
23-1© Gunnar Gotshalks

Global Objects

23-2© Gunnar Gotshalks

Manifest Constants

• More commonly known as literals
Objects with their name being their value

> Numbers 0, -1, 5, 5.123, -4.3^-6, ...
> Strings "abcd", "I am a string", ...
> Characters 'a', '0', ...

• Symbolic Constant Principle
Do not use a manifest constant, other than zero or
identity elements of basic operations, in any
construct other than a symbolic constant
declaration

> File_not_found : STRING is "Cannot find file"
> Char_newline : CHARACTER is '%N'

23-3© Gunnar Gotshalks

Global Constants

• Group into appropriate classes
 class EDITOR_CONSTANTS feature

 Insert : CHARACTER is 'i'
 Delete : CHARACTER is 'd'
end

• Use – multiple inheritance as required
 class EDITOR inherit EDITOR_CONSTANTS

 feature
 ... reference by name ... Insert , Delete
 end

• But: EDITOR is not an EDITOR_CONSTANTS
» Unlikely to substitute, still a bit jarring

23-4© Gunnar Gotshalks

Global Constants – 2

• Group into appropriate classes
 class EDITOR_CONSTANTS feature

 Insert : CHARACTER is 'i'
 Delete : CHARACTER is 'd'
end

• Have an attribute for the shared constants
 class EDITOR

feature
 ed_const : EDITOR_CONSTANTS …
 create ed_const
 ed_const.Insert -- indirect reference …

 end

23-5© Gunnar Gotshalks

User Type Constants

• Need a mechanism to create and access constants
for any type a user may create.

• Once routine
 constant : UserType

 once
 create Result.make (...)
 end

• Example
 i : Complex

 once
 create Result.make_cartesian (0, 1)
 end

Replaces do

23-6© Gunnar Gotshalks

Once Routine

• The body is executed only once
» Result is saved and returned on every call
» For expanded variables, have true constants
» For references, have shared objects

> The referenced object can be modified

• Using the make facility guarantees the constant
satisfies the class invariants

• To prevent changes (e.g. in the value of complex i)
» Add to class invariant

 i.x = 0 and i.y = 1

23-7© Gunnar Gotshalks

Shared Objects

• Example of a message window in an interactive
system

> Many classes will want to use the same
message window – constant

> The displayed message changes, thus the
window as an object changes

 Message_window : Window
 once
 create Result.make (... param for window ...)
 end

 ... Example use ...
 Message_window.put_text("The message")

23-8© Gunnar Gotshalks

Once Procedures

• Can use the once mechanism to execute a procedure
once – no value is returned

> Display help windows
» An initialization routine may be called from

different classes depending upon what a user does
» Do not execute if the user does not execute a

method from a specific set
» But only execute once even if user executes

multiple methods from the set

• Better than using a flag to control once only use as
compiler enforces it

23-9© Gunnar Gotshalks

Once Function Rule

» The result type of a once function may not be
anchored and may not involve formal generic
parameters

23-10© Gunnar Gotshalks

Unique Values

• Unique values are often used to distinguish cases
> A frequent use of symbolic constants

 IO_completion_code : INTEGER
 successful_open : INTEGER is 1

successful_close : INTEGER is 2
...

• Let compiler select values, rather than programmer
 successful_open, successful_close

 : INTEGER is unique

• Values are unique and ascending if defined in one
statement
 if code > successful_open then ...

