
Visitor-1© Gunnar Gotshalks

Visitor Pattern – Behavioural

• Intent
» Represent an operation to be performed on all of

the components of an object structure
» Define new operations on a structure without

changing the classes representing the components

Visitor-2© Gunnar Gotshalks

Visitor – Motivation

• Compiler using an abstract syntax tree

NODE *
type_check *
generate_code *
pretty_print *

VAR_NODE +

type_check +
generate_code +
pretty_print +

ASSIGN_NODE +

type_check +
generate_code +
pretty_print +

....

Operations spread
out OO style but ...
difficult to add a
new operation

Visitor-3© Gunnar Gotshalks

Visitor – Motivation – 2

• Consider programs to process SGML tags

SGML_TAG *
tangle *
weave *
display *

P_TAG + LI_TAG +

....tangle +
weave +
display +

Want to add literate
programming processors
– need to modify all classes
recompile everything
including deferred classes

tangle +
weave +
display +

Visitor-4© Gunnar Gotshalks

Visitor Architecture – SGML Example

*
VISITOR

+
LI_TAG

*
SGML_TAG

+
PS_GENERATE

Same structure
for each tag

One visitor subclass
for each operation

• Tag classes are independent of every operation

• Nodes accept visitors and direct them to the appropriate
operation – through polymorphism

Visitor-5© Gunnar Gotshalks

Visitor – Applicability

• Object structure contains many classes of objects
with differing interfaces and want to perform
operations that depend on their concrete classes

• Many distinct and unrelated operations need to be
performed
» Do not want to or are unable to clutter the concrete

classes with these operations
» Keep the related sub-operations (specific to each

concrete class) together
» Put operations into only those applications that

need them

Visitor-6© Gunnar Gotshalks

Visitor – Applicability – 2

• The classes defining the object structure rarely
change, but you often want to define new operations
over the structure

Changing object structure means
Redefining interface to all visitors, which is
costly

Visitor-7© Gunnar Gotshalks

Visitor – Abstract Architecture

ELEMENT *
accept (VISITOR) *
...

VISITOR *
visit_elem_A (ELEM_A) *
visit_elem_B (ELEM_B) *
...

CONCRETE_VISITOR_1 +

visit_elem_A (ELEM_A) +
visit_elem_B (ELEM_B) +
...

CONCRETE_VISITOR_2 +

 ELEM_A +

accept (VISITOR) +
...

ELEM_B +

Visitor-8© Gunnar Gotshalks

Visitor – Participants

• Element
Declares accept method for Visitors

• Concrete element
Implements accept method for Visitors

• Visitor
Declares visit operation for each concrete element
class

Visitor-9© Gunnar Gotshalks

Visitor – Participants – 2

• Concrete visitor
» Implements every visit operation declared by the

Visitor
Each visit operation implements a fragment of
the algorithm defined for the concrete visitor

» Provides the context for the algorithm composed
of all of the visit fragments

State accumulates with each visit
» Implements the high level organization

> Iteration over the components
> Processing each in turn

Visitor-10© Gunnar Gotshalks

Visitor – Scenario

• Concrete visitor loops over the elements
• For each element concrete visitor

Selects which method in the visitor to execute

CONCRETE_VISITOR CONCRETE_ELEMENT
1

2

1 accept (concrete_visitor)
2 visit_routine (concrete_element)

Scenario: Do one visit

Visitor-11© Gunnar Gotshalks

Visitor – TAG Implementation

deferred class SGML_TAG feature
 accept (visitor : VISITOR) deferred end
 ... -- other features ...
end

class LI_TAG inherit SGML_TAG feature
 accept (visitor : VISITOR) do
 visitor.visit_li_tag (Current)
 end
... -- other features ...
end

Visitor-12© Gunnar Gotshalks

Visitor – VISITOR Implementation

deferred class VISITOR feature

 -- Have one "visit" routine for each tag (component)

 visit_LI_TAG (tag : LI_TAG) deferred end
 visit_P_TAG (tag : P_TAG) deferred end
 visit_UL_TAG (tag : UL_TAG) deferred end
 ...
end

Visitor-13© Gunnar Gotshalks

Visitor – Concrete Visitor Implementation

class CONCRETE_VISITOR inherit VISITOR feature
 get_elements -- Attaches elements to the iterator
 while not elements.allDone do
 elements.item.accept (Current)
 elements.next
 end

 visit_li_tag (tag : LI_tag) do semantic action ... end
 visit_ul_tag (tag : UL_tag) do semantic action ... end
 visit_p_tag (tag : P_tag) do semantic action ... end

 ... -- and all the rest of the tags

end

Visitor-14© Gunnar Gotshalks

Visitor – Consequences

• Adding new operations is easy
» New operation implements visitor interface for the

components
» All the fragments of the visitor algorithm are in one

file – related behaviours are together
Easier to make sure that components are
working in unison

» Unrelated operations and fragments are in other
visitor classes

» Contrast with having to change each of the
component classes to have the operation fragment

Each class has a fragment of each of the
operations

Visitor-15© Gunnar Gotshalks

Visitor – Consequences – 2

• Adding new concrete elements is difficult
» Need to modify visitor class
» Need to modify each concrete visitor

> Can sometimes simplify as many elements have
common behaviour (default behaviour) that can
be specified at concrete visitor level 1.

> Create subclasses of level 1 for more specific
behaviour for the new elements
– Only program the new elements

» For many structures components do not change
rapidly so this is not a problem

Visitor-16© Gunnar Gotshalks

Example Multi-Level Visitor

*
SGML–VISITOR

+
PARSER

++
PARSER_
TANGLE

++
EMITTER_
TANGLE

+
EMITTER

++
EMITTER_

PS

Default – echo input
from internal ADT

Build internal
structure

Extend for
program references

Output program
text for compiler

Output in
Postscript

Visitor-17© Gunnar Gotshalks

Visitor – Consequences – 3

• Works across class hierarchies
» Contrast with Iterator Pattern
» Contrast with multi-panel & do-undo applications

Visitor-18© Gunnar Gotshalks

Visitor – Related Patterns

• Visitor pattern is used to apply an operation over a
Composite

• Visitor pattern is used to do the interpretation for an
Interpreter pattern

• Visitor pattern is used to process the items obtained
by using the Iteration pattern to iterate over a
collection.

