
26-1© Gunnar Gotshalks

Designing Classes
Part 2



26-2© Gunnar Gotshalks

How Not to Use Inheritance

• Class CAR, class PERSON put together to define a
new class CAR_OWNER

• Every CAR_OWNER is both a PERSON
and a CAR ?

CAR PERSON

CAR_OWNER



26-3© Gunnar Gotshalks

How Not to Use Inheritance – 2

• Correct relationship is client–supplier

Do not make a class B inherit from class A unless you
can somehow make the argument that one can view
every instance of B also as an instance of A

CAR

PERSON

CAR_OWNER



26-4© Gunnar Gotshalks

Use versus Inheritance – 1

• When the is view is legitimate, the has view can be
taken instead

The reverse is not usually true
CAR_OWNER

• Two criteria help us resolve such arguments
Though they sometimes fail to give a clear cut
solution



26-5© Gunnar Gotshalks

Rule of Change

• Client relations permit change, while inheritance does
not
» If B inherits from A then every B object is an A

object and no object can change this property
» If a B object has a component of type A it is

possible to change that component (up to the
constraints supplied by the type system)



26-6© Gunnar Gotshalks

Use versus Inheritance – 2

• Basic rule
» Client is a has relationship
» Inheritance is an is_a relationship

• It is a wicked problem to decide
due to difficulties of system modelling

• Compare the following
» Every software engineer is an engineer
» In every software engineer there is an engineer
» Every software engineer can have an engineer

component



26-7© Gunnar Gotshalks

Rule of Change – Example

class SWENG inherit ENGINEER ...
class SWENG2 feature me : ENGINEER ...
class SWENG3 feature me : VOCATION ...

• In the first, object relationship cannot be changed
dynamically

• In the other two, new values can be assigned to me
– up to type constraints
» Software engineer is also a juggler

Do not use inheritance for a perceived is_a relation if
the corresponding object components may have to be
changed at run time.



26-8© Gunnar Gotshalks

Polymorphism Rule

Inheritance is appropriate for is_a relations if data
structure components of a more general type may
need to be attached to objects of more specific type


