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Improved Modelling of Tool Tracking Errors by
Modelling Dependent Marker Errors
Stephen Thompson, Graeme Penney, Prokar Dasgupta, and David Hawkes

Abstract—Accurate understanding of equipment tracking error is essential for decision making in image guided surgery. For tools
tracked using markers attached to a rigid body, existing error estimation methods use the assumption that the individual marker errors
are independent random variables. This assumption is not valid for all tracking systems. This paper presents a method to estimate
a more accurate tracking error function, consisting of a systematic and random component. The proposed method does not require
detailed knowledge of the tracking system physics. Results from a pointer calibration are used to demonstrate that the proposed method
provides a better match to observed results than the existing state of the art. A simulation of the pointer calibration process is then used
to show that existing methods can underestimate the pointer calibration error by a factor of two. A further simulation of laparoscopic
camera tracking is used to show that existing methods can not model important variations in system performance due to the angular
arrangement of the tracking markers. Arranging the markers such that the systematic errors are nearly identical for all markers, the
rotational component of the tracking error can be reduced, resulting in a significant reduction in target tracking errors.

Index Terms—Point Based Tracking, FLE, TRE.

✦

1 INTRODUCTION

THE accurate tracking of localiser probes, surgi-
cal tools, and cameras is essential for most im-

age guided surgery. Currently available image guided
surgery systems, for example the StealthStation Surgi-
cal Navigation System (Medtronic, Inc., Minneapolis,
MN) and the VectorVision System (BrainLAB AG, Feld-
kirchen, Germany) rely on optical tracking cameras to
track tools using an array of tracked markers. These
have the advantage that the markers themselves can
be very accurately tracked (typically to within 0.2 mm
for active markers). Optical tracking systems have the
disadvantage that the tracking markers cannot usually
be placed at the tip of the instrument. The position of
the tip of the instrument is determined by a rigid body
registration using prior knowledge (determined using a
calibration process) of the tracking geometry. As long as
the distance from the tracking markers to the instrument
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tip remains relatively short, for example in neurosurgery
or open surgery, optical tracking works well, usually
with errors at the tool tip under a millimetre.
During abdominal laparoscopic surgery the surgeon

has less tactile feedback and a limited field of view.
Therefore image guidance has the potential to bring
great benefits to laparoscopic surgery, possibly opening
up surgical routes not hitherto available to the surgeon.
However, if as is the case for laparoscopic surgery, the
tools or indeed the laparoscope are long, the errors at
the tool or laparoscope tip can be vary large.
The inability to track either the tools or the laparo-

scope with sufficient accuracy is one of the problems that
has to date prevented the development of image guid-
ance systems for laparoscopic surgery. Historically three
approaches have been used for tracking laparoscopic
tools. Kinematic tracking of the laparoscopic tool chain,
for example in the daVinci robot [1], has so far proven
insufficiently accurate due to the build up of errors along
the kinematic chain. Electromagnetic tracking systems
should in theory allow the tip of the laparoscope to be
tracked directly, avoiding the problems associated with
the long laparoscopic tool. To date however they have
not been shown to work in a laparoscopic application,
probably due to the practicalities of getting the base
unit near enough to the laparoscopic tip and free from
interference. If infra red emitting diodes (IRED)s can be
localised to within 0.2 mm and placed in a well spread
pattern on the exposed end of the laparoscope then it
should be possible, in theory and assuming that the
individual errors are independent, [2], to achieve sub
millimetre accuracy at the tool tip for some practical
applications. Such accuracy however has not to date
been achieved in any practical laparoscopic application.
This paper aims to show that the reason for this is not
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that the reported IRED localisation error of 0.2 mm is
overly optimistic, but rather that in certain cases the
individual IRED errors are not independent.
This paper puts forward a simple empirical method

to determine the marker localisation error function for
a widely used optical tracking system (Optotrak Certus,
Northern Digital, Ontario Canada). The method avoids
making assumptions about the marker localisation error
nor is any knowledge of the physics of the camera sys-
tem required. Therefore the method should be directly
applicable to other similar tracking systems. With the
IRED localisation error functions known it is possible
to model the tracking of a laparoscope to enable devel-
opment of systems with improved accuracy. Using the
empirically derived error function this paper shows that
when designing a tracking collar for a laparoscope, the
angular orientation of the IREDs is of critical importance.
Specifically, and somewhat counter intuitively, a collar
where all the IREDs share the same orientation will
be significantly more accurate than a collar with IREDs
arranged at varying angles.
The remainder of this paper is structured as follows.

Section 2 further explains the motivation of the paper
and Section 3 introduces and reviews the existing state of
the art for estimating the tracking error. In Section 4 the
data used in the paper are described. Section 5 defines
the terms used in the paper and gives an overview of
the point based registration methods used for rigid body
tracking.
The data and methods used in this paper are based on

the problem of pointer calibration. This application was
chosen for two reasons. Firstly the calibration and use
of pointers is common for most image guided interven-
tions. Secondly, it is likely that marker localisation errors
have a dominant impact on the observable calibration
errors. In contrast validation using laparoscopic camera
tracking data is more difficult due to potential errors
in the camera calibration and video processing masking
errors due to IRED localisation. However the methods
and conclusions of this paper are applicable to the
tracking of any tool, laparoscope, or ultrasound probe,
using similar tracking systems.
The methods used for estimating the IRED localisation

error functions are then introduced together with meth-
ods for validation. A results section follows in which the
estimated IRED localisation error functions are presented
and validated. Section 8 uses the derived error functions
to model both the pointer calibration and laparoscope
tracking processes. In both cases the results are of
great practical importance for image guided laparoscopic
surgery. The paper is concluded with a discussion of the
various results.

2 BACKGROUND AND MOTIVATION

This paper is motivated by the desire to bring im-
age guidance to laparoscopic surgery. Image guidance
should help mitigate the effects of the loss of tactile feed-
back and the limited field of view during laparoscopic

Fig. 1. A pointer (Northern Digital, Ontario Canada) used
for point localisation during image guided surgery. The
position of the pointer tip is estimated from the measured
positions of the 6 markers (IREDs), under the assumption
that the pointer forms a rigid body.

surgery. Furthermore as the surgical scene is viewed
through a video screen, laparoscopic surgery lends its
self to image guidance and augmented reality as images
can be directly overlaid on to the existing video display.
In spite of this, image guidance for laparoscopic surgery
is not yet a reality.
One barrier to the implementation of image guided

laparoscopic surgery is the requirement to track the
laparoscopic camera and tools accurately. During open
surgery or neurosurgery where the tools are relatively
short this has been successfully achieved using optical
tracking systems.
Figure 1 shows a typical pointer tool for image guided

surgery. The tip of the pointer can be used to localise a
set of fiducial markers or to localise a point of surgical
interest.
The error at the tool tip will be determined by the

accuracy with which each of the 6 markers are tracked
(the marker localisation error) and the geometry of the
markers relative to the pointer tip. Under the assumption
that the marker localisation error is independent, homo-
geneous, and isotropic, the error at the tool tip can be
estimated using the formula put forward by Fitzpatrick
et al. [2].

〈TRE2〉

〈FLE2〉
≈

1

N

(

1 +
1

3

3
∑

k=1

d2k
f2
k

)

(1)

The terms in equation 1 are defined as follows.

• TRE is the Target Registration Error. In the case of
a tracked pointer it refers to the error in locating
the pointer tip using the measured positions of the
6 IREDs.

• FLE is the Fiducial Localisation Error. In the case
of the tracked pointer it can refer to the error in
measuring the position of each IRED. It is important
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to point out that the error models developed in this
paper are specific to the application of IRED localisa-
tion, and may not be applicable to the more general
case of fiducial localisation. Nonetheless, to main-
tain continuity with the literature the term fiducial
localisation error (FLE) will be used throughout this
paper.

• N refers to the number of fiducial markers, for
example in the case of the tracked pointer shown
in figure 1 N = 6

• k is the direction of the measurement (x, y, z).
• d2 and f2 are the second moments of inertia (about

the centroid of the fiducial points) of the target point
and the fiducial points respectively.

Based on equation 1, for an Optotrak Certus system
with a marker localisation error of 0.20 mm RMS (based
on [3], [4]) the error (TRE) at the tip of the standard
pointer (Figure 1) will be 0.25 mm which is negligibly
small for the application. Indeed, even if equation 1 was
wrong by a factor of 2 (due to a violation of the assumed
distribution of FLE) the additional target registration
error (TRE) of 0.25 mm would be of little practical
interest.
The tracking geometry for laparoscopic procedures is

significantly more challenging. For the pointer shown in
Figure 1 the distance from the centroid of the IREDs to
the target (pointer tip) is approximately 130 mm. For a
laparoscopic camera the distance from the IRED centroid
to the target can be as much as 600 mm. This additional
length amplifies the TRE along with any errors in the
estimation of TRE. For laparoscopic applications accurate
modelling of FLE, and hence the TRE, becomes of great
practical importance.
There is a significant body of work, which is discussed

in the next section, extending the work of [2] to non
isotropic errors and more arbitrary error distributions.
However none of the approaches address the issue that
the IRED localisation errors are not independent. It is
well known, see [3] and [5], that the localisation error
for an individual IRED depends on the IRED’s position
and pose. In the case of an object tracked with a set of
IREDs mounted to a single rigid body the individual
IRED errors therefore cannot be independent. Later in
this paper, see Figure 16, we present an example where
using the erroneous assumption of independent FLE
can overestimate the tracking error for a laparoscope by
around 2 mm, large enough to be clinically significant.
In another application, pointer calibration, see Figure
13, the use of an independent marker error model can
underestimate the calibration error by a factor of 2.
This paper presents a simple method for estimating

the dependent, arbitrarily distributed IRED localisation
errors for a given tracking system. Accurate modelling
of the IRED tracking error enables accurate modelling
of the target (pointer tip or laparoscope lens) tracking
error. Furthermore it will enable improved tracker ar-
rangements to be designed, the accurate testing of im-
proved point registration algorithms [6], compensation

for systematic tracking errors, and the use of probabilis-
tic motion filters to improve the tracking accuracy.

3 STATE OF THE ART

Estimation of the target tracking accuracy of a system
can be done in one of two complementary ways. The first
is to measure the system accuracy directly. The second is
to determine the component errors and then derive the
system accuracy from the component errors.

3.1 Direct Measurement

The most straightforward way to asses the accuracy of
a tracking system is to perform a direct experimental
evaluation. A good example for the case of camera
tracking is given by [7]. In this case a grid of known
geometry is imaged with the complete system and the
overlay error measured directly. A similar procedure
could be applied to a tracked pointer if the position
of a set of divots were measured independently with
a sufficiently accurate measurement system.
Experimental measurement of the system errors has

several drawbacks. Firstly there is no standard way of
performing the measurement. Therefore it is extremely
difficult to compare results across the literature. Sec-
ondly, the measured errors will have several sources,
that cannot be easily separated. For example small errors
and eccentricity in the manufacture of the divots would
add to the measured errors. An experimentally measured
error is therefore the sum of the pointer tip tracking
error and any experimental errors. Separating these error
sources is not usually possible. Lastly, it is difficult to
make the experimental measurement representative of
the conditions during surgery.

3.2 System Error from Component Error

An alternative approach is to derive the system error
from the component errors. This has been done nu-
merically by [8] and [9]. Numerical simulation is also
used by [2] and [10] to validate their analytical deriva-
tions. Numerical modelling has the benefit that it is
straightforward to model tracking systems of arbitrary
geometry, arbitrary error sources, and arbitrary models
of the error sources. This modelling enables potential
tracking systems to be evaluated and compared easily,
see [5].
Analytical models have the advantage that they allow

rapid determination of the target tracking error, however
they are at present limited to certain classes of compo-
nent errors. Fitzpatrick et al. [2] provides the earliest
and most widely used model of target localisation error,
based on an assumption of independent, homogeneous
and isotropic marker localisation noise. Wiles et al. [10]
extended this work for independent, homogeneous, but
anisotropic noise. Mohghari and Abolmaesumi [11] in-
troduced analytical methods to account for inhomoge-
neous noise, and [12] give a general first order solution
for TRE for anisotropic and inhomogeneous FLE.
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These methods all depend on an assumption of inde-
pendent marker errors. For the Optotrak Certus, how-
ever, it is known that the FLE will depend on the posi-
tion, pose, and velocity of the IRED, [3]. For instrument
tracking where several IREDs are attached to a single
rigid body these parameters will not be independent,
hence the FLE will not be independent. Despite this, es-
timating the accuracy of surgical systems or tools based
on these assumptions is commonplace in the literature
and in many cases the results are satisfactory. See [13],
[5], and [14] for examples.

3.3 Determination of the IRED Localisation Error

Wiles et al. [3] and Barnes et al. [15] both demonstrate
methods to measure the IRED localisation error relying
on a second measurement system (a coordinate measur-
ing machine) that has a higher accuracy than the optical
tracking system. This has two disadvantages. Firstly,
such a secondary measurement system is not typically
available to the user of the tracking system. Therefore the
user is usually reliant on the results of a characterisation
performed by the tracking system manufacturer. In the
case of the Optotrak Certus the accuracy is reported as
0.2 mm root mean square (RMS) across the ”Charac-
terised Region“. 1 Secondly, it is difficult to perform such
measurements over the full range of conditions that may
occur in use. For example, the measurements performed
by [15] are necessarily limited to a very small region
of interest and do not take into account any changes in
the orientation of the IRED. Nonetheless they do make
the important point that the accuracy of the system is
inversely related to the speed of the tracked object.
Bauer et al. [16] present an analytical method for

estimating the tracking error for a marker being tracked
by multiple cameras. Their approach, however, requires
a level of knowledge of the camera system optics that
would be beyond the level of a typical user of a com-
mercial tracking system.

3.3.1 Fiducial Localisation Error from Fiducial Registra-
tion Error
An alternative approach is to estimate the marker locali-
sation error using the fiducial registration error (FRE).
The FRE is defined in [17] as the difference between
the position of a fiducial estimated by a rigid body
registration and the measured position of the fiducial,
denoted here as xrb and xm respectively. Equation 2
defines the FRE for a given fiducial.

FRE = xrb − xm (2)

For the case of isotropic, independent, and homogeneous
FLE, [2] derived equation 3, where N refers to the
number of fiducial markers.

〈FRE2〉 = (1−
2

N
)〈FLE2〉 (3)

1. The tracking cameras are designed to operate to the specified
accuracy with a certain volume. If the tracked objects leave this volume
they may still be tracked, but with significantly higher errors.

Equation 3 can be rearranged to estimate FLE given the
measurable FRE.
An extension to equation 3 to the case of independent,

anisotropic and inhomogeneous FLE was derived by
[17]. In this case the covariance matrix of the FLE at each
fiducial marker is estimated using the covariance of the
FRE at the marker and a geometry dependent matrix.
The form of the matrix is quite complex so will not be
repeated here, equation 4 gives a general representation
of the equation, where ΣFLEa

and ΣFREa
represent the

covariances of the FLE and the FRE at marker a. The
matrix A is a function of the geometry of the rigid body
to which the fiducial is attached. See [17] for full details.

ΣFLEa
= A−1ΣFREa

(4)

Equation 4 provides a useful way to estimate the FLE
based on the FRE, which can be measured easily for
a given application. However, equation 4 depends on
the assumption of independent FLE. There is a danger
when tracking a rigid body on which the FLE is not
independent, if all the markers are subject to the same,
dependent, error then the FRE will not reflect the true
errors. In this case equation 4 will significantly underes-
timate the true FLE.

3.4 Summary of Current Methods

Existing methods to estimate the FLE for a typical optical
tracking system depend on either a high level of knowl-
edge of the tracking system physics, specialist equipment
not typically available to the users of these systems,
or overly simplistic assumptions about the distribution
of FLE. In this paper a simple approach to estimating
the marker localisation error function is presented. The
next section introduces the experimental data used to
quantify the system accuracy in this paper.

4 DATA

Two sets of rigid body tracking data are used in this
study. A standard pointer (Figure 1) consisting of 6
IREDs with a 3mm diameter ball attached to the tip was
tracked whilst the pointer was pivoted in a stationary
divot. The rigid body was swept through an angle of ap-
proximately 120 degrees in two directions. An Optotrak
Certus camera system, see Figure 2, was used to record
the position of each of the 6 IREDs. Each frame of data
consists of the measured position of each of the 6 IREDs
in the Optotrak’s coordinate system, defined in Figure 2.
5838 frames were captured. Table 1 lists the range of the
relevant IRED parameters. The speed was measured in
mm per frame and converted to mm per second using a
measured average frame rate of 30 frames per second.
To enable the sampling of errors with a dependence

on IRED orientation a second rigid body was rigidly
attached to the pointer and the process repeated. Figure
4 shows the rigid body attached to the pointer from
Figure 1. The combined rigid body consisted of 22 IREDs
orientated at various angles. 5530 frames were captured.
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Fig. 2. The coordinate system of the Optotrak Certus.
The z axis is aligned with the surface normal of the central
camera.

θ 

X

φ

X

YY
ZZ

Fig. 3. The definition of the IRED surface normal angles
in the coordinate system of the Optotrak Certus. θ is
the angle projected onto the XZ plane. φ is the angle
projected onto the YZ plane.

x
(mm)

y
(mm)

z
(mm)

θ(0) φ(0) s
(mm/s)

Max -166 114 -2081 50 33 1995
Min -318 -145 -2336 -68 -66 0
Mean -235 -12 -2206 -4 -18 42
σ 36 48 46 22 23 38

TABLE 1
The range of parameters for the 5838 tracking

experiments undertaken using the 6 IRED pointer shown
in figure 1 with the camera system shown in figure 2.

Fig. 4. The composite rigid body, consisting of the 6 IRED
pointer with a 20 IRED cross rigidly fixed to it. Four of the
IREDs on the cross were faulty, giving a composite rigid
body with 22 effective IREDs.

x
(mm)

y
(mm)

z
(mm)

θ(0) φ(0) s
(mm/s)

Max -153 115 -2078 65 59 341
Min -300 -146 -2325 -72 -74 0
Mean -216 -21 -2208 -13 -9 61
σ 30 51 44 25 26 39

TABLE 2
The range of parameters for the 5530 tracking

experiments undertaken with the 22 IRED composite
pointer shown in figure 4.

Each frame consists of the measured position of the
22 IREDs. Table 2 lists the range of the relevant IRED
parameters. The speed was measured in mm per frame
and converted to mm per second using a measured
average frame rate of 30 frames per second.

5 METHODS

The common assumption in the literature is that the FLE
can be modelled as an independent random variable
in each principal axis of the tracking camera. Typically
the random variable is normally distributed but this is
not necessarily the case. In this paper the assumption
is made that the FLE can be better modelled as a
sum of a systematic error and a random variable, i.e.
FLEX,Y,Z = fX,Y,Z + N (0, σX,Y,Z). For the Optotrak
Certus it is known that the error is dependent on the
position and angular orientation of a given IRED, [3],
and the speed of motion of the IRED, [15]. The FLE
function can therefore be written as in equation 5

FLEX,Y,Z = fX,Y,Z(θ, φ, x, y, z, s) +N (0, σX,Y,Z) (5)

where x, y, and z define the position of the IRED in the
coordinate space of the camera system. θ and φ define
the pose of the IRED, based on the angle between the
IRED’s surface normal, see figure 5, and the ZY and
ZX planes respectively, see Figure 3. s is the speed
of motion, defined as the magnitude of the distance
between the current position of the IRED and its last
measured position, divided by the elapsed time between
the position measurements.
The random variable term N (0, σX,Y,Z) accounts for

the “jitter”, which is the noise in the measurement for
a static IRED. It is likely that the value of the standard
deviation is also dependent on the position and speed
of the IRED, though, for simplicity, this has not been
modelled.
In this paper the functions fX,Y,Z and standard devi-

ations σX,Y,Z are estimated using the measured position
of the IREDs on the rigid bodies. This will be discussed
in section 5.3. Prior to that it is helpful to define the
point based registration method and pointer calibration
method used.

5.1 Point Based Registration

Throughout this paper rigid body point based registra-
tions are performed using the orthogonal Procrustes for-
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Fig. 5. An example of surface normal vectors on the cross
rigid body

mulation introduced by [18]. The registration transform
is then found using singular value decomposition, see
[19]. Orthogonal Procrustes and singular value decom-
position will give an optimal registration when the FLE
is independent, homogeneous, isotropic, and normally
distributed. As discussed this is known not to be the case
for this application. However, the algorithm is widely
used, robust, and fast. The implications of using it are
discussed further at the end of this paper in Section 9.

5.2 Pointer Calibration

The pointer calibration process used in this paper is as
follows. The pointer tip is placed in a shallow divot
and held in the divot by downward pressure whilst the
pointer is moved through a range of angles. The range
of angles is limited by the ability of the tracking cameras
to detect the IRED positions. In practice it was possible
to achieve rotations about each axes of approximately
60 degrees before IRED visibility was compromised. The
location of the m visible IREDs is recorded for each of
the n frames of data, to give m × n 3D coordinates xi,j

for each IRED i and each frame j.

5.2.1 Defining the Reference Rigid Body

If the assumption underlying this paper (that IRED
errors are dependent on the position and attitude of the
IRED) is correct then the apparent shape of the rigid
body may change as it moves. Therefore when defining a
reference body it is important to use data representative
of the tracking task, in this case a pointer calibration.
The following process was used.
For each rigid body a set of m points (Xref,0) was

defined based on a physical measurement of the rigid
body. This measurement does not need to be particularly
accurate, values within about 5 mm of the true position

will suffice. The rigid body transform between each
frame (Xj) and the reference frame is found using the
method described in Section 5.1. The IREDs in frame j

are then transformed into the coordinates of the reference
frame using the transform thus found. For each IRED
this gives n position estimates in the coordinates of the
reference rigid body. The average of these positions is
used to define a new reference rigid body (Xref,1). The
process is repeated until convergence of the average
IRED positions was achieved, i.e. (Xref,i+1 ≈ Xref,i). In
the cases presented here convergence occurred within 3
to 4 iterations.

5.2.2 Calibrating the Pointer

For each frame of calibration data the transform to the
reference rigid body was found as per Section 5.1. For
the full data set this gives n 3× 3 rotation matrices (Ri)
and n 3 vectors Ti. During the calibration procedure the
tip of the pointer (denoted p in the pointer’s coordinate
system) is constrained to pass through the divot centre
(denoted q in the global coordinate system). This yields
equation 6 for each frame of data.

q ≈ [Ri]p+Ti (6)

Equation 6 can be rearranged and concatenated for all
n frames of data. The least squares solution for p and q

can then be found using equation 7.

{

q

p

}

=









n[I3] −
n
∑

i=1

[Ri]

−
n
∑

i=1

[Ri]
T n[I3]









−1













n
∑

i=1

Ti

−
n
∑

i=1

[Ri]
TTi















(7)

5.2.3 Assessing the Calibration Error

If the position of the pointer tip is known (denoted pgs,
for gold standard), then the calibration error is defined
by 8.

ECal = {p} − {pgs} (8)

In general however pgs is not known. In the case of
the pointer calibration there is no practical method that
could determine the pointer tip position more accurately
than the presented calibration method. In lieu of know-
ing the actual pointer tip position the spread of the
estimated pointer tip positions about an estimated divot
location is often used as a proxy for the calibration
error. Equation 9 defines the pointer tip spread for an
individual frame of data.

PTS = [Ri]p+Ti − q (9)

The RMS value of PTS is often measured, however it is
well known that this value is not a predictor of the actual
calibration error, as will be demonstrated in Section 8.1.
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5.3 Estimating IRED Localisation Error Using Leave
One Out Registration

The FLE functions, equation 5, are estimated by fitting
functions to estimated FLEs. The first stage in this pro-
cess is estimating the individual FLEs. For a given IRED,
if its actual position (xgs) were known, the FLE for a
given measurement of its position (xm) could be found
simply by subtracting the measured position from the
actual position, as per equation 10.

FLE = xm − xgs (10)

In some situations it may be possible to know xgs

accurately enough for this method to be used, for ex-
ample [3] and [15]. However characterising the tracking
system over the full range of positions, angles, and
speeds that may be used in practice would be extremely
time consuming and impractical.
The approach used here is to replace the xgs with

the position of the IRED estimated by performing a
rigid body registration using the other IREDs on the
rigid body. For a rigid body with n IREDs the position
of a given IRED i can be estimated by finding the
transform to the reference rigid body. The i′th IRED on
the reference is then transformed by the inverse of this
transform to give an estimate of the actual position of
the i′th IRED, xrb,loo. The subscript “loo” (leave one out)
being used to differentiate the estimate from xrb used in
equation 2, where the IREDs own measured position is
used in the rigid body registration. The FLE can then be
expressed as in 11.

FLE = xm − xrb,loo +TRE (11)

Two approaches to estimating this error are used in
this paper. Equation 11 is split into its systematic and
random components. To yield equation

FLEsys + FLEran = xm − xrb,loo +TREsys +TREran

(12)

5.4 Estimation of Systematic Errors

Estimation of the systematic errors (FLEsys) relies on
the assumption that the unknown error terms can be
approximated by a zero mean, normally distributed
random variable, so

FLEsys = xm − xrb,loo +TREsys +TREran − FLEran

(13)
becomes

FLEsys = xm − xrb,loo +N (0, σ) (14)

Whilst equation 14 is of limited use for determining
individual values of FLEsys it is ideal for fitting the
systematic error function fi(θ, φ, x, y, z, s) by minimising
the sum of least squares. The positions xm and xrb,loo

were sampled using data from the composite (22 IRED)
rigid body and the systematic error function was fitted
to the sampled data.

Equation 14 relies on the assumption that TREsys

is either small relative to the other error terms or can
be modelled as a zero mean random variable. Provided
sufficient IREDs are visible this assumption should be
valid. Therefore only frames with all 22 active IREDs
were used for the curve fitting. The validity of this
assumption is tested in the validation process, see section
7.1.

5.5 Estimation of Independent Random Error

Given two IREDs m,n on the same rigid body, if θm ≈
θn, φm ≈ φn, xm ≈ xn, ym ≈ ynandsm ≈ sn, it follows
that

fi(θm, φm, xm, ym, zm, sm) ≈ fi(θn, φn, xn, yn, zn, sn)
(15)

If this is true for all IREDs on the rigid body, then
all IREDs will be subject to the same systematic error
FLEsys, and TREsys = FLEsys. In this situation equa-
tion 12 reduces to equation 16.

FLEran = xm − xrb,loo +TREran (16)

FLEran is modelled as an independent random variable,
meeting the assumptions required by [17], allowing the
use of equation 4 to estimate the covariance of FLEran.
As all the IREDs on the standard (6 IRED) pointer

are mounted at the same angle, the requirements for
the validity of equation 16 are met. To estimate FLEran

the tracking data for the standard pointer was used
to generate FRE covariance matrices for each of the 6
IREDs. Equation 4 was then used to estimate covariance
matrices for FLE for each of the 6 IREDs. The average of
these six matrices was used to model the random error
component of equation 5.

6 RESULTS

6.1 Estimation of Error Functions

6.1.1 Estimation of Independent Error

Covariance matrices for the FLE based on the FRE
covariance were calculated as per [17] for the 6 IRED
pointer. Figure 6 shows the standard deviations of the
FLE in the xz and yz planes. A high degree of anisotropy
is present with the standard deviation in the z direction
of 0.11 mm being around 4 times greater than the
standard deviation in either the x or y directions.

6.1.2 Estimation of Bias Function (f )

The method described in Section 5.3 was applied to the
tracking data for the composite rigid body with 22 IREDs
arranged at various angles.
Correlations between the input parameters and the

error were searched for using Pearson correlation coef-
ficients and visual examination of error plots. Figure 7
shows a representative selection of plots for error versus
angle. Figure 7 show dependencies between the error
in the X direction and the angle to the YZ plane (θ),
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Fig. 7. Plots of directional errors versus IRED pose parameters, as defined on figure 3. The remaining parameters
(IRED positions and speed) did not show any relationship with the errors, therefore they have not been shown here.
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Fig. 6. The standard deviations of the random component
of the FLE in the xz and yz planes. The standard deviation
in the z direction of 0.11 mm is significantly greater than
the standard deviation in either the x (0.023 mm) or y
(0.026 mm).

the error in the Y direction and the angle to the XZ
plane(φ), and the error in Z direction and both the angles.
The remaining parameters from equation 5 (x,y,z and
s) did not appear to influence the IRED errors, based
both on the Pearson correlation coefficient and a visual
examination of the error plots. It should be noted that
this result does not indicate that these parameters have
no effect in the general case, only that any such effect
could not be detected using this rigid body. This is
discussed further in Section 9.

On the basis of the results shown in Figure 7 the form
of Equation 5 was simplified to FLEi = fX,Y,Z(θ, φ) +
N (0, σX,Y,Z) with f modelled as a third order polyno-
mial, see equation 17.

fX,Y,Z = c1,iθ
3 + c2,iθ

2 + c3,iθ + c4,iφ
3 + c5,iφ

2+
c6,iφ+ c7,iθ

2φ+ c8,iθφ+ c9,iθφ
2 + c10,i

(17)
A third order polynomial model was used as it appears
to be the simplest model to fit the data. Use of higher
order polynomials would likely result in over fitting to
the available data.
Equation 17 was fitted to the error data derived from

the composite cross and pointer rigid body. The fitting
was performed by minimising the least squares residuals
using the Levenberg-Marquardt algorithm implemented
in the GNU Scientific Library. Figure 8 shows the result-
ing fitted functions. Table 3 gives numeric values of the
fitted coefficients.

7 VALIDATION

7.1 Validation using Simulated Error Functions

The accuracy of the error function estimation methods
were first validated using simulation of the tracking
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Fig. 8. Polynomial functions (equation 17) fitted to the errors estimated using the composite rigid body. Errors in the x
direction are shown at the left, y errors in the middle and z errors at the far right. Similarly to the random component
the errors in the z direction are significantly larger than in the x and y directions. The x and y directional errors show a
cubic relationship with one of the angles. The z direction errors show a parabolic relationship with both angles.

Dir. X Y Z
c1,i 1.8× 10−7 7.3× 10−7 1.1× 10−6

c2,i 1.4× 10−5 2.0× 10−5 1.3× 10−4

c3,i 8.8× 10−5 −4.6× 10−4 −2.3× 10−4

c4,i −4.6× 10−4 −2.9× 10−3 −9.5× 10−2

c5,i 8.8× 10−7 −9.4× 10−8 1.2× 10−7

c6,i −3.0× 10−6 −1.8× 10−6 2.9× 10−5

c7,i −1.4× 10−3 −1.4× 10−4 5.7× 10−4

c8,i 4.7× 10−7 1.0× 10−7 2.8× 10−7

c9,i 2.1× 10−5 −1.4× 10−6 2.1× 10−5

c10,i −8.3× 10−8 3.7× 10−7 −5.0× 10−8

TABLE 3
The fitted polynomial coefficients.

process, with the IREDs perturbed by the fitted error
function equation 5. Simulated tracking data for both
the 6 and 22 IRED rigid bodies was generated by first
transforming the respective reference rigid bodies using
the rigid body transforms from the actual tracking data.
The resulting simulated tracking data mimics the actual
tracking data, but with zero FLE. The IREDs are then per-
turbed using the known error function and the resulting
tracking output subjected to the same analysis as for the
actual data. The resulting estimates of the systematic and
independent errors can be compared to the known input
error function.

7.1.1 Validation of Independent Error Estimate
The method described in Section 5.5 was used to es-
timate the random component of the error using a
simulated data set based on the 6 IRED pointer. Figure 9
shows the results of this validation procedure. The accu-
racy of the estimation is similar to the results presented
by [17].

7.1.2 Validation of Bias Function Estimate
The estimation of the error bias functions was validated
using a similar approach to the preceding section. The
method described in Section 7.1 was applied to the
composite rigid body. Individual IREDs were perturbed
according to equation 17 with coefficients taken from
tables 3 and 6. The method described in Section 5.5
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Fig. 9. The standard deviations of the random component
of the FLE in the xz and yz planes. σz = 0.12mm , σx =
0.021mm , σy = 0.030mm The shape and magnitude of
the estimated standard deviations are very close to the
input functions, Figure 6.

Error X (mm) Y (mm) Z (mm)
〈|FLEAct.|〉 0.0407 0.0436 0.1370
〈|FLEEst.|〉 0.0402 0.0350 0.0991
〈|FLEEst. − FLEAct.|〉 0.0076 0.0101 0.0446
Percentage Error -18.7 % -23.2 % -32.6 %

TABLE 4
The result of integrating the difference between the error

functions shown in Figure 10 between ±60o in both
directions. Despite capturing the general shape of the

error functions the method still underestimates the
systematic errors by around 25 %.

was applied to the simulated data to estimate the error
functions. The error is represented pictorially in Figure
10 and numerically in table 4. The method does capture
the general shape of the systematic error functions,
though does underestimate the systematic errors. To put
a numerical value on the amount of underestimation the
two surfaces were integrated over the range of angles
±60o and the enclosed volume expressed as a percentage
of the actual error.

7.2 Validation using Pointer Calibration Data

As the number of visible IREDs on a pointer is reduced,
the tip localisation error will increase. A corresponding
increase in the calibration error ECal would be expected.



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

TRANSACTIONS ON MEDICAL IMAGING 10

-60 -40 -20  0  20  40  60
-40

-20
 0

 20
 40

 60
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

F
LE

X
,s

ys
 (

m
m

)

Input Function
Est. Function

θ (degrees)
φ (degrees)

F
LE

X
,s

ys
 (

m
m

)

-60 -40 -20  0  20  40  60
-40

-20
 0

 20
 40

 60
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

F
LE

Y
,s

ys
 (

m
m

)

Input Function
Est. Function

θ (degrees)
φ (degrees)

F
LE

Y
,s

ys
 (

m
m

)

-60 -40 -20  0  20  40  60
-40

-20
 0

 20
 40

 60
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3

F
LE

Z
,s

ys
 (

m
m

)

Input Function
Est. Function

θ (degrees)
φ (degrees)

F
LE

Z
,s

ys
 (

m
m

)

Fig. 10. The known input error function and the error function estimated using simulated measurements. The proposed
method is largely successful in estimating the shape of the error functions.

This effect can be observed on the 22 IRED pointer
by progressively masking IREDs and repeating the cal-
ibration. For real calibration data it is not practical to
know the actual pointer tip position pgs, however, if
the calibrated pointer tip when all IREDs are visible is
used as a pseudo gold standard position, it is possible
to show the change in calibrated tip position as the
IRED visibility is changed. The same procedure can be
performed using simulated data and various models of
FLE. A good model of the FLE should provide a good
description of the observed ressults.

A subset of the calibration tracking data for the
composite rigid body, see section 4, consisting only of
frames (1107 frames) with all 22 IREDs visible was used.
Calibration data for pointers with 3 to 21 IREDs visible
were generated by masking the data using patterns of
IRED visibility that had been observed in the original
data set. The resulting 20 data sets were used to perform
a pointer calibration, giving 20 estimates of the pointer
tip position. The pointer tip position found using all 22
IREDs is then used as a gold standard to calculate ECal

for the remaining IRED visibilities.

To simulate the calibration process a set of 1107
synthetic data frames with zero FRE was created by
transforming the reference rigid body into the Optotrak
coordinate system using the pointer poses observed
for the real data. Each of these 1107 frames was then
translated to place the pointer tip at q, i.e. generating a
perfect calibration with zero calibration error (ECal). The
individual IREDs were then perturbed using the derived
error model, equation 17, to generate a simulated data
set. The calibration and IRED masking process described
above was used to generate a corresponding set of
simulated ECals for reducing IRED visibilities.

The calibration simulation was repeated with three
models of independent FLE, based on the literature. Ho-
mogeneous and heterogeneous models of independent
anisotropic error, and homogeneous isotropic error. For
the anisotropic errors covariance matrices for the FLE
were computed as per [17], using all 1107 frames of data.
Equation 3 was used to estimate the expected absolute
value of the isotropic error.

Figure 11 shows the change in the estimated ECal
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Fig. 11. Measured and modelled values of pointer cal-
ibration error, estimated using pointer tip position cal-
culated using all 22 IREDs as pseudo gold standard.
The proposed two component FLE model gives a result
substantially closer to the observed results than any of the
models using only independent FLE. Only the results for
homogeneous anisotropic noise are shown here for clar-
ity, as neither homogeneous isotropic nor heterogeneous
anisotropic FLE gave an improved result.

for reducing IRED visibility, for both the measured and
simulated data. The proposed error model, combining
systematic and independent errors, is shown to give a
much closer approximation of the observed results than
any of the independent error models. Only the results for
homogeneous anisotropic noise are shown as this was
the best performing of the independent error models.

Having an estimate of the systematic component of
the FLE, the logical extension is to try and correct for
the systematic error in the registration process. This can
be done at a small computational cost, by using an
initial estimate of the IRED surface normal angles to
calculate the systematic error, correcting the measured
IRED position, and repeating the registration. Figure
12 shows the measured change in estimated ECal with
and without correction for systematic error. There is a
marked improvement in the calibration results for low
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Fig. 12. Measured values of pointer calibration error
with and without correction for systematic error in the
registration process. Correcting for the systematic error
shows a marked reduction in the estimated calibration
error at low IRED visibility.

IRED visibility.

8 APPLICATIONS

8.1 Calibration Simulation

In practice it is not possible to know the actual cali-
bration error, ECal, for a given pointer calibration pro-
cedure. A realistic model of FLE enables simulation of
the pointer calibration process to give estimates of the
expected pointer tip spread and the calibration error. In
this section the calibration process is simulated using
three models of FLE. one application for modelling of
the FLE is the simulation of the calibration process in to
estimate the expected value of calibration error. In this
section the pointer calibration process is simulated using
three different models of FLE.
The rigid body geometry Xr, the location of the

pointer tip in pointer coordinates (p) and in world coor-
dinates (q) were taken from the actual pointer calibration
for the 6 IRED pointer. Each calibration simulation was
performed using 100 pointer poses selected at random
from the 5838 poses recorded for the 6 IRED pointer, see
section 4. As in Section 7.2 ”perfect“ calibration sets were
created by translating the pointer to give zero pointer tip
spread, then the IRED positions were perturbed using
three models of FLE. The simulated tracking data are
used to perform a pointer calibration as per section 5.2.
For each model of FLE the calibration simulation was
repeated 1000 times to give a reasonable population of
results.
The first model of FLE is the two component model

proposed in this paper, i.e. equation 17. The remaining
2 methods use the more common approach of mod-
elling the FLE as an independent and anisotropic normal
distribution. The FLE covariance matrices for each of
the models are determined using the method of [17]

FLE Model 〈|FLEX |〉 〈|FLEY |〉 〈|FLEZ |〉
1: Equation 17 0.038 0.036 0.111
2: [17] 22 IRED Pointer 0.029 0.024 0.172
3: [17] 6 IRED Pointer 0.024 0.023 0.081

TABLE 5
The calibration simulation uses three models of FLE.

Model 1 uses the error model put forward by this paper
(equation 17). The remaining two models use an

independent random error, estimated using the FRE
covariance matrices from a set of tracking data, [17].
Model 2 uses the FRE from the 22 IRED composite

pointer, model 3 used the FRE from the 6 IRED pointer.
The table shows the expected absolute values of FLE for

each model.
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Fig. 13. Plots of the RMS pointer tip spread (PTS, equa-
tion 9) and the actual calibration error (ECal, equation 8)
for each of the three models of FLE, defined in Table 5.
The RMS pointer tip spread is linked to the expected ab-
solute value of the random component of the FLE. Hence
models 1 and 3, which have the same random component
of FLE, have similar pointer spread values. The actual
calibration error however is significantly changed when
the systematic error is introduced (model 1). The calibra-
tion error for model 1 (0.1 mm) is double that of model 3
(0.05mm).

(equation 4) to estimate the FLE covariance from the FRE
covariance. Model 2 uses the composite (22 IRED) rigid
body to estimate the FRE covariance matrices. Model
3 uses the standard (6 IRED) pointer to estimate the
FRE covariance matrices. As discussed in section 5.5
using the method from [17] on the flat (6 IRED) pointer
fails to capture the angle dependent error, resulting in
significantly smaller estimated FLE. The three models
and their expected absolute errors are listed in Table 5.
Figure 13 plots the RMS pointer tip spread against the
actual calibration errors for each simulated model.

Three important results are evident from Figure 13.
Firstly, within each data set there is no correlation be-
tween the pointer tip spread and the actual calibration
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error, i.e. the calibration accuracy for a given calibration
cannot be predicted from the pointer tip spread. This
result is widely known but often overlooked in practice.
Secondly the expected calibration error when using the
formula (model 1) is approximately double that using
any of the other models. That is, the assumption of
independence between the individual FLEs significantly
underestimates the actual calibration error. The last re-
sult of note is that for the cases with independent error,
whilst the magnitude of the error has a strong effect
on the pointer tip spread, the effect on the expected
calibration error is minimal. The last two points are due
to the fact that the calibration method itself is based on
the assumption that the marker errors are independent.

8.2 Extension to Laparoscope Tracking

The preceding results have an important application to
laparoscope tracking. Due to the physical restrictions
present in laparoscopic surgery it is not possible to place
the IREDs near the target to be tracked (the tip of the
laparoscope). For this reason the tracking errors are in
general quite high as any error in estimating the angular
orientation of the laparoscope is amplified by the length
of the laparoscope body.
To demonstrate the effects of this the following sim-

ulation was performed. Two realistic laparoscope track-
ing configurations were simulated, both with 12 IREDs
mounted on a collar at the distal end of the laparoscope.
In one case the 12 IREDs are all mounted with the same
orientation, so angle dependent errors will be coherent,
as was the case for the 6 IRED pointer. In the other
case the orientation of the IREDs is varied, as might be
done in the hope of getting a greater tracking range. For
simplicity the two collars will henceforth be referred to
as the “flat” and “bumpy” collars respectively. Figure 14
shows the two configurations. Laparoscope tracking is
then simulated for each configuration under two models
of tracking error, one using the proposed error formula
(equation 17), and the other using independent random
derived using the method of [17] from the composite
rigid body, (Model 2, from Table 5). Figure 15 defines
the laparoscope geometry.
The laparoscope tracking simulation is performed as

follows. The laparoscope and the target point are first
transformed to the Optotrak’s coordinate system into a
physically realistic pose. A range of laparoscope poses
are used simulating the laparoscope pivoting about a
trocar point across an angle of approximately 120 de-
grees in both the X and Y directions. The IREDs are
then perturbed using either the error formula or an
independent random variable.
An important aspect of laparoscope tracking is the fact

that in practice IREDs will be obscured. This may be due
to the position of the laparoscope itself, for example if
the laparoscope is positioned at an angle to the tracking
cameras the laparoscope itself will obscure the IREDs
on one side of the tracking collar. In other cases some

Fig. 14. The two IRED configurations tested. Both config-
urations have the IREDs in identical positions. 12 IREDs
are mounted in groups of three around the perimeter of
the laparoscope camera unit. This configuration, while not
ideal, has been used in practice and found to be practical.
The collar on the left, henceforth known as the “bumpy”
collar, has the two outer IREDs in each group of 3 angled
outwards at 30 degrees. Such a configuration might be
used to maximise the chance of at least some IREDs
being visible at extreme angles. The collar on the right,
the “flat” collar, is identical, but with all 12 IREDs having
identical surface normals.

Fig. 15. The geometry of the laparoscope tracking model.
The laparoscope modelled has a distance of 180 mm
from the tracking collar to the lens . The surgical target
is a further 200 mm in front of the laparoscope lens.
Though the pose of the laparoscope changes during the
simulation to achieve different IRED normal angles, the
position of the target remains fixed with respect to the
laparoscope lens, i.e. the target moves relative to the
coordinates of the tracking camera system or “operating
room”.

IREDs may be obscured by one of the many people
in the operating theatre or other equipment. One way
to address this is to only use frames when all IREDs
are visible, this however somewhat compromises the
tracking systems utility. It would be far better to design
the tracking collar to be robust to obscured IREDs. To
account for this in the simulation a subset of IREDs
are then turned off. The IREDs were turned off either
individually or in physically realistic groups, i.e. on one
side of the tracking collar or physically adjacent IREDs.

The positions of the visible and perturbed IREDs were
then used to estimate the position and pose of the
laparoscope. The target point was then projected onto a
plane 200 mm distant to and parallel to both the known
position of the laparoscope and the estimated position
of the laparoscope. The distance between the two points
was recorded and the simulation was repeated with
a new laparoscope pose. The simulation was repeated
approximately 6000 times and the RMS projected error
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Fig. 16. The on screen tracking error for a point 200
mm distant from the endoscope lens. Two different mod-
els of FLE are used, independent normally distributed
anisotropic noise (model 2, table 5), and an angle de-
pendent systematic error added to a normally distributed
noise term (model 1, table 5). A rigid body with uniform
IRED surface normals (flat) and another with varying
(bumpy) IRED surface normals were simulated. For inde-
pendent FLE IRED orientation has no effect on projected
error. When a systematic error is introduced the effect
of IRED orientation becomes important. With 6 IREDs
obscured the flat rigid body gives a projection error 2 mm
less than the bumpy rigid body.

recorded. The process was repeated for each model of
FLE, for each IRED geometry, and different numbers of
obscured IREDs, between 0 and 6. The results are shown
in Figure 16.

The independent error model gives a significantly
higher back projection error than the systematic error
model. The results for the systematic error model shows
that IRED orientation can have a significant effect on
the tracking performance. When all IREDs are visible
the IRED orientation does not have a significant effect.
However as IREDs are obscured, as will occur in prac-
tice, the results diverge. In this case having all the IREDs
at the same angle results in a system that is significantly
more robust to loss of IRED visibility. When 6 IREDs
are obscured the flat rigid body gives a projection error
around 2 mm smaller than the bumpy rigid body.

Because the errors are coherent, the systematic track-
ing error will result in a translational error at the laparo-
scope collar with an expected absolute value less than
0.1mm. Unlike rotational errors, translational errors at
the collar will not be magnified by the lever arm of the
laparoscope. A 0.1mm translational error at the collar
results in a 0.1mm translational error at the laparoscope
lens, which is insignificant in comparison to the errors
at the laparoscope lens due to rotational errors.

To test for the existence of a limiting laparoscope
length, where a bumpy collar may outperform a flat col-
lar, the simulation was repeated using targets at shorter
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Fig. 17. The projected error for a laparoscope as a
function of the distance of the target from the centroid
of the tracking collar. A flat collar gives a higher error at
points very close (< 10mm ) from the collar. However
as the distance from the collar increases the flat collar
significantly out performs the bumpy collar. The crossing
point of the two curves at less than 10 mm from the collar
centroid indicates that for all practical tracking problems a
rigid body with the IREDs arranged at the same angle is
preferable.

distances (between 0 and 30mm) from the tracking collar
centroid. To simplify the illustration only the results for 5
visible IREDs were plotted. Figure 17 shows the resulting
projection errors.
The errors at distance 0 mm in Figure 17 represent the

translational component of the registration errors. It is
apparent that the bumpy collar has a smaller translation
error than the flat. However, as the distance from the
centroid increases it is the rotational component of the
error that becomes significant. In fact the rotational error
starts to dominate at distances greater than 10 mm,
which is an order of magnitude less than the distances
encountered in practice. In all practical cases then, a flat
collar would be expected to outperform a bumpy collar.

9 DISCUSSION

This paper starts with the assumption that the tracking
error for each IRED can be divided into a repeatable
systematic error and a non repeatable random error.
Methods for determining each error are then presented.
The method for estimating the random component is
taken from [17].
The method for determining the systematic error is

straightforward yet novel. The method has the advan-
tage that it does not rely on any knowledge of the
physics of the underlying system. It is not necessary to
know the physical characteristics of the tracking system,
i.e. number of camera(s), focal lengths, positions of cam-
eras, etc. The same method could in theory be applied
easily to other point based tracking systems. However
this freedom has probably come at the cost of accuracy.
It seems likely that if the data had been fitted to some
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underlying physical model of the system, such as done
by [20], the results may have been improved.
The resultant 2 component model of FLE marks a

significant improvement on the classical model of inde-
pendent, normally distributed FLE. The proposed model
was used to model the change in the pointer tip cal-
ibration error with reduced IRED visibility (figure 11)
and shown to provide a much closer match to observed
results than existing independent error models.
The two component model was then used in two sim-

ulations to demonstrate cases where the use of existing
independent error models can lead to significant errors.
Simulations of the pointer calibration (figure 13) showed
that independent error models can underestimate the
pointer calibration error by a factor of 2. Simulations of
laparoscope tracking using arrangements of IREDs with
homogeneous and inhomogeneous IRED surface nor-
mals also gave an interesting and significant result, see
figure 16. When a significant systematic error is present,
arranging the tracking IREDs such that the systematic
error is the same for all IREDs gives a significantly lower
tracking error at the pointer (or camera) tip. This is
due to the fact that such an arrangement results in a
purely translational error for the systematic component
of FLE. Unlike rotational errors, translational errors are
not amplified by the long lever arm of a laparoscopic tool
or camera. This effect was true for tool lengths greater
than 10 mm.

9.1 Future Work

No correlations were found between IRED position or
speed. Such correlations may exist, however the rigid
bodies used in this paper would be unable to detect
them. In order to detect any positional correlations using
the method presented a significantly larger (with an area
of approximately 1 m2) rigid body would be required.
This would be difficult to achieve in practice, but may
be useful for some applications. Similarly, by sampling
the rigid bodies used in this paper at a larger range of
speeds it may be possible to find a change in the random
error component, as observed by [15].
The almost universally used registration method pre-

sented in Section 5.1 is based on the assumption of
isotropic, homogeneous, independent, and normally dis-
tributed marker error, an assumption shown to be wrong
in this case. Methods have been proposed in the litera-
ture to solve the weighted weighted Procrustes problem
[21], [14], [6], [22]. These can account for the anisotropy
of the error, but not the fact that the errors are not
independent. The availability of a more realistic model
for FLE will enable the better assessment of these and
other registration methods.
As detailed in section 7.1.2 the method used to esti-

mate the systematic error function underestimates the
size of the systematic error by around 30 %. One source
of error is the assumption made in Section 5.4 that the
systematic TRE (TREsys) can be modelled as a zero

mean random variable. It is unlikely that this assumption
is valid and further work would help to determine the
effect of this assumption. One possibility for correcting
this error would be to use an iterative approach to solve
equation 12.

10 CONCLUSION

To bring image guided surgery to laparoscopic proce-
dures will require accurate tracking of laparoscopic tools
and cameras. In order to accurately track laparoscopic
cameras and tools an improved understanding of the
tracking system error is required. This paper has pre-
sented a simple method, that could be implemented
by most tracking system users, to estimate the error
functions of a given tracking system. The method is
particularly applicable to systems using active IRED
markers but could also be applied to systems using
passive markers, though the results would be expected
to be quite different.
The system is not entirely accurate, but in its current

form can be used to improve the design of laparoscopic
tracking collars. Most significantly it has been shown
that there are very significant benefits to using a pattern
of IREDs with homogeneous surface normal directions.
Image guided surgery using point based tracking sys-

tems is becoming increasingly commonplace. The widely
used assumption that the target registration error can
be modelled as an independent normally distributed
random variable can lead to some errors being un-
derestimated by a factor of 2. Furthermore, a proper
understanding of the tracking error enables significantly
improved tracking system design.

ACKNOWLEDGMENTS

REFERENCES

[1] L. Adhami and E. Coste-Maniére, “A versatile system for com-
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