
Decorator-1© Gunnar Gotshalks

Decorator Pattern – Structural

• Intent
» Attach additional responsibilities to an object

dynamically.
» Provide a flexible alternative to subclassing for

extending functionality

Decorator-2© Gunnar Gotshalks

Decorator – Motivation

• Motivation – Applicability
» Need to add responsibility to individual objects not

to entire classes
Add properties like border, scrolling, etc to any
user interface component as needed

» Enclose object within a decorator object for
flexibility

Nest recursively for unlimited customization

Decorator-3© Gunnar Gotshalks

Decorator – Example

• Compose a border decorator with a scroll decorator
for text view.

a_border_decorator

component a_scroll_decorator

component a_text_view

Decorator-4© Gunnar Gotshalks

Decorator – Example Diagram

VISUAL_COMPONENT *
draw *

TEXT_VIEW +
draw

DECORATOR *
 component : VISUAL_ COMPONENT

SCROLL_DECORATOR +

draw
scroll_position
scroll_to

BORDER_DECORATOR +

draw
border_width
draw_border

Decorator-5© Gunnar Gotshalks

Decorator – General Structure

COMPONENT *
method *

CONCRETE_COMPONENT +

method

DECORATOR *
component : COMPONENT

CONCRETE_DECORATOR_ A +

method
other_feature

CONCRETE_DECORATOR_B +

method
another_feature

Decorator-6© Gunnar Gotshalks

Decorator – Implementation

 class COMPONENT feature method deferred end

 class CONCRETE_COMP feature method do ... end

 class DECORATOR feature
 component : COMPONENT
 end

 class CONCRETE_DECECORATOR feature
 method do
 pre_actions

 component.method
 post_actions
 end

Recursively do method
for next in chain

Decorator-7© Gunnar Gotshalks

Decorator – Applicability

• Add responsibilities to individual objects dynamically
and transparently

Without affecting other objects

• For responsibilities that can be withdrawn

• When subclass extension is impractical
Sometimes a large number of independent
extensions are possible

Avoid combinatorial explosion
Class definition may be hidden or otherwise
unavailable for subclassing

Decorator-8© Gunnar Gotshalks

Decorator – Participants

• Component
Defines the interface for objects that can have
responsibilities added to them dynamically

• Concrete component
Defines an object to which additional
responsibilities can be attached

• Decorator
Maintains a reference to a component object and
defines an interface that conforms to COMPONENT

• Concrete decorator
Add responsibilities to the component

Decorator-9© Gunnar Gotshalks

Decorator – Consequences

• Benefits
» More flexible than static inheritance

> Can add and remove responsibilities
dynamically

> Can handle combinatorial explosion of
possibilities

» Avoids feature laden classes high up in the
hierarchy

> Pay as you go when adding responsibilities
> Can support unforeseen features
> Decorators are independent of the classes they

decorate
> Functionality is composed in simple pieces

Decorator-10© Gunnar Gotshalks

Decorator – Consequences – 2

• Liabilities
» From object identity point of view, a decorated

component is not identical
> Decorator acts as a transparent enclosure
> Cannot rely on object identity when using

decorators
» Lots of little objects

> Often result in systems composed of many look
alike objects

> Differ in the way they are interconnected, not in
class or value of variables

> Can be difficult to learn and debug

Decorator-11© Gunnar Gotshalks

Decorator – Related Patterns

• Adapter changes interface to an object, while
Decorator changes an objects responsibilities

• Decorator is a degenerate Composite (only one
component)

• Strategy lets you change the internals of an object,
while Decorator changes the exterior

