
CSE 3311 SOFTWARE DESIGN
REPORT 1 SPECIFICATION

PRZEMYSLAW PAWLUK

Due: Wednesday, September 27, 5:30pm
Where: In class

NOTE: If the class has begun your report is late

1. Main Points

Be sure to read and follow all the guidelines from the links on reports and academic
honesty from the WWW home page for the course. The specification is the union of this
document plus the program text you are given.

1.1. Learning objectives.
• The implementation and documentation of abstract data types as classes
• Eiffel programming
• Programming from contracts and test cases

1.2. To hand in. Hand in, in class, a report containing the following items as a package
in the given order. If the package is too big to staple as one unit, then please staple in
multiple parts. Cover page as part 1 of N, the remaining as part x of N. Include your
name(s) on each part. The report is required for your work to be evaluated. The electronic
submission is used to run your system but with no report, the electronic submission is
ignored.

(1) Cover page printed from the course web pages
(2) A report describing the ADT. The structure is to be based on the slide set Abstract

Data Types Documentation.
(3) A listing of the file dict.e should be the last section in your report. A 10 point

fixed width font such as courier should be used the program enscript on Prism is
an ideal choice.

1.3. Electronic submission. Before the deadline, submit all .e and .ecf files for the sys-
tem. Use relative addressing in your system so your program will compile no matter where
the files exist on Prism or Windows systems. No other files should be submitted (e.g.
EIFGEN files etc). You should use eclean (on Prism) before submitting to clear away the
unnecessary files. To submit, use the following command on Prism.
submit 3311 r1 dict.ecf *.e.

Date: September 12, 2012.

1

2 PRZEMYSLAW PAWLUK

Files cannot be deleted the submit command can only add or replace files so be very
careful to clean up your directory before any submission. While you can develop your
system on your personal computer, be sure your program will compile and execute on
Prism using estudio 7.0.

1.4. To get started. Download the file 3311_report1.tar.gz to a local directory. When
you untar with the command tar xzf 3311_report1.tar.gz, you will get a directory
called report1 that contains the following files.

(1) test_dict_all.e the class TEST DICT ALL uses eSpec to test the dict system.
Do not modify this file.

(2) test_dict_char.e the class TEST DICT CHAR uses eSpec to test character
tries. Do not modify this file.

(3) test_dict_string.e the class TEST DICT STRING uses eSpec to test string
tries. Do not modify this file.

(4) dict.e the class DICT is an implementation of a dict ADT. You are to complete
the implementation of the routine bodies, where indicated.

(5) dict.ecf the Eiffel construction file for the dict system. Do not modify this file.
The system will compile and run but most of the tests will fail. The tests that pass,

pass for the wrong reason (an example that tests may not necessarily test what you think
they test).

2. Tasks

You are to complete the missing parts in the file dict.e. The given partial implementation
is a generic dict, where different instances can store sequences of objects of different types
but a particular instance will store only sequences of the same type of objects. Sequences
are inserted in the dict using the insert feature. For simplicity, the argument passed to the
insert feature is a linked list of the objects in the given sequence (in a real application this
may be a more generic container).

3. Definition of a Dict

A dict is a data structure that can be used to store sequences of elements in a manner
that makes it efficient to check whether a particular sequence is contained in the dict. Its
most common application is in storing words (sequences of characters). Assuming all valid
English words are stored in a dict, a spell-checking program can quickly check if a word is
valid or not. For example, Figure 1 shows a dict containing the words he, hers, his, hop,
hope and she, while the words her and hi are not in the dict. A spell-checker examining the
word scan quickly see that there is no sequence starting with the character e and conclude
that it is an invalid word.

Each node, see Figure 2, in the dict contains an element, a character in the example in
Figure 1, and a flag, that indicates whether the sequence starting at the root and ending
at this node is valid or not. The root node of the dict does not contain an element.

CSE 3311 SOFTWARE DESIGN REPORT 1 SPECIFICATION 3

Version 1.0– January 3

 - 2 -

3. test_trie_string.e – the class TEST_TRIE_STRING uses eSpec to test string tries. Do not
modify this file.

4. trie.e – the class TRIE is an implementation of a trie ADT. You are to complete the
implementation of the routine bodies, where indicated.

5. trie.ecf – the Eiffel construction file for the trie system. Do not modify this file.

The system will compile and run but most of the tests will fail. The tests that pass, pass for the wrong

reason (an example that tests may not necessarily test what you think they test).

2 Tasks

You are to complete the missing parts in the file trie.e.

The given partial implementation is a generic trie, where different instances can store sequences of

objects of different types but a particular instance will store only sequences of the same type of objects.

Sequences are inserted in the trie using the insert feature. For simplicity, the argument passed to the

insert feature is a linked list of the objects in the given sequence (in a real application this may be a more

generic container).

3 Definition of a Trie

A trie is a data structure that can be used to store sequences of elements in a manner that makes it efficient

to check whether a particular sequence is contained in the trie. Its most common application is in storing

words (sequences of characters). Assuming all valid English words are stored in a trie, a spell-checking

program can quickly check if a word is valid or not.

For example, Figure 1 shows a trie containing the words he, hers, his, hop, hope and she, while

the words her and hi are not in the trie. A spell-checker examining the word ers can quickly see that

there is no sequence starting with the character e and conclude that it is an invalid word.

Figure 1: An example trie

Figure 1. An example of dict

Version 1.0– January 3

 - 3 -

Each node, see Figure 2, in the trie contains an element, a character in the example in Figure 1, and a

flag, that indicates whether the sequence starting at the root and ending at this node is valid or not. The

root node of the trie does not contain an element.

Figure 2: An abstract trie node.

4 Grading scheme

The grade for the report is partitioned into the following parts.

• Overall presentation – 10%

• Trie ADT description – 25%

• Programming – 40%

• Comments in trie.e – 25%

Figure 2. An abstract dict node

4. Grading scheme

The grade for the report is partitioned into the following parts.
• Overall presentation 10%
• Trie ADT description 25%
• Programming 40%
• Comments in dict.e 25%

