
1

1

CSE 1020: Unit 1

Topic: Abstraction

To do: Textbook Chapter 1; Lab 1

2

Outline

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

2

3

Outline

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

4

Abstraction

What is abstraction
• An abstraction is a set of data and/or operations that

is provided to some users.
• How the data/operations are implemented is hidden

from the users.
• This process is referred to as information hiding or

encapsulation.
• All the user knows is

– How to invoke operations (names, parameters,
etc.)

– What the results and effects are
We refer to this as the abstraction’s Application
Programming Interface (API).

3

5

Abstraction

Why abstraction is important to us
• A user can use the abstraction without knowing the

details of the implementation.
• This concept is very important in the development of

large software systems involving millions of lines of
code.

Example
• In modeling the Toronto Stock Exchange we may

choose to abstract the notion of a “stock”.
• This allows others to operate on a stock (e.g.,

buy/sell) without being concerned with how we
maintain a particular stock value.

6

Abstraction

Why abstraction is important to us
• A user can use the abstraction without knowing the

details of the implementation.
• This concept is very important in the development of

large software systems involving millions of lines of
code.

Example
• In modeling the Toronto Stock Exchange we may

choose to abstract the notion of a “stock”.
• This allows others to operate on a stock (e.g.,

buy/sell) without being concerned with how we
maintain a particular stock value.

4

7

Abstraction

Abstract data types

• An abstract data type (ADT) is…

• A set of values that belong to the data type, e.g.,

– integers

– strings

– etc.

• A set of operations on these values, e.g.,

– addition for integers

– concatenation for strings.

8

Abstraction

Abstract data types
• Users of the ADT are told…
• How the operations can be invoked, e.g.,

– name
– parameters

• What the operation’s preconditions are
– What is required for the operation to be possible
– E.g., for division the divisor must not be zero.

• What the operation’s postconditions are
– what effects it has
– what results it returns

• This constitutes the API of the ADT.
• How the ADT is implemented is kept hidden from the

users.

5

9

Abstraction

We need two fundamental kinds of abstraction

1. Abstractions that capture operations performed on
data (procedures).

2. Abstractions that capture the values of items of
interest (data).

10

Abstraction

A need

• Before writing a program to solve a problem or
defining an operation to manipulate data,

• must have an procedure that can do the work.

A good solution method should be

• Unambiguous: Leaves no doubt about what operation to
perform at each step.

• Executable: Performable on the computer.

• Terminating: Guaranteed to come to an end.

• We refer to a method with these properties as an algorithm.

6

11

Abstraction

Problem
• Determine how many months it takes to pay back a

loan given the loan amount, monthly payment
amount and interest rate.

Solution procedure
1. Initialize monthsRequired to 0.
2. Repeat (i), (ii) and (iii) while amountOwed > 0.

(i) Add monthlyInterest to amountOwed.
(ii) Subtract monthlyPayment from amountOwed.
(iii) Increment monthsRequired by 1.

3. Report monthsRequired as the answer.

12

Abstraction

Problem
• Determine how many months it takes to pay back a

loan given the loan amount, monthly payment
amount and interest rate.

Solution procedure
1. Initialize monthsRequired to 0.
2. Repeat (i), (ii) and (iii) while amountOwed > 0.

(i) Add monthlyInterest to amountOwed.
(ii) Subtract monthlyPayment from amountOwed.
(iii) Increment monthsRequired by 1.

3. Report monthsRequired as the answer.

7

13

Abstraction

A need
• Before writing a program to solve a problem or

defining an operation to manipulate data,
• must have an procedure that can do the work.

A good solution method should be
• Unambiguous: Leaves no doubt about what operation

to perform at each step.
• Executable: Performable on the computer.
• Terminating: Guaranteed to come to an end.
• We refer to a method with these properties as an

algorithm.

14

Abstraction

Another need

• Programs (as well as algorithms and ADTs) use
variables to maintain values.

• For example

– monthsRequired

– amountOwed

– Etc.

in the loan example.

• A variable has a particular value at a given time, and
it changes as a program executes.

8

15

Abstraction

We have introduced

• Abstraction as a key notion in computer science.

• We abstract both

– data

– procedures (for manipulating data)

• Some have referred to computer science as the
science of abstraction.

16

Outline

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

9

17

A simple hardware model

Remarks

• Input/output (I/O) units are translators.
– Keyboard, mouse, microphones…

– Screen, speaker…

• This model is so general as to work for almost
anything.

Input OutputSystem

Human
Representation

Human
Representation

Machine
Representation

18

A simple hardware model

Remarks

• Input/output (I/O) units are translators.
– Keyboard, mouse, microphones…

– Screen, speaker…

• This model is so general as to work for almost
anything.

Input OutputSystem

Human
Representation

Human
Representation

Machine
Representation

10

19

A simple hardware model

Remarks

• Input/output (I/O) units are translators.

– Keyboard, mouse, microphones…

– Screen, speaker…

• This model is so general as to work for almost
anything.

Input OutputSystem

Human
Representation

Human
Representation

Machine
Representation

20

A simple hardware model

Central Processing Unit (CPU)

• Performs arithmetic and logic operations

• Keeps track of next instruction

(Main) Memory (RAM & ROM)

• Stores data

• Stores programs

CPU

Memory

System

11

21

A simple hardware model

Memory

• A set of cells

• Each with an address

• Each with contents

Cell

• Contains only one
element at a time

• Capacity of 1 byte (8
bits)

0

1

2

22

A simple hardware model

Memory

• A set of cells

• Each with an address

• Each with contents

Cell

• Contains only one
element at a time

• Capacity of 1 byte (8
bits)

0

1

2

12

23

A simple hardware model

Memory

• A set of cells

• Each with an address

• Each with contents

Cell

• Contains only one
element at a time

• Capacity of 1 byte (8
bits)

0

1

2

24

A simple hardware model

Memory

• A set of cells

• Each with an address

• Each with contents

Cell

• Contains only one
element at a time

• Capacity of 1 byte (8
bits)

0

1

2

7 6 5 4 3 2 1 0

Bit = 0/1

13

25

A simple hardware model

Memory

• A set of cells

• Each with an address

• Each with contents

Expand cells

• Concatenate bytes

• Address that of lowest
byte in group

• Come in “byte size”
packages.

0

1

2

26

A few more hardware concepts

Secondary storage
• Hard disk, floppy disc, CD-ROM, tape, etc. for data

storage.
• Slower access and larger capacity than main memory.
• Persistent.

Bus
• A thick set of wires.
• Allows data to be moved between CPU, memory and

other components.

Network connection
• Allows individual computers to communicate with other

computers and shared peripheral devices.

14

27

Storage management

Storage considerations

• Keeping track of memory cells and their contents.

• Keeping track of all symbolic names and their values.

28

Storage management

Storage considerations

• Keeping track of memory cells and their contents.

• Keeping track of all symbolic names and their values.

Multilayer abstraction

• Memory manager

• Symbol manager

• Benefits: Changes at one level of implementation
need not impact other levels of implementation.

15

29

Storage management

Storage considerations
• Keeping track of memory cells and their contents.
• Keeping track of all symbolic names and their values.

Memory manager
• Responsibilities:

– Keeps track of memory cells and contents.
• Tasks:

– Allocate/deallocate
– Read/write

• Implementation:
– At level of operating system.

30

Storage management

Storage considerations
• Keeping track of memory cells and their contents.
• Keeping track of all symbolic names and their values.

Symbol manager
• Responsibilities:

– Keeps track of names and values.
• Tasks:

– Declare
– Evaluate
– Assign

• Implementation:
– At level of compiler

16

31

Storage management

Storage considerations

• Keeping track of memory cells and their contents.

• Keeping track of all symbolic names and their values.

Garbage collection

• In certain programming languages (e.g., Java)
memory cells that are no longer in use are
automatically recycled for reuse.

• We refer to this process as garbage collection.

32

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

17

33

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Declare a variable
“count” of type short.

34

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Allocate 2 bytes.

18

35

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Allocate 2 bytes.

Used:
(0, 1, 2,
4, 5, 8)

36

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Return 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

19

37

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Return 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block

38

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Return 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

20

39

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

40

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Assign the value
2 to count.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

21

41

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Write 00000000 00000010
at block 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

42

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Write 00000000 00000010
at block 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

22

43

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

44

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Evaluate count.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

23

45

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Read 2 blocks at 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

46

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Return 00000000 00000010.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

24

47

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Return 2.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

48

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

25

49

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Notices count no
longer in use.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

50

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Cleans up symbol
table.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block
count short 6

6
7

00000000
00000010

26

51

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Cleans up symbol
table.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block

6
7

00000000
00000010

52

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

De-allocate 2
blocks at 6.

Used:
(0, 1, 2,
4, 5, 6,
7, 8)

Symbol table
var type block

6
7

00000000
00000010

27

53

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

De-allocate 2
blocks at 6.

Used:
(0, 1, 2,
4, 5, 8)

Symbol table
var type block

6
7

00000000
00000010

54

Storage management
Pictorial representation

Program
Memory
manager

Symbol
manager

Garbage
collector

Used:
(0, 1, 2,
4, 5, 8)

Symbol table
var type block

6
7

00000000
00000010

28

55

Our hardware abstraction

Input OutputSystem

56

Our hardware abstraction

Input OutputSystem

CPU

Memory

29

57

Our hardware abstraction

Input OutputSystem

CPU

Memory

0

1

2

58

Our hardware abstraction

Input OutputSystem

CPU

Memory

0

1

2

Storage management requires tracking
memory and contents; names and values.

30

59

Outline

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

60

Software abstraction

Consider the human language sentence

• Time flies like an arrow.

How can we

bridge this

(wide) gap?

Human language
• ambiguous
• context disambiguates

Machine language
• requires unambiguous
specifications

• context free

31

61

Software abstraction

Consider the human language sentence

• Time flies like an arrow.

How can we

bridge this

(wide) gap?

Human language
• ambiguous
• context disambiguates

Machine language
• requires unambiguous
specifications

• context free

62

Software abstraction

Consider the human language sentence

• Time flies like an arrow.

How can we

bridge this

(wide) gap?

Human language
• ambiguous
• context disambiguates

Machine language
• requires unambiguous
specifications

• context free

32

63

Software abstraction

Conclusion

• One side or the other must give in.

• The machine cannot accommodate.

How can we

bridge this

(wide) gap?

Human language
• ambiguous
• context disambiguates

Machine language
• requires unambiguous
specifications

• context free

64

Software abstraction

Build a bridge to the human

• Introduce high-level programming languages

• Abstract from the machine primitives

– Memory address  variable names

– Machine instructions  methods, procedures,
functions (algorithms)

• Easier for humans to work with

– Documentation critical

• But still context free

– Require extreme precision of thought

33

65

Software abstraction
Build a bridge to the machine

• High-level language (HLL) must be translated to
machine language

• Two approaches

1.Native compiler

+ job done once and for all

- final product platform specific

Native
Compiler

HLL
Machine
Language

66

Software abstraction
Build a bridge to the machine

• High-level language (HLL) must be translated to
machine language

• Two approaches
1. Native compiler

+ job done once and for all

- final product platform specific

2. Byte code compiler

+ job (almost) done and platform independent

- one last minute task required

Interpreter
Byte Code
CompilerHLL Byte

Code
Machine
Language

Virtual
Machine

34

67

Software abstraction

Provides the

bridge across

this gap.

68

Software abstraction

Comprised of
• Programs written in a computer language
• Associated documentation

Goal: Must be readily comprehended by
• Human  good style
• Machine (via compiler/interpreter)  unambiguous

Provides the

bridge across

this gap.

35

69

A first program

3 steps in implementation

1. Edit

2. Compile

3. Run

70

A first program

3 steps in implementation

1. Edit

2. Compile

3. Run

36

71

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

72

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Includes useful stuff (classes)
in the type package.

37

73

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

A blank line to separate
logically separate pieces of
code.

74

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Starts a new class, Hello
• A class is a way to group
together related data and
operations.

38

75

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Remarks
• public denotes that this class

is available to others.
• class and file names must be

consistent.

76

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Remarks
• public denotes that this class

is available to others.
• class and file names must be

consistent.

39

77

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Defines
• A “method” called main.
• A method is a set of instructions

for carrying out a task.
• Methods must be in classes.

78

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

The term static specifies that the
main method neither inspects nor
modifies customized Hello class
copies (objects).

40

79

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

The term void specifies that the
main method does not yield a
return value.

80

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

The name of the main method.

41

81

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Specifies the (command line)
arguments for the main method.

82

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Invokes an (imported) method
to print the string “Hello, world!”,
e.g., on the screen.
• println is a method in the class
IO that takes a string argument.

42

83

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Delimiters
• We use curly brackets, { }, to
delimit portions of our code

84

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Delimiters
• We use curly, { }, brackets to
delimit portions of our code
• These curly brackets mark the
start/end of the class Hello

43

85

A first program

Edit
• In an editor we enter

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

• and save to a file Hello.java

Delimiters
• We use curly, { }, brackets to
delimit portions of our code
• These curly brackets mark the
start/end of the method main

86

A first program

3 steps in implementation

1. Edit

2. Compile

3. Run

44

87

A first program

Compile
• At our command line prompt…
• we invoke the compiler…
• to produce byte code to be interpreted by computer.

% javac Hello.java

88

A first program

3 steps in implementation

1. Edit

2. Compile

3. Run

45

89

A first program

Run
• We now convert the byte code produced by the

compiler…
• … to native code that executes on the machine at hand.
• At the command line prompt we invoke

the interpreter
% java Hello

Success
• Will produce on the screen

Hello, world!

90

A first program

More to be done
• What have we forgotten?

import type.lang.*;

public class Hello
{ public static void main(String[] args)

{ IO.println(“Hello, world!”);
}

}

46

91

A first program
Documentation
/*
Java program to print a greeting. Upon invocation it
prints “Hello, world!” to standard out.

Author: Richard Wildes Date: 05/05/13
*/

import type.lang.*; // import type package for general utils.

// Definition of the Hello class.
public class Hello
{ public static void main(String[] args)

{ // Print to standard out.
IO.println(“Hello, world!”);

}
}

92

Outline

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

47

93

Data representation

Axiom
• Anything on the left hand side can be so mapped.
• We restrict our attention to

– numbers
– characters
– booleans

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

94

Data representation

Remark
• With ingenuity wide variety of data can be so

mapped.
• We restrict our attention to

– numbers
– characters
– booleans

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

48

95

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

96

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

Question: Why have both digits
And integers?
Answer: Numbers support
arithmetic operations; characters
support disection operations.
Representation depends on what
you want to do.

49

97

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

98

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples

Base 10
0 = 0x10^0

Base 2
0 = 0x2^0

50

99

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
255 = 2x100 + 5x10 + 5x1

= 2x10^2 + 5x10^1 + 5x10^0

100

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
255 = 2x10^2 + 5x10^1 + 5x10^0

Base 2
11111111 = 1x2^7 + 1x2^6 + 1x2^5 + 1x2^4 + 1x2^3

+ 1x2^2 + 1x2^1 + 1x2^0

51

101

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
0 = 0x10^0

Base 2
0 = 0x2^0

102

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
1 = 1x10^0

Base 2
1 = 1x2^0

52

103

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
2 = 2x10^0

Base 2
10 = 1x2^1 + 0x2^0

104

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
3 = 3x10^0

Base 2
11 = 1x2^1 + 1x2^0

53

105

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
32 = 3x10^1 + 2x10^0

Base 2
100000 = 1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 0x2^1

+ 0x2^0

106

Data representation

Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Examples (unsigned)

Base 10
255 = 2x10^2 + 5x10^1 + 5x10^0

Base 2
11111111 = 1x2^7 + 1x2^6 + 1x2^5 + 1x2^4 + 1x2^3

+ 1x2^2 + 1x2^1 + 1x2^0

54

107

Data representation
Integers
• Map to memory under binary representation.
• According to anticipated usage, allocate different

amounts of memory

Encompassing negative integers
• We also need to include negative integers
• With, e.g., 8 bits we are restricted to 256 total values
• Approach

– Use left most bit for sign (e.g., 0 pos; 1 neg)
– Use (approx.) half the total values for positives.
– Use (approx.) half the total values for negatives.
– Reserve a value for zero (e.g., 00000000)

108

Data representation

Java integer types

bit byte KeyWord range (approx.)

8 1 byte +/- 127

16 2 short +/- 32K

32 4 int +/- 2G

64 8 long big (+/- 9 quintillion)

Nomenclature

000,000,000,1*2

000,000,1*2

000,110242

30

20

10







KMG

KKM

K

55

109

Data representation

Java integer types

bit byte KeyWord range (approx.)

8 1 byte +/- 127

16 2 short +/- 32K

32 4 int +/- 2G

64 8 long big

Remarks

• Why not always choose the largest size?

– Incurs increased processing time due to overhead
in dealing with larger memory chunks.

• In 1020: Use int as default.

110

Data representation

Declaration

• In our computer programs, we will want to provide
symbolic names for particular instances of a data
type.

• We do this via declaration.

• In Java we declare an int via

int qty;

56

111

Data representation

Declaration

• In our computer programs, we will want to provide
symbolic names for particular instances of a data
type.

• We do this via declaration.

• In Java we declare an int via

int qty;Data type: Tells Java
what type of item this is.

Whitespace: Tells Java
That previous item has
Ended. Free form use legal;
But choose for readability.

Name: Tells Java the
symbol to associate
with this declaration.
Choose for style.

Semicolon: Tells Java
The statement is over.

112

Data representation

Declaration (behind the scenes)
• When the processor encounters our declaration

int qty;
– 4 bytes of free memory are allocated
– The name qty is associated with the allocated

memory location

Initialization
• In Java, declaration does not provide an initial value.
• To provide a value we use an assignment statement

qty = 27;
• Can also combine declaration and initialization

int qty = 27;

57

113

Data representation
Declaration (behind the scenes)
• When the processor encounters our declaration

int qty;
– 4 bytes of free memory are allocated
– The name qty is associated with the allocated

memory location

Initialization
• In Java, declaration does not provide an initial value.
• To provide a value we use an assignment statement

qty = 27;
• Can also combine declaration and initialization

int qty = 27;
• In either case the value 27 has been stored in the

memory location associated with qty

114

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

58

115

Data representation

Reals: The challenge
• It is theoretically impossible to represent real

numbers on a digital computer.
• Certain reals (e.g., irrational numbers) cannot be

captured with a finite representation.
• So we make a compromise between

– Range represented
– precision

116

Data representation

Reals: The IEEE 754 Standard
• Consider a number, say, 7412.3898
• Write it as .74123898x10^4
• Now we just need to represent 2 integers

– 74123898
– 4

• But still limited precision due to finite amount of memory
available to represent 74123898
– We speak of the number of significant figures as those

that are captured under the representation

59

117

Data representation

Reals: The IEEE 754 Standard
• Consider a number, say, 7412.3898
• Write it as .74123898x10^4
• Now we just need to represent 2 integers

– 74123898
– 4

• But still limited precision due to finite amount of memory
available to represent 74123898
– We speak of the number of significant figures as those

that are captured under the representation
– 74123898 2 significant figures  74

118

Data representation

Reals: The IEEE 754 Standard
• Consider a number, say, 7412.3898
• Write it as .74123898x10^4
• Now we just need to represent 2 integers

– 74123898
– 4

• But still limited precision due to finite amount of memory
available to represent 74123898
– We speak of the number of significant figures as those

that are captured under the representation
– 74123898 4 significant figures  7412

60

119

Data representation

Reals: The IEEE 754 Standard
• Consider a number, say, 7412.3898
• Write it as .74123898x10^4
• Now we just need to represent 2 integers

– 74123898
– 4

• But still limited precision due to finite amount of memory
available to represent 74123898
– We speak of the number of significant figures as those

that are captured under the representation
– 74123898 6 significant figures  741238

120

Data representation

Reals: The IEEE 754 Standard
• Consider a number, say, 7412.3898
• Write it as .74123898x10^4
• Now we just need to represent 2 integers

– 74123898
– 4

• But still limited precision due to finite amount of memory
available to represent 74123898
– We speak of the number of significant figures as those

that are captured under the representation
– 74123898 8 significant figures  74123898

61

121

Data representation

Java real types
bit byte KeyWord range precision
32 4 float +/- 10^38 6 significant figs.
64 8 double +/- 10^300 15 significant figs.

Remark
• In 1020 use double as default
• For example, we might declare (with initialization)

double price = 126.37;

122

Data representation

Java real types
bit byte KeyWord range precision
32 4 float +/- 10^38 6 significant figs.
64 8 double +/- 10^300 15 significant figs.

Remark
• In 1020 use double as default
• For example, we might declare (with initialization)

double price = 126.37;

62

123

Data representation

Examples of real representation
• Declaration/initialization:

float myReal = 54383.27;
• Stored in memory according to our convention as

543832
5

• Retrieved from memory as
54383.2

124

Data representation

Examples of real representation
• Declaration/initialization:

float myReal = 1000000.0;
• Stored in memory according to our convention as

1
7

• Retrieved from memory as
1000000.0

63

125

Data representation

Examples of real representation
• Declaration/initialization:

float myReal = 7412531.0;
• Stored in memory according to our convention as

741253
7

• Retrieved from memory as

7412530.0

126

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

64

127

Data representation

Characters
• We choose to represent characters in fashion that is

invariant to output matters (e.g., font, etc.)
• So, map characters onto integers and represent them as

such.
• Two standard encodings

– ASCII
– UNICODE

128

Data representation

ASCII
• Each character allocated 1 byte.
• Provides support for 256 distinct characters.
• Sufficient to capture

– Digits
– Various special symbols, e.g., () # $ etc.
– Letters of English language

65

129

Data representation

UNICODE
• Each character allocated 2 bytes.
• Provides support for 64000 distinct characters.
• Sufficient to capture

– Digits
– Various special symbols, e.g., () # $ etc.
– Letters of many languages

• First 256 codes are the same as ASCII
• This is the default representation used in Java.
• For details see

– Roumani textbook, Appendix A

130

Data representation

Examples
• Character declaration

char grade;
• Character initialization

grade = ‘B’;
• “special” characters are dealt with through escape

sequences
– Newline: char startNewLine = ‘\n’;
– Tab: char insertTab = ‘\t’;
– Quotation: char singleQuote = ‘\’’;
– Back slash: char backSlash = ‘\\’;
– …

66

131

Data representation
Strings
• A character string is a sequence of 0 or more

characters.
• A string can contain a word, a sentence or any

amount of text.
• A particular string can be specified as a literal

between double quotes.
“Hello, world!”

• In Java, character strings are not primitive types (they
are object instances of the predefined class String).
– Generally, objects are used to represent more

complex or specialized data than primitive types.
• We will return to this topic latter when we have a bit

more machinery in place.

132

Data representation
Strings
• A character string is a sequence of 0 or more

characters.
• A string can contain a word, a sentence or any

amount of text.
• A particular string can be specified as a literal

between double quotes.
“Hello, world!”

• In Java, character strings are not primitive types (they
are object instances of the predefined class String).
– Generally, objects are used to represent more

complex or specialized data than primitive types.
• We will return to this topic latter when we have a bit

more machinery in place.

67

133

Data representation

Numbers
• integers
• reals

Characters
• letters
• digits
• symbols () + -, etc.

Booleans
• true
• false

134

Data representation

Boolean

• Serve to capture logical true/false values.

• Declaration

boolean isBigger;
• Initialization

isBigger = (a>b);

assuming that a and b have been declared and initialized.

Remark

• Note that true and false are Java Keywords.

68

135

Data representation

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

136

Data representation

Numbers
• integers
• reals
Characters
• letters
• digits
• symbols
Booleans
• true
• false

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

69

137

Data representation

Numbers
• integers
• reals
Characters
• letters
• digits
• symbols
Booleans
• true
• false

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

Remarks
• In Java, the data we manipulate is

represented as either a primitive
type or an object.

• Almost all that we have seen so
far are primitive types.

• The exception is String, a built in
class of objects.

138

Variables

What
• Variables are entities in a program that have a value

which is allowed to change during the course of the
program.

int amount, numQuarters;
amount = 78;
numQuarters = amount / 25;
amount = amount – numQuarters * 25;

Why
• Variables provide a way to model items with values

that vary during the time we interested in them.
• They allow us to abstract away from details of

machine representation.

70

139

Variables

3 Components

• Consider

int amount = 78;

1. Variables have a type, e.g., int.

– Can be any Java primitive type (e.g., int, double,
boolean, etc.). Recall we introduced the Java
primitive types earlier in these notes.

– Can be an object type defined by a class (e.g.,
String). We will introduce many more classes as
the semester progresses.

140

Variables

3 Components

• Consider

int amount = 78;

2. Variables have a symbolic name (identifier), e.g., amount,
which is associated with a memory location.

– Name can be any sequence of letters, digits, $ or _

– Name cannot begin with a digit.

– Name cannot be a Java keyword.

– Choose to be descriptive.

71

141

Variables

3 Components

• Consider

int amount = 78;

3. Variables have a value, e.g., 78.

– This is a value given by you via the program.

– The value is allowed to change (i.e., vary).

– The value is what is stored in the memory location
associated with the name.

142

Variables

Declaring a variable

• We abstract

int amount;

to

typeName variableName;

which is the general Java syntax for variable
declaration.

• The declaration

– Reserves storage space for the variable

– Associates the (variable) name

– Specifies what type of values can be stored there.

1

2
amount

72

143

Variables

Assigning a value to a variable
• We abstract

amount = 78;
to

variableName = value;
which is the general Java syntax for an assignment
statement.

• The assignment statement
– Places value in the appropriate memory location.
– LHS must be a variable name.
– RHS must be a constant, variable or expression.
– LHS and RHS must be compatible.

1

2amount
78

144

Variables

Assigning a value to a variable
• We abstract

amount = 78;
to

variableName = value;
which is the general Java syntax for an assignment
statement.

• The assignment statement
– Places value in the appropriate memory location.
– LHS must be a variable name.
– RHS must be a constant, variable or expression.
– LHS and RHS must be compatible.

73

145

Variables

Assigning a value to a variable
• We abstract

amount = yestedayAmount;
to

variableName = value;
which is the general Java syntax for an assignment
statement.

• The assignment statement
– Places value in the appropriate memory location.
– LHS must be a variable name.
– RHS must be a constant, variable or expression.
– LHS and RHS must be compatible.

146

Variables

Assigning a value to a variable
• We abstract

amount = 78 + yesterdayAmount;
to

variableName = value;
which is the general Java syntax for an assignment
statement.

• The assignment statement
– Places value in the appropriate memory location.
– LHS must be a variable name.
– RHS must be a constant, variable or expression.
– LHS and RHS must be compatible.

74

147

Variables

Assigning a value to a variable
• We abstract

amount = 78 + yesterdayAmount;
to

variableName = value;
which is the general Java syntax for an assignment
statement.

• The assignment statement
– Places value in the appropriate memory location.
– LHS must be a variable name.
– RHS must be a constant, variable or expression.
– LHS and RHS must be compatible.

148

Variables

Assigning a value to a variable

• We abstract

amount = 78 + yesterdayAmount;

to

variableName = value;

which is the general Java syntax for an assignment
statement.

Remark

• Here = does not denote equality.

75

149

Variables

Initialization

• A variable must be given a value before we use it.

• Giving a variable its first value is called initialization.

• It is possible to combine declaration with initialization.

• We abstract

int amount = 78;

to

typeName variableName = value;

150

Variables

Why use variables (again)
• Variables allow us to model malleable data.
• They allow us to abstract away from machine

representation.
• They are keys to

– Understandable software.
– Maintainable software.

76

151

Constants

What
• Constants are entities in a program that have value that

does not change.
final int DAYS_IN_A_YEAR = 365;
final double EARTH_ESCAPE_VELOCITY = 11.2; // km/sec

• Similar to variable declaration/initialization with addition of
keyword final.

Why
• Allows us to avoid magic numbers in our programs.

– Numbers that appear without explanation.
• Improves program

– readability
– maintainability.

152

Arithmetic expressions

Basic operators work on the number types much as
expected

final double SCALE_F2C = 5.0 / 9.0;

final double OFFSET_F2C = 32.0;

double degF = 100.0;

double degC = SCALE_F2C * (degF – OFFSET_F2C);

Remarks

• Use * for multiplication

• Use % for remainder

remains = 13 % 5; // remains equals 3

77

153

Arithmetic expressions

Basic operators work on the number types much as
expected
final double SCALE_F2C = 5.0 / 9.0,
final int OFFSET_F2C = 32.0;
double degF = 100.0;
double degC = SCALE_F2C * (degF – OFFSET_F2C);

Remarks
• The division operator performs integer division

(discarding the remainder) when both its arguments
are integer types; otherwise it does real division
– 13 / 5 evaluates to 2
– 13.0 / 5.0, 13.0 / 5, 13 / 5.0 all evaluate to 2.6

154

Arithmetic expressions

Basic operators work on the number types much as
expected
final double SCALE_F2C = 5.0 / 9.0,
final int OFFSET_F2C = 32.0;
double degF = 100.0;
double degC = SCALE_F2C * (degF – OFFSET_F2C);

Remarks
• Arithmetic operations with floating point number types

are rarely exact
– (1.0 / 3.0) + (2.0 / 3.0) will evaluate to a value

(slightly) less than 1.0
– Recall discussion on floating point representation

78

155

Arithmetic expressions

Precedence

operator precedence

unary - high

* / % medium

+ binary - low

• Within a precedence group evaluation is left to right.

• Parentheses () force what they enclose to be
evaluated first.

int example = 14 – 8 / 2 + 1; // 11

int example = (14 – 8) / (2 + 1) ; // 2

• See textbook Appendix B for extended precedence
table.

156

Arithmetic expressions

Other operators

• Java also provides

int demo = 2; // demo equals 2

demo++; // demo equals 3

demo--; // demo equals 2

demo += 23; // demo equals 25

etc.

• Further, in the Math class we find lots of goodies,
e.g., Math.sqrt(x), Math.sin(x), …

79

157

Arithmetic expressions

More generally
• Here we have concentrated on arithmetic

expressions.
• However, we think of an expression as anything that

can be evaluated to yield a value.

158

Type promotion and casting
Promotion
• A value can only be assigned to a variable if they are of the

same type.
• An operator or method can only be applied to the type of

data on which it is defined.
• Java will automatically promote a value from a smaller to a

larger numeric type
double eg = 2.5 + 3; // 3 promoted to double, eg value is 5.5

• Similarly, if you call a method that takes a double argument
type with an int argument, then the argument will be
promoted to a double.
int x = 3;
double y = Math.sin(x); // x promoted to double

80

159

Type promotion and casting

Automatic promotion rules

• To int in any non-long integer mix

• To long if there’s a long in an integer mix

• To float if there’s a float in a non-double mix

• To double if there’s a double in any mix

160

Type promotion and casting

Casting

• A value of a larger type is never automatically
converted to a value of a smaller type.

– Risk of information loss.

• To avoid a mismatch error, we must use a type cast.

double x = 3.5;

int n = (int) x; // cast the double x as an int

• The value 3.5 is truncated to 3; the fractional part is
discarded.

• The general (Java) syntax for a type cast is

variableOfTypeName = (typeName) expression;

81

161

Type promotion and casting

Rounding

• Often it is desirable to round up prior to casting to an
integer type

double x = 3.5;

int n = (int) (x + 0.5); // n = 4

int n = (int) Math.round(x); // n =4

162

Type promotion and casting

Precedence

• A cast works on the variable immediately to its right,

• i.e., similar to the prefix unary operator –.

82

163

Type promotion and casting

Remarks
• Java is strict about type agreement.
• It supports promotion and explicit casting, the second

for when there is risk of loosing information.
• Some other languages are strict about type

agreement, but do not support promotion and casting
(bondage and discipline languages).

• Some languages do not type check (shoot yourself in
the foot languages).

164

Type promotion and casting

Remarks
• Java is strict about type agreement.
• It supports promotion and explicit casting, the second

for when there is risk of loosing information.
• Some other languages are strict about type

agreement, but do not support promotion and casting
(bondage and discipline languages).

• Some languages do not type check (shoot yourself in
the foot languages).

• 1020 students should make up many computer-
based examples for themselves to ensure
understanding of promotion and casting in Java.

83

Type promotion and casting

Review by way of examples

byte myByte, yourByte;

myShort, yourShort;

int yourInt;

yourByte = myByte; // error

myByte = 200; // error

myByte = 100; // okay

myShort = 200; // okay

yourByte = myByte + 1; // error

myShort = myByte + 1; // error

yourInt = myByte +1; // okay

yourByte = (byte) myByte + 1; // error

yourByte = (byte) (myByte + 1); // okay

165

Type promotion and casting

Review by way of examples

byte myByte, yourByte;

myShort, yourShort;

int yourInt;

yourByte = myByte; // error

myByte = 200; // error

myByte = 100; // okay

myShort = 200; // okay

yourShort = myByte + myShort; // error

yourByte = 50; // okay

yourShort = myByte + yourByte; // error

yourShort = (short) (myByte + yourByte); // okay

166

84

Type promotion and casting

Review by way of examples

int score1 = 5; score2 = 6; score3 = 3;

double average = (score1 + score2 + score3) / 3;

println(average); // prints 4.0

average = (score1 + score2 + score3) / 3.0;

println(average); // prints 4.66 … 7

167

Type promotion and casting

Review by way of examples

double total;

int dollars = 2; // okay

total = “a lot”; // error

total = dollars; // okay

dollars = total; // error

dollars = (int) total; // okay

total = 13.75; // okay

int pennies = (int) (total * 100); // 1375

int pennies = (int) total * 100; // 1300

168

85

Type promotion and casting

Review by way of examples
float myFloat, yourFloat;

myFloat = 0.1; // error

myFloat = (float) 0.1; // okay

yourFloat = myFloat; // okay

yourFloat = myFloat + 0.1; // error

yourFloat = (float) myFloat + 0.1; // error

yourFloat = (float) (myFloat + 0.1); // okay

169

Type promotion and casting

Review by way of examples

•It is critical that 1020 students generate additional
examples for self evaluation.

1. Make “theoretical predictions” based on
applicable rules.

2. Validate via computational “experiments”.

•Repeat steps 1 and 2 until all examples are
understood.

170

86

171

Summary

• Abstraction

• Hardware abstraction

• Software abstraction

• Data abstraction

