
1

1

CSE 1020: Review

Topics: Highlights of entire course

To do: Review entire text, all lecture
notes and labs

2

Course summary

• Abstraction
• Delegation, application development and SE
• Using classes and APIs
• Object abstraction and usage
• Control structures
• Strings
• Software development
• Aggregation
• Inheritance & polymorphism
• Collections
• Exception handling
• Multiclass applications

2

3

Abstraction

What is abstraction
• An abstraction is a set of data and/or operations that

is provided to some users.
• How the data/operations are implemented is hidden

from the users.
• This process is referred to as information hiding or

encapsulation.
• All the user knows is

– How to invoke operations (names, parameters,
etc.)

– What the results and effects are

4

Abstraction

We need two fundamental kinds of abstraction

1. Abstractions that capture operations performed on
data (procedures).

2. Abstractions that capture the values of items of
interest (data).

3

5

Our hardware abstraction

Input OutputSystem

CPU

Memory

0

1

2

Storage management requires tracking
memory and contents; names and values.

6

Software abstraction

Comprised of
• Programs written in a computer language
• Associated documentation

Goal: Must be readily comprehended by
• Human good style
• Machine (via compiler/interpreter) unambiguous

Provides the

bridge across

this gap.

4

7

Data representation

Numbers
• integers
• reals
Characters
• letters
• digits
• symbols
Booleans
• true
• false

Data
representation
function

Data = Everything
we ever want to
represent on a
computer.

0
1
2

Remarks
• In Java, the data we manipulate is

represented as either a primitive
type or an object.

• On the LHS are highlighted some
of the particular kinds of primitive
data in which we are interested.

The Java primitive types

8

5

9

Variables

What
• Variables are entities in a program that have a value

which is allowed to change during the course of the
program.

int amount, numQuarters;
amount = 78;
numQuarters = amount / 25;
amount = amount – numQuarters * 25;

Why
• Variables provide a way to model items with values

that vary during the time we interested in them.
• They allow us to abstract away from details of

machine representation.

10

Type promotion and casting

6

Syntactic components of a Java program

11

Program execution

12

7

13

Delegation

What
• Delegation is an abstraction

strategy that allows us to deal with
the complexity inherent in large
systems.

• We delegate parts of the task to
other mechanisms.

• We consider two ways to delegate:

1. Delegation to a static method

2. Delegation to an object

14

Delegation
Delegation to a static method
• Consider the following code for obtaining Body Mass Index (BMI).

double weight = 165.0;

String height = “6’1”;

double bmi = ToolBox.getBMI(weight, height);

• We maintain our own our own storage, but …

• … delegate the computation to a class.

What do we mean by “static method”?
• A method performs an action.

– Its name (typically) is a verb (getBMI) or a predicate (isEnabled).

• Methods belong to classes.

• The invocation syntax is class_name.method(…).

– With the method’s parameters (if any) substituted for “…”.

• Methods terminate with a return, which might be void.

• The keyword static notes that the method neither inspects nor
modifies class copies. (Look back to Unit 1!)

8

15

Delegation
Delegation to an object
• Consider the following code for dealing with rectangles.

Rectangle r = new Rectangle(3, 4);

Rectangle s = new Rectangle(2, 5);

System.out.println(r.getArea());

• Now, we delegate both storage and computation.

What is an object?
• An object is a software entity that can both store data and perform

computation.

• We create an instance (a.k.a. object) of a class using new and the
class name.

• The instance has a name, e.g., r, known as the object reference.

• Methods are invoked on the instance (not on the class).

• Each object can store different values in its attributes; these values
are known as the state of the object.

• A class has attributes and methods; additionally, an object has state
and reference.

16

Using classes
Static classes
• The simplest kind of class is a static class or a module.
• For example, Math is a static class.

Non-static classes
• There also is another kind of class where the user can

create customized versions, called instances,
according to a predefined template.

• The instances are called objects.
• Such classes have non-static methods and fields.

Terminology
• A class is static if it does not allows us to define our

own copies.
• A class is non-static if it does allow us to define our

own copies.

9

17

Using classes

Non-static classes can have Static classes can have

constructors

instance (non-static) methods

instance (non-static) attributes

static methods static methods

static attributes static attributes

18

APIs

What is an API
• The term API stands for Application Programming

Interface
• Documents how another program can access a given

class.
• Hides implementation detail.

Why we care: Guide to ready made software modules
• As an applications programmer, we use the API of a

class for two main reasons
1.By perusing the API of a class we can determine if it

provides useful functionality for the task that we are
addressing.

2. If we discover useful functionality, then the API tells
us how to access it.

10

19

APIs

API anatomy: Overall layout

20

APIs

API anatomy: Fields

Field Summary

static double PI
The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

11

21

APIs

API anatomy: Fields

Field Detail

PI
public static final double PI

The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

See Also: Constant Field Values

22

APIs

API anatomy: Methods

Method Summary

static double abs(double a)
Returns the absolute value of a double value.

12

23

APIs

API anatomy: Methods
Method Detail
abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the
argument is returned. If the argument is negative, the negation of the argument is
returned. Special cases:

- If the argument is positive zero or negative zero, the result is positive zero.
- If the argument is infinite, the result is positive infinity.
- If the argument is NaN, the result is NaN.

Parameters:
a - the argument whose absolute value is to be determined

Returns:
the absolute value of the argument.

API anatomy: Methods

24

APIs
API anatomy: Constructors
Constructor Summary

Stock()
Construct a default Stock.

Stock(Stock stock)
Construct a copy of the passed Stock.

Stock(java.lang.String symbol)
Construct a Stock having the (capitalized) passed symbol.

13

25

APIs

API anatomy: Constructors
Constructor Detail

Stock

public Stock(java.lang.String symbol)

Construct a Stock having the (capitalized) passed symbol. The
stock attributes are set as per the refresh() method.
Parameters:

symbol - the (ticker) symbol of the stock to construct.

Stock

public Stock(Stock stock)

Construct a copy of the passed stock.
Parameters: stock – the Stock to copy.
Throws: java.lang.RuntimeException –if Stock is null.

26

Class usage

import type.lib.*;
int y;
y = -12;
Stock s;
s = new Stock(“RY”);
Stock t = s;
assert s == t; // assert okay
t = null;
assert s == t; // assert fails
t = new Stock(“RY”);
assert s == t; // assert fails

Object vs. object reference

800

900

32

40

Stock Class

900 Stock Object

-12

100

200

800

s

Symbol = BMO
Name = Montreal
Price = $39.29

Stock Object

t

y

14

27

Abstraction: Objects, classes & methods

What we now understand

• Object oriented programming supports modular
software development and high reuse.

• Classes provide data abstraction and modular
design.

• Objects are instances of classes.

• Methods provide procedural abstraction.

28

Control structures

We have now seen three types of control structure

Sequence: straight
line code

Selection: if;
switch

Iteration: for;
while; do

15

29

Character strings
What

• A character string is a sequence of 0 or more
characters.

– Recall that in Java characters are of primitive type
char.

• In Java, strings are objects that are instances of the
class String.

– They are not a primitive type, e.g., like int, char, …

– However, because strings are so common, Java
allows us to initialize them like primitive types

String greeting = “Good day!”;

– Alternatively you could just as well write

String greeting = new String(“Good day!”);

– Strings are immutable in Java.

30

Regular expressions
A formalism
• Regular expressions (sometimes called regexes) are

a formalism that allow us to describe a language as
strings over an alphabet in an unambiguous way.

• Example: Valid times “[1-6] [ap]m”
– The alphabet is {1, 2, 3, 4, 5, 6, a, m, p, ‘ ‘}.
– Stings in the language are {1 am, 1 pm, 2 am, 2

pm, 3 am, 3 pm, …, 6 pm}.
– The square brackets, e.g., [ap] state that anything

enclosed (but nothing else) is allowable at the
corresponding position.

– The 1-6 states that any digit from 1 through 6 (but
nothing else) is allowable at the corresponding
position.

– The ‘ ’ and ‘m’ state that only those characters are
allowable at the corresponding positions.

16

Software engineering and development

• Waterfall vs. iterative model

• Testing

– Black box vs. white box

– Test harness

• Unified Modeling Language (UML)

– A formal visual language for depicting classes and
their interrelationships.

31

Edit/compile/run & errors

32

17

33

Aggregation

What

• A typical software system uses several classes,
including the app.

• It is useful to depict the interrelationships that hold.

• Aggregation (has-a): Class C aggregates class T if C
has T as an attribute.

• We call C the aggregate class.

• We call T the component or aggregated class.

C T

34

Aggregation
Multiplicity

• In addition to the aggregate and aggregated classes,
aggregation is characterized via multiplicity.

• Multiplicity is the number of attributes in the
aggregate class that are of the aggregated type.

CreditCard Date
2

Portfolio Investment
*

Investment Stock
1

18

35

Aggregation

Composition

• An aggregation between an aggregate class C and
an aggregated class T is called a composition if
creating an instance of C automatically leads to
creating one or more instances of T.

• Remark: We fill the diamond to indicate that an
aggregate is a composition.

CreditCard Date
2

36

Aggregation

Collection

• An aggregation between an aggregate class C and
an aggregated class T is called a collection if, rather
than forcing all components to be created with the
aggregate, an app is allowed to create/add
components at any time.

Portfolio Investment
*

19

Collections

37

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

Sequence Set Pairs

Duplicates are OK
and the positional
order is significant

A pair is (key,value)
where key is unique

Duplicates are not
allowed and order is

insignificant

The interfaces

Collections

38

add(element)
remove(element)
iterator()
...

Set

add(key, value)
remove(key)
get(key)
keySet(): Set
...

Map

add(element)
remove(element)
get(index)
iterator()
...

List

ArrayList

LinkedList

HashSet

TreeSet

HashMap

TreeMap

The implementing classes

Remark: The two classes that implement each interface are
equivalent in the clients view. The only visible difference is
performance (run time).

20

39

Collections

Generics
• Client-based strong typing
• Supported by the collections framework

40

Inheritance

Definition and terminology

• The API of a class C may
indicate that it extends
some other class P

• Every feature of P is in C

• C inherits from P.

• Child-Parent, Subclass-
Superclass

• Inheritance = is-a =
Specialization

• Inheritance establishes a
chain or hierarchy

21

41

Early vs. late binding
Reference resolution
• Let r be a reference to an object o.
• Let f be a feature, i.e., a method or attribute.
• Problem: Given r.f, what is the target class used to realize the

desired computation?
• Solution (in two phases):

– Early binding solution (realized at compile time by compiler):

target class = class of r
regardless of the class of the actual object.

– Late binding solution (realized at run-time by the virtual
machine):

if (f is not an overriding instance method)
late binding target class = early binding target class

else
late binding target class = class of o

The executed computation is in terms of the late binding result.

42

Two inheritance principles

Substitutability

• When a superclass is expected a subclass is
accepted.

Polymorphism

• The meaning of our code changes during program
execution (late binding) based on the actual object
type.

22

43

Exceptions

Throwable
• Errors
• Exceptions

– Checked
– Unchecked

Syntactic construction in Java
• try { … } catch(Throwable x) { … }

44

Multiclass applications

The real deal

• Most of the single apps that we have studied and/or
developed has made use of only a small number of
classes.

• In real world software engineering, it is common to
make use of tens or even hundreds of classes in a
single app.

• We took a small step in this direction to illustrate
matters of concern.

23

45

What’s next
CSE 1030
• Introduction to Computer Science II

– Simple data structures
– Write your own classes

CSE 2011
• Introduction to Data Structures
CSE 3101
• Design and Analysis of Algorithms
CSE 3111
• Software Design

Many other things as well.
But, before any of that ….
… the 1020 Final Exam.

46

What’s next
CSE 1030
• Introduction to Computer Science II

– Simple data structures
– Write your own classes

CSE 2011
• Introduction to Data Structures
CSE 3101
• Design and Analysis of Algorithms
CSE 3111
• Software Design

Many other things as well.
But, before any of that ….
… the 1020 Final Exam.

24

47

Final Exam

A few details
• 90 minutes in duration.
• Cumulative coverage of course material.
• Closed everything.
• Bring ID and writing instrument.
• Check on-line for official time and place.

