
16/05/2013

1

1

CSE 1020: Unit 2

Topic: Delegation, Application
Development & Software Engineering

To do: Textbook Chapter 2; Lab 2

2

Outline

• Delegation

• Application development

• Software engineering

• Software engineering example

16/05/2013

2

3

Outline

• Delegation

• Application development

• Software engineering

• Software engineering example

4

Delegation
Why
• Consider the code inside the box for computing area of a circle.

import java.lang.System

public class Area

{ public static void main(String[] args)

{ int width = 8;

int height = 3;

int area = width * height;

System.out.println(area);

}

}

• It handles both storage (of data) and computation (of area).

• This approach works here, because the there are few variables
and the computation is straightforward.

• Ultimately, however, we want to build (much) larger software
systems and the complexity of the programs would grow too
rapidly, if all variables and computation was uniformly exposed.

16/05/2013

3

5

Delegation
Why
• Consider the code inside the box for computing area of a circle.

import java.lang.System

public class Area

{ public static void main(String[] args)

{ int width = 8;

int height = 3;

int area = width * height;

System.out.println(area);

}

}

• It handles both storage (of data) and computation (of area).

• This approach works here, because the there are few variables
and the computation is straightforward.

• Ultimately, however, we want to build (much) larger software
systems and the complexity of the programs would grow too
rapidly, if all variables and computation were uniformly exposed.

6

Delegation

What
• Delegation is an abstraction

strategy that allows us to deal with
the complexity inherent in large
systems.

• We delegate parts of the task to
other mechanisms.

• We consider two ways to delegate:

1. Delegation to a static method

2. Delegation to an object

16/05/2013

4

7

Delegation

What
• Delegation is an abstraction

strategy that allows us to deal with
the complexity inherent in large
systems.

• We delegate parts of the task to
other mechanisms.

• We consider two ways to delegate:

1. Delegation to a static method

2. Delegation to an object

8

Delegation
Delegation to a static method
• Consider the following code for obtaining Body Mass Index (BMI).

double weight = 165.0;

String height = “6’1”;

double bmi = ToolBox.getBMI(weight, height);

• We maintain our own our own storage, but …

• … delegate the computation to a class.

What do we mean by “static method”?
• A method performs an action.

– Its name (typically) is a verb (getBMI) or a predicate (isEnabled).

• Methods belong to classes.

• The invocation syntax is class_name.method(…).

– With the method’s parameters (if any) substituted for “…”.

• Methods terminate with a return, which might be void.

• The keyword static notes that the method neither inspects nor
modifies class copies. (Look back to Unit 1!)

16/05/2013

5

9

Delegation
Delegation to a static method
• Consider the following code for obtaining Body Mass Index (BMI).

double weight = 165.0;

String height = “6’1”;

double bmi = ToolBox.getBMI(weight, height);

• We maintain our own our own storage, but …

• … delegate the computation to a class.

What do we mean by “static method”?
• A method performs an action.

– Its name (typically) is a verb (getBMI) or a predicate (isEnabled).

• Methods belong to classes.

• The invocation syntax is class_name.method(…).

– With the method’s parameters (if any) substituted for “…”.

• Methods terminate with a return, which might be void.

• The keyword static notes that the method neither inspects nor
modifies class copies. (Look back to Unit 1!)

10

Interlude: UML

Unified Modeling Language (UML)
• UML is a visual specification language that allows us to

document software in a visual fashion.

• We will consider it in some detail in Unit 7, which is
devoted to more advanced concepts in software
engineering.

• Here, we introduce its depiction of classes and objects to
clarify delegation.

16/05/2013

6

11

Delegation

UML class diagram
• A class diagram depicts critical features of a class that are

needed to make use of it.

• Example: The class diagram of a utility in the Type library.

12

Delegation

UML class diagram
• A class diagram depicts critical features of a class that are

needed to make use of it.

• Example: The class diagram of a utility in the Type library.

The top box contains the name of the
class. Optionally, it is fully qualified
(type::lib::ToolBox) and stereotyped
(<<utility>>).

16/05/2013

7

13

Delegation

UML class diagram
• A class diagram depicts critical features of a class that are

needed to make use of it.

• Example: The class diagram of a utility in the Type library.

The bottom box contains a list of methods
in the class. The list provides the signature
of each method: Its name (computeBMI)
together with the types of its parameters
(double, String). The return type (double)
Also is specfied.

computeBMI(double, String): double

14

Delegation

UML class diagram
• A class diagram depicts critical features of a class that are

needed to make use of it.

• Example: The class diagram of a utility in the Java library.

Sometimes there is another box,
that specifies attributes, here a
constant (PI).

16/05/2013

8

15

Delegation

What
• Delegation is an abstraction

strategy that allows us to deal with
the complexity inherent in large
systems.

• We delegate parts of the task to
other mechanisms.

• We consider two ways to delegate:

1. Delegation to a static method

2. Delegation to an object

16

Delegation
Delegation to an object
• Consider the following code for dealing with rectangles.

Rectangle r = new Rectangle(3, 4);

Rectangle s = new Rectangle(2, 5);

System.out.println(r.getArea());

• Now, we delegate both storage and computation.

How do we deal with objects?
• Create an instance (a.k.a. object) of a class that can handle storage

and computation.

• The instance has a name, e.g., r, known as the object reference.

• Methods are invoked on the instance (not on the class).

• Each object can store different values in its attributes; these values
are known as the state of the object.

• A class has attributes and methods; an object additionally has state
and identity.

16/05/2013

9

17

Delegation
Delegation to an object
• Consider the following code for dealing with rectangles.

Rectangle r = new Rectangle(3, 4);

Rectangle s = new Rectangle(2, 5);

System.out.println(r.getArea());

• Now, we delegate both storage and computation.

What is an object?
• An object is a software entity that can both store data and perform

computation.

• We create an instance (a.k.a. object) of a class using new and the
class name.

• The instance has a name, e.g., r, known as the object reference.

• Methods are invoked on the instance (not on the class).

• Each object can store different values in its attributes; these values
are known as the state of the object.

• A class has attributes and methods; additionally, an object has state
and reference.

18

Delegation

UML class diagram
• A class diagram depicts critical features of a class that are

needed to make use of it.

• Example: The class diagram of a non-utility in the Type
library.

Attributes

Methods

Name of class

16/05/2013

10

19

Delegation

UML object diagram
• The object diagram is similar to a class diagram, except it

focuses on the object’s state and identity.

• We indicate how individual objects relate to the class via
the instance-of relationship (shown with dotted arrows).

20

Delegation
A unified view

• When using objects, we copy the
class and subsequently use the
created copy (i.e., object
instance).
– State is held in the object.

– We invoke methods on the object.

• Utility classes cannot be copied.
So,
– We invoke their methods on the class.

– We access their (constant) attributes on
the class.

• Either way, we achieve a way to
manage complexity by
delegating to other resources.

16/05/2013

11

21

Outline

• Delegation

• Application development

• Software engineering

• Software engineering example

22

Application development

Applications programming
• Our first program, Hello, is an example of an

application (app).
• An app is meant to be run by the Java intepreter to

provide a service to an end user.
• An app does not provide anything that can be used

by other programmers (only for end users).

Remarks on the internals of an app
• An app is a class that contains one and only one

main method.
• The main method runs first when the app starts

executing.
• An app may use methods from predefined classes

(i.e., it might delegate).

16/05/2013

12

23

Application development

Client vs. Implementer
• The client is the developer of the main class. He understands

the big picture, the purpose of the application.
• The implementer is the developer of a component. He focuses

on the inner details of the component.
• Separation of concerns means the client and implementer share

information on a need-to-know basis.
• CSE 1020 focuses on the client; CSE 1030 is more implementer

focused.

24

Application development

Client vs. Implementer
• The client is the developer of the main class. He understands

the big picture, the purpose of the application.
• The implementer is the developer of a component. He focuses

on the inner details of the component.
• Separation of concerns means the client and implementer share

information on a need-to-know basis.
• CSE 1020 focuses on the client; CSE 1030 is more implementer

focused.

16/05/2013

13

25

Application development
The client view
• The client knows how to shop for components and how to read

their specifications.
• Given a component, the client does not care how it

accomplishes its tasks, only what it does.
• The client views a component via its Application Programming

Interface (API).
• The class of a component thus encapsulates it.

26

Application development
The client view
• A class is made up of features. A feature is an attribute or a

method.
• The class of a component classifies each feature as either

public or private depending, respectively, on whether the client
needs or does not need to know about it.

• The API (interface) of a component lists only the headers of its
public methods and the declarations of its public attributes
(a.k.a. fields).

16/05/2013

14

27

Application development
The client view
• A class is made up of features. A feature is an attribute or a

method.
• The class of a component classifies each feature as either

public or private depending, respectively, on whether the client
needs or does not need to know about it.

• The API (interface) of a component lists only the headers of its
public methods and the declarations of its public attributes
(a.k.a. fields).

28

Application development
The client view
• A class is made up of features. A feature is an attribute or a

method.
• The class of a component classifies each feature as either

public or private depending, respectively, on whether the client
needs or does not need to know about it.

• The API (interface) of a component lists only the headers of its
public methods and the declarations of its public attributes
(a.k.a. fields).

16/05/2013

15

29

Ready-made I/O components

Keyboard input
Scanner input = new Scanner(System.in);
int width = input.nextInt();

Screen output
PrintStream output = System.out;
output.print(width);

30

Outline

• Delegation

• Application development

• Software engineering

• Software engineering example

16/05/2013

16

31

Software engineering

A methodology for developing software

• Development of software is similar to development in
other areas of engineering.

• We seek to systematically apply scientific knowledge
to the solution of practical software problems.

32

Software engineering

Contracts
• Each method in a component comes with a contract that spells

out the responsibilities of the client and the implementer.

• The client must supply parameters that satisfy the precondition
of the method.

• The implementer must supply a return that satisfy the
postcondition of the method.

• Liability:

– If pre=false, the client is at fault.

– If pre=true and post=false then the implementer is at fault.

– If pre=post=true then everything is OK.

• Remark: if a method has pre=true then its client does not have
to ensure anything.

16/05/2013

17

33

Software engineering

Contracts
• Methods in the Java standard library specify their pre and post

as follows:

– pre is always true unless stated otherwise

– post is specified under Returns and Throws

• Example: This contract specifies pre=true (i.e. no condition on
the parameter). The post states that the method will return the
square root if x is non-negative and will throw an exception
otherwise.

34

Software engineering

Two guidelines
1. Risk mitigation by early exposure: If you are not sure about

something during software development, confront it as early as
possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

2. Handling constants: Replace all magic numbers (literals) in your
program with finals.

Example:

Instead of:

width = width / 12;

Write:

final int INCH_PER_FOOT = 12;

width = width / INCH_PER_FOOT;

16/05/2013

18

Two guidelines
1. Risk mitigation by early exposure: If you are not sure about

something during software development, confront it as early as
possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

2. Handling constants: Replace all magic numbers (literals) in your
program with finals.

Example:

Instead of:

width = width / 12;

Write:

final int INCH_PER_FOOT = 12;

width = width / INCH_PER_FOOT;
35

Software engineering

36

Software engineering

Two guidelines
1. Risk mitigation by early exposure: If you are not sure about

something during software development, confront it as early as
possible. Making changes later is more difficulty than doing so
now.

Example: the Java compiler turns a potential logic error (like
assigning a real value to an int variable) to a compile-time error.
The risk of truncating the real value is exposed early.

2. Handling constants: Replace all magic numbers (literals) in your
program with finals.

Example:

Instead of:

width = width / 12;

Write:

final int INCH_PER_FOOT = 12;

width = width / INCH_PER_FOOT;

Compared to the above:
• The name of the constant is

self documenting.
• Specification as final allows

compiler to prevent you from
inadvertently changing the value.

16/05/2013

19

37

Software engineering

Phased development
1. Requirements

1.1Problem definition
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

38

Software engineering

Phased development
1. Requirements

1.1Problem definition
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

16/05/2013

20

39

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

40

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

16/05/2013

21

41

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

42

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

16/05/2013

22

43

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

44

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

16/05/2013

23

45

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

46

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

Waterfall method

16/05/2013

24

47

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

Waterfall method

Spiral development

48

Software engineering

Phased development
1. Requirements

1.1Problem definition  general description.
1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.
4. Testing  Empirical evaluation.
5. Deployment (incl. Maintenance)  fielded product.

Remark
• This classical paradigm now augmented to include

early prototyping for user feedback.

16/05/2013

25

49

Software engineering

3 steps in implementation

1. Edit

2. Compile

3. Run

50

Software engineering

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Remember this?

16/05/2013

26

51

Software engineering

3 steps in implementation

1. Edit

2. Compile

3. Run

52

Software engineering

Compile
• At our command line prompt…
• we invoke the compiler…
• to produce byte code to be interpreted by computer.

% javac Hello.java

16/05/2013

27

53

Software engineering

Typically initial attempts to compile
• Yield errors.
• These compile-time errors are usually errors of syntax in your

programming (sometimes called syntax errors).
• The compiler will produce diagnostic messages.

Response
• Return to editor.
• Correct errors.
• Reattempt compile.
• Repeat until no more error messages…
• … and the compiler has produced Hello.class

– The binary version that can be interpreted by computer.

54

Software engineering

Typically initial attempts to compile
• Yield errors.
• These compile-time errors are usually errors of syntax in your

programming (sometimes called syntax errors).
• The compiler will produce diagnostic messages.

Response
• Return to editor.
• Correct errors.
• Reattempt compile.
• Repeat until no more error messages…
• … and the compiler has produced Hello.class

– The byte code version that can be interpreted by computer
(via the Java interpreter).

16/05/2013

28

55

Software engineering

3 steps in implementation

1. Edit

2. Compile

3. Run

56

Software engineering

Run
• We now convert the byte code produced by the

compiler…
• … to native code that executes on the machine at hand.
• At the command line prompt we invoke

the interpreter
% java Hello

Success
• Will produce on the screen

Hello, world!

16/05/2013

29

57

Software engineering

Run
• We now convert the byte code produced by the

compiler…
• … to native code that executes on the machine at

hand.
• At the command line prompt we invoke the interpreter

% java Hello

Failure
1. Run-time errors/crashes  attempt syntactically

correct; but, illegal operation.
• Return to editor and iterate process until correct.

58

Software engineering

Run
• We now convert the byte code produced by the

compiler…
• … to native code that executes on the machine at

hand.
• At the command line prompt we invoke the interpreter

% java Hello

Failure
2. Logical errors Program syntactically okay,

executes; but, produces incorrect output.
• May require return to design, analysis or definition.

16/05/2013

30

59

Software engineering

Run
• We now convert the byte code produced by the

compiler…
• … to native code that executes on the machine at hand.
• At the command line prompt we invoke

the interpreter
% java Hello

Success
• Will produce on the screen

Hello, world!

Software engineering

60

16/05/2013

31

61

Software engineering

General program structure

• Declaration

• Input

• Computation

• Output

62

Software engineering
DICO analysis example
/*
Java program to print a greeting. Upon invocation it
prints “Hello, world!” to standard out.

Author: Richard Wildes Date: 05/14/13
*/

Import type.lang.*; // import type package for general utils.

// Definition of the Hello class.
public class Hello
{ public static void main(String[] args)

{ // Print to standard out.
IO.println(“Hello, world”);

}
}

D

O

16/05/2013

32

63

Software engineering
DICO analysis example
/*
Java program to print a greeting. Upon invocation it
prints “Hello, world!” to standard out.

Author: Richard Wildes Date: 05/14/13
*/

import type.lang.*; // import type package for general utils.

// Definition of the Hello class.
public class Hello
{ public static void main(String[] args)

{ // Print to standard out.
IO.println(“Hello, world”);

}
}

D

O

Remark: I and C
are vacuous for
this simple
program.

64

A template for CSE 1020 programs
/*
Class to ???.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

16/05/2013

33

65

A template for CSE 1020 programs
/*
Class to ???.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

Preferred 1020
I/O. Recall: We
introduced these
earlier in this unit.

66

Software engineering

First pass has introduced
• Contracts

• A few guidelines: Risk mitigation; dealing with constants

• Phased development.

• A look at error types.

• Abstraction to basic program form: DICO.

• Program template.

Remark
• For a nice discussion of programming style in Java see Textbook

Appendix C.

16/05/2013

34

67

Outline

• Delegation

• Application development

• Software engineering

• Software engineering example

68

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

16/05/2013

35

69

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

70

Software engineering example

Requirements: Problem definition

• Want a program that can calculate the conversion of
an amount of money (CND) into a corresponding
amount of change (quarters, dimes, nickels and
pennies).

16/05/2013

36

71

Software engineering example

Requirements: Analysis

• Input: Amount of money in cents.

• Output: The corresponding amount of change
(quarters, dimes, nickels and pennies).

• Format:

Change is q quarters, d dimes, n nickels, p pennies.

72

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

16/05/2013

37

73

Software engineering example

Design
• Algorithm: Let’s do it the way people do it.

67 cents
| -------- 2 quarters

17 cents
| -------- 1 dime

7 cents
| -------- 1 nickel

2 cents
| -------- 2 pennies

74

Software engineering example

Design
• Algorithm: Let’s do it the way people do it.
1. Calculate the maximum quarters that you can use.

- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.

16/05/2013

38

75

Software engineering example
Design
• Algorithm: Let’s do it the way people do it.
1. Calculate the maximum quarters that you can use.

- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.
• Variables: In red are likely variables or constants

76

Software engineering example
Design
• Algorithm: Let’s do it the way people do it.
1. Calculate the maximum quarters that you can use.

- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.
• Variables: In red are likely variables or constants

– Type int is appropriate as algorithm uses integer
operations.

16/05/2013

39

77

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

78

Software engineering example

Implementation: General program structure

• Declaration

• Input

• Computation

• Output

16/05/2013

40

79

Software engineering example
Our Template
/*
Class to ???.

Author: ??? Date: ???
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the ClassName class.
public class ClassName
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

80

Software engineering example
Make change skeleton
/*
Class to make change. Based on an example by YL.

Author: Richard Wildes Date: 05/16/2013
*/

import type.lang.*;
import java.util.Scanner;
import java.io.PrintStream;

// Definition of the MkChange class.
public class MkChange
{ public static void main(String[] args)

{ Scanner input = new Scanner(System.in);
PrintStream output = System.out;
// App specific DICO.

}
}

16/05/2013

41

81

Software engineering example

Fill in the DICO details

// Definition of the MkChange class.

public class MkChange
{ public static void main(String[] args)

{

// Declaration

// Input

// Computation

// Output
}

}

82

Software engineering example

DICO: Declaration

// Declaration.

16/05/2013

42

83

Software engineering example

DICO: Declaration

// Declaration.

Scanner input = new Scanner(System.in);

PrintStream output = System.out;

84

Software engineering example

DICO: Declaration

// Declaration.
• During design we had isolated that we would want to

manipulate data having to do with
– Amount of input money
– Value of quarter, dimes and nickels
– Number of quarters, dimes, nickels and pennies

16/05/2013

43

85

Software engineering example

DICO: Declaration

// Declaration.
• During design we had isolated that we would want to

manipulate data having to do with
– Amount of input money
– Value of quarter, dimes and nickels
– Number of quarters, dimes, nickels and pennies

• Some of these entities will not change during our
computation: These should be constants.

86

Software engineering example

DICO: Declaration

// Declaration.
final int QUARTER_VALUE = 25;
final int DIME_VALUE = 10;
final int NICKEL_VALUE = 5;

16/05/2013

44

87

Software engineering example

DICO: Declaration

// Declaration.
• During design we had isolated that we would want to

manipulate data having to do with
– Amount of input money
– Value of quarter, dimes and nickels
– Number of quarters, dimes, nickels and pennies

• Some of these entities will not change during our
computation: These should be constants.

• Some will vary during the computation: Variables.

88

Software engineering example

DICO: Declaration

// Declaration.

final int QUARTER_VALUE = 25;
final int DIME_VALUE = 10;
final int NICKEL_VALUE = 5;
int amount, nQuarters, nDimes, nNickels, nPennies;

16/05/2013

45

89

Software engineering example

DICO: Input

// Input.

90

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

16/05/2013

46

91

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

92

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

16/05/2013

47

93

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

94

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

16/05/2013

48

95

Software engineering example

DICO: Input

// Input.
• We need to prompt user for an input amount,

– In the PrintStream class we find print
• We need to read the user’s response (an int)

– In the Scanner class we find nextInt

96

Software engineering example

DICO: Input

// Input.

output.print(“Enter the amount in cents: ”);

amount = input.nextInt();

16/05/2013

49

97

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors in incrementally written code is
far easier than working with larger chunks.

98

Software engineering example

DICO: Input

// Input.

output.print(“Enter the amount in cents: ”);

amount = input.nextInt();

16/05/2013

50

99

Software engineering example

DICO: Input

// Input.
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();
// following are 2 test/debugging statements
output.print(“After input amount is: ”);
output.println(amount);

100

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

%

16/05/2013

51

101

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

102

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

%

16/05/2013

52

103

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

% java MkChange

104

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents:

16/05/2013

53

105

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 100

106

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors incrementally written code is
far easier than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 100

After input amount is: 100

%

16/05/2013

54

107

Software engineering example

DICO: Input

// Input.
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();
// following are 2 test/debugging statements
output.print(“After input amount is:”);
output.println(amount);

108

Software engineering example

DICO: Input

// Input.
output.print(“Enter the amount in cents: ”);
amount = input.nextInt();
/* following are 2 test/debugging statements
output.print(“After input amount is:”);
output.println(amount);
*/

16/05/2013

55

109

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

110

Software engineering example

DICO: Computation

// Computation.

1. Calculate the maximum quarters that you can use.

- Divide the amount by the quarter value.

- The integer part of the result is the number of
quarters

16/05/2013

56

111

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

112

Software engineering example

DICO: Computation

// Computation.

1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

16/05/2013

57

113

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

114

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors in incrementally written code is
far easier than working with larger chunks.

16/05/2013

58

115

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

116

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

// following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is “);

output.print(amount);

output.print(“ and quarters are “);

output.println(nQuarters);

16/05/2013

59

117

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

%

118

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

16/05/2013

60

119

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

%

120

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

16/05/2013

61

121

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents:

122

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 110

16/05/2013

62

123

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 110

After calculation and removal of quarters amount
is 10 and quarters are 4

124

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

// following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is “);

output.print(amount);

output.print(“ and quarters are “);

output.println(nQuarters);

16/05/2013

63

125

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;

amount = amount % QUARTER_VALUE;

/* following are 4 test/debugging statements

output.print(“After calculation and removal of quarters amount is “);

output.print(amount);

output.print(“ and quarters are “);

output.println(nQuarters);

*/

126

Software engineering example

DICO: Computation

// Computation.

1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.

16/05/2013

64

127

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

128

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

16/05/2013

65

129

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

130

Software engineering example

Incremental edit/compile/run

• About now would be a good time to test what
has been done so far.

• Finding errors in incrementally written code is
far easier than working with larger chunks.

16/05/2013

66

131

Software engineering example

DICO: Computation

// Computation.
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
// following are 6 test/debugging statements
output.print(“After calculation and removal of dimes amount is “);
output.print(amount);
output.print(“ and quarters are “);
output.print(nQuarters);
output.print(“ and dimes are “);
output.println(nDimes);

132

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

%

16/05/2013

67

133

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

134

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

%

16/05/2013

68

135

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

136

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents:

16/05/2013

69

137

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 113

138

Software engineering example

Incremental edit/compile/run
• About now would be a good time to test what has been

done so far.

• Finding errors incrementally written code is far easier
than working with larger chunks.

% javac MkChange.java

% java MkChange

Enter the amount in cents: 113

After calculation and removal of dimes amount
is 3 and quarters are 4 and dimes are 1

16/05/2013

70

139

Software engineering example

DICO: Computation

// Computation.
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
// following are 6 test/debugging statements
output.print(“After calculation and removal of dimes amount is “);
output.print(amount);
output.print(“ and quarters are “);
output.print(nQuarters);
output.print(“ and dimes are “);
output.println(nDimes);

140

Software engineering example

DICO: Computation

// Computation.
nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
/* following are 6 test/debugging statements
output.print(“After calculation and removal of dimes amount is “);
output.print(amount);
output.print(“ and quarters are “);
output.print(nQuarters);
output.print(“ and dimes are “);
output.println(nDimes);
*/

16/05/2013

71

141

Software engineering example

DICO: Computation

// Computation.

1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.

142

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

16/05/2013

72

143

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;

Remark
• Now is a good time for incremental edit/compile/run.

144

Software engineering example

DICO: Computation

// Computation.

1. Calculate the maximum quarters that you can use.
- Divide the amount by the quarter value.
- The integer part of the result is the number of

quarters
2. Remove the quarters from the amount

- Set amount to the remainder of the previous
division.

3. Repeat steps 1 & 2 for dimes.
4. Repeat steps 1 & 2 for nickels.
5. The final remainder is the number of pennies.

16/05/2013

73

145

Software engineering example

DICO: Computation

// Computation.

nQuarters = amount / QUARTER_VALUE;
amount = amount % QUARTER_VALUE;
nDimes = amount / DIME_VALUE;
amount = amount % DIME_VALUE;
nNickels = amount / NICKEL_VALUE;
amount = amount % NICKEL_VALUE;
nPennies = amount;

Remark
• Now is a good time for incremental edit/compile/run.

146

Software engineering example

DICO: Output

// Output.

16/05/2013

74

147

Software engineering example

DICO: Output

// Output.

• Format:

Change is q quarters, d dimes, n nickels, p pennies.

148

Software engineering example

DICO: Output

// Output.

output.print(“Change is ”);

16/05/2013

75

149

Software engineering example

DICO: Output

// Output.

output.print(“Change is ”);

output.print(nQuarters + “ quarters, ”);

150

Software engineering example

DICO: Output

// Output.
output.print(“Change is ”);
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + “ dimes, ”);

16/05/2013

76

151

Software engineering example

DICO: Output

// Output.
output.print(“Change is ”);
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + “ dimes, ”);
output.print(nNickels + “ nickels, ”);

152

Software engineering example

DICO: Output

// Output.
output.print(“Change is ”);
output.print(nQuarters + “ quarters, ”);
output.print(nDimes + “ dimes, ”);
output.print(nNickels + “ nickels, ”);
output.println(nPennies + “ pennies.”);

16/05/2013

77

153

Software engineering example

Completing the implementation cycle

• We now save our code to a file MkChange.java…

• …and continue with the edit/compile/run cycle until

• …we have nominally working MkChange.class

154

Software engineering example

Completing the implementation cycle
• We now save our code to a file MkChange.java…
• …and continue with the edit/compile/run cycle until
• …we have nominally working MkChange.class

Remarks
• We have been working incrementally through the

edit/compile/run cycle as we wrote our code.
• Therefore, final compilation will go relatively

smoothly.
• Such incremental implementation has a significant

positive impact on:
– the quality of code produced;
– minimizing the time required to yield working

programs.

16/05/2013

78

155

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

156

Software engineering example

Test

%

16/05/2013

79

157

Software engineering example

Test

% java MkChange

158

Software engineering example

Test

% java MkChange

Enter the amount in cents:

16/05/2013

80

159

Software engineering example

Test

% java MkChange

Enter the amount in cents: 67

160

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67
Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
%

16/05/2013

81

161

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67
Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange

162

Software engineering example

Test

% java MkChange

Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.

% java MkChange

Enter the amount in cents:

16/05/2013

82

163

Software engineering example

Test

% java MkChange

Enter the amount in cents: 67

Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.

% java MkChange

Enter the amount in cents: 0

164

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67
Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange
Enter the amount in cents: 0
Change is 0 quarters, 0 dimes, 0 nickels, 0 pennies.
%

16/05/2013

83

165

Software engineering example

Test

% java MkChange
Enter the amount in cents: 67
Change is 2 quarters, 1 dimes, 1 nickels, 2 pennies.
% java MkChange
Enter the amount in cents: 0
Change is 0 quarters, 0 dimes, 0 nickels, 0 pennies.
%

Remark
• In practice, would submit program to a more

extensive battery of tests.

166

Software engineering example

Phased development: A program to make change

1. Requirements

1.1Problem definition  general description.

1.2Analysis  Input & validation; Output and format.

2. Design  representation and procedures (data
structures and algorithms)

3. Implementation  Program.

4. Testing  Empirical evaluation.

5. Deployment (incl. Maintenance)  fielded product.

16/05/2013

84

167

Software engineering example

Deployment

• In real life you now ship/install your product.

• Here, just for fun, I’ve placed the source code on our
section website.

168

Software engineering example

Recapitulation

• We have gone through our first nontrivial software
engineering example.

• Followed the phased development methodology.

• Made use of our Java program template.

• Coded the program in terms of DICO structure.

• Employed incremental approach to implementation.

• This exercise has yielded our second app.

16/05/2013

85

169

Summary

• Delegation

• Application development

• Software engineering

• Software engineering example

170

Appendix: The Java standard library

Three major components

1. J2SE (Java 2 Standard Edition): For developing
desktop applications.

2. J2EE (Java 2 Enterprise Edition): For developing
enterprise-wide and sever applications.

3. J2ME (Java 2 Micro Edition): For developing
consumer space applications.

• See the maker’s website java.sun.com

• Of particular interest to us is J2SE..

16/05/2013

86

171

Appendix: The Java standard library

The major components

1. J2SE (Java 2 Standard Edition): For developing
desktop applications.

2. J2EE (Java 2 Enterprise Edition): For developing
enterprise-wide and sever applications.

3. J2ME (Java 2 Micro Edition): For developing
consumer space applications.

• See the maker’s website java.sun.com

• Of particular interest to us is J2SE.

172

Appendix: The Java standard library

The J2SE JDK (J2SE Development Kit) 2 components

1. J2SE Runtime Environment: This JRE contains all that
is needed to run Java applications, including
– Class library

– Virtual machine

2. Tools: Programs needed to develop Java applications,
including
– The Java compilerJ2SE (Java 2 Standard Edition): For

developing desktop applications.

• The JRE alone is not sufficient for developing apps.

16/05/2013

87

173

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

174

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

specifies the version

16/05/2013

88

175

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

development tools

176

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

development tools

clients

16/05/2013

89

177

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

development tools

clients

components

178

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

the runtime environment

16/05/2013

90

179

Appendix: The Java standard library

Overview of the JDK files

• The JDK will install to directory with the depicted organization.

the runtime environment

extensions to
the standard
library

180

Appendix: The Java standard library

Class library overview

• The classes are organized
in packages and
subpackages.

• Top level packages are
shown on the RHS of this
slide.

• More discussion will be
forthcoming.

