

Appendix: The Java standard library

Three major components

1. J2SE (Java 2 Standard Edition): For developing
desktop applications.

2. J2EE (Java 2 Enterprise Edition): For developing
enterprise-wide and sever applications.

3. J2ME (Java 2 Micro Edition): For developing
consumer space applications.

» See the maker’'s website java.sun.com

170

16/05/2013

85

Appendix: The Java standard library

The major components

1. J2SE (Java 2 Standard Edition): For developing
desktop applications.

2. J2EE (Java 2 Enterprise Edition): For developing
enterprise-wide and sever applications.

3. J2ME (Java 2 Micro Edition): For developing
consumer space applications.

» See the maker’s website java.sun.com
» Of particular interest to us is J2SE.

171

Appendix: The Java standard library

The J2SE JDK (J2SE Development Kit) 2 components
1. J2SE Runtime Environment: This JRE contains all that
is needed to run Java applications, including
— Class library
— Virtual machine
2. Tools: Programs needed to develop Java applications,
including
— The Java compilerJ2SE (Java 2 Standard Edition): For
developing desktop applications.

» The JRE alone is not sufficient for developing apps.

172

16/05/2013

86

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

—

—{ bin

jdkx.y.z n 1ib

] bin
—_ 3= ‘I:—l]
lib |- ext

173

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

—
e . - bin

specifies the version

— 1 |
r 1 &

jdkx.y.z n 1lib

] bin
—1 3= ‘I:—|]
lib |- ext

174

16/05/2013

87

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

—

bin

jdkx.y.z n

1ib

—

bin

jre

—

- development tools

{

1lib

ext

175

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

_/7 clients

—

bin

jdkx.y.z n

1lib

—

bin

jre

—

- development tools

{

1lib

ext

176

16/05/2013

88

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

components

] /7 clients
— bin
- development tools
1 [1
jdkx.y.z n 1ib
—
] bin
— Jjre]

1lib

ext

177

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

—
— bin
1 []
jdkx.y.z n 1lib
—
] bin
—JRES]]
. . 1lib ext
the runtime environmen

178

16/05/2013

89

Appendix: The Java standard library

Overview of the JDK files

» The JDK will install to directory with the depicted organization.

—

bin

jdkx.y.z n

1ib

the runtime environmen

extensions to

1 the standard

bin | |iprary

jre]]

lib |- ext

179

Appendix: The Java standard library

Class library overview
e The classes are organized

in packages and
subpackages.

* Top level packages are
shown on the RHS of this

slide.

* More discussion will be

forthcoming.

java.awt

java.beans
Jjava.ic
java.lang

java.math

java.net
java.rmi

java.security

Jjava.sql

java. text

java.util

javax.crypto

javax.servlet

javax.swing

Jjavax.xml

Provides support for drawing graphics.

AWT = Abstract Windowing T oolkit

Provide support for Java Beans.

Provides support for file and other 1/0 operations
Provides the fundamental Java classes.

This package is auto-imported by the compiler.
Provides support for arbitrary-precision arithmetic
Provides support for network access.

Provides support for RMI.
RMI = Remote Method Invocation

Provides support for the security framework.

Provides support for databases access over JDBC
JDBC = Java Database Connectivity,
SQL = Structured Query Language

Provides formatting for text, dates, and numbers.

Miscellaneous utility classes including JCF.
JCF = Java Collection Framework

Provides support for cryptographic operations.

Provides support for servlet and JSP development.
JSP = Java Server Pages

Provides support for GUI development
GUI = Graphical User Interface

Provides support for XML processing
XML = eXtensible Markup Language

16/05/2013

90

