
Builder-1© Gunnar Gotshalks

Builder Pattern – Creational

• Intent
Separate the construction of a complex object from
its representation so that the same construction
process can create different representations

• Motivation
» Reader for RTF (Rich Text Format) should be able

to convert to any other representation
Plain Text, MIF (Maker Interchange File),
Postscript

» Open ended number of representations possible
» Abstract the conversion process

Builder-2© Gunnar Gotshalks

Example Conversion

PLAIN TEXT +
CONVERTER

convert_char +
convert_para +
 …

POSTSCRIPT +
CONVERTER

convert_char +
convert_para +
 …

PLAIN_TEXT_DEF MIF_DEF

MIF +
CONVERTER

convert_char +
convert_para +
 …

POSTSCRIPT_DEF

Builder-3© Gunnar Gotshalks

Builder – Applicability

• When algorithm for creating a complex object should
be independent of the parts that make up the object
and how they are assembled

• The construction process must allow different
representations for the object that is constructed

Builder-4© Gunnar Gotshalks

Builder – Example Architecture

RTF_READER
 TEXT CONVERTER *

convert_char *
convert_para *
 …

PLAIN TEXT +
CONVERTER

convert_char +
convert_para +
 …

POSTSCRIPT +
CONVERTER

convert_char +
convert_para +
 …

PLAIN_TEXT_DEF MIF_DEF

MIF +
CONVERTER

convert_char +
convert_para +
 …

POSTSCRIPT_DEF

Builder-5© Gunnar Gotshalks

Builder – Abstract Architecture

 BUILDER *

build_part *
get_result *

CONCRETE_ +
BUILDER_1

CONCRETE_ +
BUILDER_2

build_part +
get_result +

build_part +
get_result +

DIRECTOR

PRODUCT

Builder-6© Gunnar Gotshalks

Builder – Participants

• Builder

Specifies abstract interface for creating parts of a
product object

• Concrete builder

Constructs and assembles parts of the product by
implementing the Builder interface

• Director

Constructs an object using the Builder interface

• Product

» The complex object under construction

» Includes classes that define the parts and interfaces for
assembling parts into a final result

Builder-7© Gunnar Gotshalks

Builder – Collaboration

• The client creates a Director object and configures it
with the desired Builder object

• Director notifies Builder whenever a part of the
product should be built

• Builder handles requests from the Director and adds
parts to the product

• Client retrieves the product from the Builder

Builder-8© Gunnar Gotshalks

Builder – Scenario

Scenario: Build a product

1 create aBuilder.make
2 director.set(aBuilder)
3 aBuilder.build_part_1
4 aBuilder.build_part_2
 …
N aBuilder.build_part_N
N+1 director.get_product

CLIENT DIRECTOR

CONCRETE_BUILDER

1

2

N+1

3 .. N

Builder-9© Gunnar Gotshalks

Builder – Implementation

class MAZE_BUILDER
feature
 build_maze deferred end
 build_room (id : INTEGER) deferred end
 build_door (id1 : INTEGER ;
 id2 : INTEGER) deferred end
 maze : MAZE // builder adds to the structure
 get_result : MAZE do Result := maze end

end

Builder-10© Gunnar Gotshalks

Builder – Implementation – 2

class MAZE_GAME create create_maze
feature
 create_maze (builder : MAZE_BUILDER)
 do
 the_builder := builder
 builder.build_room (1)
 builder.build_room (2)
 builder.build_door (1 , 2)
 end

 the_builder : MAZE_BUILDER
 get_result : MAZE do Result := the_builder.get_result end

end

Builder-11© Gunnar Gotshalks

Builder – Implementation – 3

class DEFAULT_MAZE_BUILDER
inherit BUILDER
feature
 build_room (id : INTEGER)
 local room : ROOM
 do
 create room.make (id) -- make with four walls default
 maze.add_room (room)
 end

 ...

Builder-12© Gunnar Gotshalks

Builder – Implementation – 4

 build_door (id1 : INTEGER ; id2 : INTEGER)
 local r1 , r2 : ROOM ; door : DOOR
 do
 r1 := maze.get_room (id1)
 r2 := maze.get_room (id2)
 create door.make (id1, id2)
 r1.set_side (common (r1, r2) , door)
 r2.set_side (common (r1, r2) , door)
 end

end -- DEFAULT_MAZE_BUILDER

Builder-13© Gunnar Gotshalks

Builder – Implementation – 5

// Client

maze : MAZE
game : MAZE_GAME
builder : DEFAULT_MAZE_BUILDER

create builder
create game.create_maze (builder)
maze := game.get_result

Builder-14© Gunnar Gotshalks

Builder – Related Patterns

• Abstract Factory focuses on families of product
objects, while Builder focuses on step by step
construction of complex objects

• Builder frequently builds a Composite

